summaryrefslogtreecommitdiff
path: root/rust/kernel
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2023-04-30 11:20:22 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2023-04-30 11:20:22 -0700
commit310897659cf056016e2c772a028f9b8abc934928 (patch)
treeca5f122d871a4e54026884bcc98a6309e3fd4069 /rust/kernel
parent825a0714d2b3883d4f8ff64f6933fb73ee3f1834 (diff)
parentea76e08f4d901a450619831a255e9e0a4c0ed162 (diff)
downloadlinux-310897659cf056016e2c772a028f9b8abc934928.tar.gz
linux-310897659cf056016e2c772a028f9b8abc934928.tar.bz2
linux-310897659cf056016e2c772a028f9b8abc934928.zip
Merge tag 'rust-6.4' of https://github.com/Rust-for-Linux/linux
Pull rust updates from Miguel Ojeda "More additions to the Rust core. Importantly, this adds the pin-init API, which will be used by other abstractions, such as the synchronization ones added here too: - pin-init API: a solution for the safe pinned initialization problem. This allows to reduce the need for 'unsafe' code in the kernel when dealing with data structures that require a stable address. Commit 90e53c5e70a6 ("rust: add pin-init API core") contains a nice introduction -- here is an example of how it looks like: #[pin_data] struct Example { #[pin] value: Mutex<u32>, #[pin] value_changed: CondVar, } impl Example { fn new() -> impl PinInit<Self> { pin_init!(Self { value <- new_mutex!(0), value_changed <- new_condvar!(), }) } } // In a `Box`. let b = Box::pin_init(Example::new())?; // In the stack. stack_pin_init!(let s = Example::new()); - 'sync' module: New types 'LockClassKey' ('struct lock_class_key'), 'Lock', 'Guard', 'Mutex' ('struct mutex'), 'SpinLock' ('spinlock_t'), 'LockedBy' and 'CondVar' (uses 'wait_queue_head_t'), plus macros such as 'static_lock_class!' and 'new_spinlock!'. In particular, 'Lock' and 'Guard' are generic implementations that contain code that is common to all locks. Then, different backends (the new 'Backend' trait) are implemented and used to define types like 'Mutex': type Mutex<T> = Lock<T, MutexBackend>; In addition, new methods 'assume_init()', 'init_with()' and 'pin_init_with()' for 'UniqueArc<MaybeUninit<T>>' and 'downcast()' for 'Arc<dyn Any + Send + Sync>'; as well as 'Debug' and 'Display' implementations for 'Arc' and 'UniqueArc'. Reduced stack usage of 'UniqueArc::try_new_uninit()', too. - 'types' module: New trait 'AlwaysRefCounted' and new type 'ARef' (an owned reference to an always-reference-counted object, meant to be used in wrappers for C types that have their own ref counting functions). Moreover, new associated functions 'raw_get()' and 'ffi_init()' for 'Opaque'. - New 'task' module with a new type 'Task' ('struct task_struct'), and a new macro 'current!' to safely get a reference to the current one. - New 'ioctl' module with new '_IOC*' const functions (equivalent to the C macros). - New 'uapi' crate, intended to be accessible by drivers directly. - 'macros' crate: new 'quote!' macro (similar to the one provided in userspace by the 'quote' crate); and the 'module!' macro now allows specifying multiple module aliases. - 'error' module: New associated functions for the 'Error' type, such as 'from_errno()' and new functions such as 'to_result()'. - 'alloc' crate: More fallible 'Vec' methods: 'try_resize` and 'try_extend_from_slice' and the infrastructure (imported from the Rust standard library) they need" * tag 'rust-6.4' of https://github.com/Rust-for-Linux/linux: (44 commits) rust: ioctl: Add ioctl number manipulation functions rust: uapi: Add UAPI crate rust: sync: introduce `CondVar` rust: lock: add `Guard::do_unlocked` rust: sync: introduce `LockedBy` rust: introduce `current` rust: add basic `Task` rust: introduce `ARef` rust: lock: introduce `SpinLock` rust: lock: introduce `Mutex` rust: sync: introduce `Lock` and `Guard` rust: sync: introduce `LockClassKey` MAINTAINERS: add Benno Lossin as Rust reviewer rust: init: broaden the blanket impl of `Init` rust: sync: add functions for initializing `UniqueArc<MaybeUninit<T>>` rust: sync: reduce stack usage of `UniqueArc::try_new_uninit` rust: types: add `Opaque::ffi_init` rust: prelude: add `pin-init` API items to prelude rust: init: add `Zeroable` trait and `init::zeroed` function rust: init: add `stack_pin_init!` macro ...
Diffstat (limited to 'rust/kernel')
-rw-r--r--rust/kernel/error.rs137
-rw-r--r--rust/kernel/init.rs1427
-rw-r--r--rust/kernel/init/__internal.rs235
-rw-r--r--rust/kernel/init/macros.rs971
-rw-r--r--rust/kernel/ioctl.rs72
-rw-r--r--rust/kernel/lib.rs10
-rw-r--r--rust/kernel/prelude.rs8
-rw-r--r--rust/kernel/sync.rs50
-rw-r--r--rust/kernel/sync/arc.rs108
-rw-r--r--rust/kernel/sync/arc/std_vendor.rs28
-rw-r--r--rust/kernel/sync/condvar.rs174
-rw-r--r--rust/kernel/sync/lock.rs191
-rw-r--r--rust/kernel/sync/lock/mutex.rs118
-rw-r--r--rust/kernel/sync/lock/spinlock.rs117
-rw-r--r--rust/kernel/sync/locked_by.rs156
-rw-r--r--rust/kernel/task.rs155
-rw-r--r--rust/kernel/types.rs135
17 files changed, 4084 insertions, 8 deletions
diff --git a/rust/kernel/error.rs b/rust/kernel/error.rs
index 5b9751d7ff1d..5f4114b30b94 100644
--- a/rust/kernel/error.rs
+++ b/rust/kernel/error.rs
@@ -72,10 +72,47 @@ pub mod code {
pub struct Error(core::ffi::c_int);
impl Error {
+ /// Creates an [`Error`] from a kernel error code.
+ ///
+ /// It is a bug to pass an out-of-range `errno`. `EINVAL` would
+ /// be returned in such a case.
+ pub(crate) fn from_errno(errno: core::ffi::c_int) -> Error {
+ if errno < -(bindings::MAX_ERRNO as i32) || errno >= 0 {
+ // TODO: Make it a `WARN_ONCE` once available.
+ crate::pr_warn!(
+ "attempted to create `Error` with out of range `errno`: {}",
+ errno
+ );
+ return code::EINVAL;
+ }
+
+ // INVARIANT: The check above ensures the type invariant
+ // will hold.
+ Error(errno)
+ }
+
+ /// Creates an [`Error`] from a kernel error code.
+ ///
+ /// # Safety
+ ///
+ /// `errno` must be within error code range (i.e. `>= -MAX_ERRNO && < 0`).
+ unsafe fn from_errno_unchecked(errno: core::ffi::c_int) -> Error {
+ // INVARIANT: The contract ensures the type invariant
+ // will hold.
+ Error(errno)
+ }
+
/// Returns the kernel error code.
- pub fn to_kernel_errno(self) -> core::ffi::c_int {
+ pub fn to_errno(self) -> core::ffi::c_int {
self.0
}
+
+ /// Returns the error encoded as a pointer.
+ #[allow(dead_code)]
+ pub(crate) fn to_ptr<T>(self) -> *mut T {
+ // SAFETY: self.0 is a valid error due to its invariant.
+ unsafe { bindings::ERR_PTR(self.0.into()) as *mut _ }
+ }
}
impl From<AllocError> for Error {
@@ -141,3 +178,101 @@ impl From<core::convert::Infallible> for Error {
/// it should still be modeled as returning a `Result` rather than
/// just an [`Error`].
pub type Result<T = ()> = core::result::Result<T, Error>;
+
+/// Converts an integer as returned by a C kernel function to an error if it's negative, and
+/// `Ok(())` otherwise.
+pub fn to_result(err: core::ffi::c_int) -> Result {
+ if err < 0 {
+ Err(Error::from_errno(err))
+ } else {
+ Ok(())
+ }
+}
+
+/// Transform a kernel "error pointer" to a normal pointer.
+///
+/// Some kernel C API functions return an "error pointer" which optionally
+/// embeds an `errno`. Callers are supposed to check the returned pointer
+/// for errors. This function performs the check and converts the "error pointer"
+/// to a normal pointer in an idiomatic fashion.
+///
+/// # Examples
+///
+/// ```ignore
+/// # use kernel::from_err_ptr;
+/// # use kernel::bindings;
+/// fn devm_platform_ioremap_resource(
+/// pdev: &mut PlatformDevice,
+/// index: u32,
+/// ) -> Result<*mut core::ffi::c_void> {
+/// // SAFETY: FFI call.
+/// unsafe {
+/// from_err_ptr(bindings::devm_platform_ioremap_resource(
+/// pdev.to_ptr(),
+/// index,
+/// ))
+/// }
+/// }
+/// ```
+// TODO: Remove `dead_code` marker once an in-kernel client is available.
+#[allow(dead_code)]
+pub(crate) fn from_err_ptr<T>(ptr: *mut T) -> Result<*mut T> {
+ // CAST: Casting a pointer to `*const core::ffi::c_void` is always valid.
+ let const_ptr: *const core::ffi::c_void = ptr.cast();
+ // SAFETY: The FFI function does not deref the pointer.
+ if unsafe { bindings::IS_ERR(const_ptr) } {
+ // SAFETY: The FFI function does not deref the pointer.
+ let err = unsafe { bindings::PTR_ERR(const_ptr) };
+ // CAST: If `IS_ERR()` returns `true`,
+ // then `PTR_ERR()` is guaranteed to return a
+ // negative value greater-or-equal to `-bindings::MAX_ERRNO`,
+ // which always fits in an `i16`, as per the invariant above.
+ // And an `i16` always fits in an `i32`. So casting `err` to
+ // an `i32` can never overflow, and is always valid.
+ //
+ // SAFETY: `IS_ERR()` ensures `err` is a
+ // negative value greater-or-equal to `-bindings::MAX_ERRNO`.
+ #[allow(clippy::unnecessary_cast)]
+ return Err(unsafe { Error::from_errno_unchecked(err as core::ffi::c_int) });
+ }
+ Ok(ptr)
+}
+
+/// Calls a closure returning a [`crate::error::Result<T>`] and converts the result to
+/// a C integer result.
+///
+/// This is useful when calling Rust functions that return [`crate::error::Result<T>`]
+/// from inside `extern "C"` functions that need to return an integer error result.
+///
+/// `T` should be convertible from an `i16` via `From<i16>`.
+///
+/// # Examples
+///
+/// ```ignore
+/// # use kernel::from_result;
+/// # use kernel::bindings;
+/// unsafe extern "C" fn probe_callback(
+/// pdev: *mut bindings::platform_device,
+/// ) -> core::ffi::c_int {
+/// from_result(|| {
+/// let ptr = devm_alloc(pdev)?;
+/// bindings::platform_set_drvdata(pdev, ptr);
+/// Ok(0)
+/// })
+/// }
+/// ```
+// TODO: Remove `dead_code` marker once an in-kernel client is available.
+#[allow(dead_code)]
+pub(crate) fn from_result<T, F>(f: F) -> T
+where
+ T: From<i16>,
+ F: FnOnce() -> Result<T>,
+{
+ match f() {
+ Ok(v) => v,
+ // NO-OVERFLOW: negative `errno`s are no smaller than `-bindings::MAX_ERRNO`,
+ // `-bindings::MAX_ERRNO` fits in an `i16` as per invariant above,
+ // therefore a negative `errno` always fits in an `i16` and will not overflow.
+ Err(e) => T::from(e.to_errno() as i16),
+ }
+}
diff --git a/rust/kernel/init.rs b/rust/kernel/init.rs
new file mode 100644
index 000000000000..4ebfb08dab11
--- /dev/null
+++ b/rust/kernel/init.rs
@@ -0,0 +1,1427 @@
+// SPDX-License-Identifier: Apache-2.0 OR MIT
+
+//! API to safely and fallibly initialize pinned `struct`s using in-place constructors.
+//!
+//! It also allows in-place initialization of big `struct`s that would otherwise produce a stack
+//! overflow.
+//!
+//! Most `struct`s from the [`sync`] module need to be pinned, because they contain self-referential
+//! `struct`s from C. [Pinning][pinning] is Rust's way of ensuring data does not move.
+//!
+//! # Overview
+//!
+//! To initialize a `struct` with an in-place constructor you will need two things:
+//! - an in-place constructor,
+//! - a memory location that can hold your `struct` (this can be the [stack], an [`Arc<T>`],
+//! [`UniqueArc<T>`], [`Box<T>`] or any other smart pointer that implements [`InPlaceInit`]).
+//!
+//! To get an in-place constructor there are generally three options:
+//! - directly creating an in-place constructor using the [`pin_init!`] macro,
+//! - a custom function/macro returning an in-place constructor provided by someone else,
+//! - using the unsafe function [`pin_init_from_closure()`] to manually create an initializer.
+//!
+//! Aside from pinned initialization, this API also supports in-place construction without pinning,
+//! the macros/types/functions are generally named like the pinned variants without the `pin`
+//! prefix.
+//!
+//! # Examples
+//!
+//! ## Using the [`pin_init!`] macro
+//!
+//! If you want to use [`PinInit`], then you will have to annotate your `struct` with
+//! `#[`[`pin_data`]`]`. It is a macro that uses `#[pin]` as a marker for
+//! [structurally pinned fields]. After doing this, you can then create an in-place constructor via
+//! [`pin_init!`]. The syntax is almost the same as normal `struct` initializers. The difference is
+//! that you need to write `<-` instead of `:` for fields that you want to initialize in-place.
+//!
+//! ```rust
+//! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
+//! use kernel::{prelude::*, sync::Mutex, new_mutex};
+//! # use core::pin::Pin;
+//! #[pin_data]
+//! struct Foo {
+//! #[pin]
+//! a: Mutex<usize>,
+//! b: u32,
+//! }
+//!
+//! let foo = pin_init!(Foo {
+//! a <- new_mutex!(42, "Foo::a"),
+//! b: 24,
+//! });
+//! ```
+//!
+//! `foo` now is of the type [`impl PinInit<Foo>`]. We can now use any smart pointer that we like
+//! (or just the stack) to actually initialize a `Foo`:
+//!
+//! ```rust
+//! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
+//! # use kernel::{prelude::*, sync::Mutex, new_mutex};
+//! # use core::pin::Pin;
+//! # #[pin_data]
+//! # struct Foo {
+//! # #[pin]
+//! # a: Mutex<usize>,
+//! # b: u32,
+//! # }
+//! # let foo = pin_init!(Foo {
+//! # a <- new_mutex!(42, "Foo::a"),
+//! # b: 24,
+//! # });
+//! let foo: Result<Pin<Box<Foo>>> = Box::pin_init(foo);
+//! ```
+//!
+//! For more information see the [`pin_init!`] macro.
+//!
+//! ## Using a custom function/macro that returns an initializer
+//!
+//! Many types from the kernel supply a function/macro that returns an initializer, because the
+//! above method only works for types where you can access the fields.
+//!
+//! ```rust
+//! # use kernel::{new_mutex, sync::{Arc, Mutex}};
+//! let mtx: Result<Arc<Mutex<usize>>> = Arc::pin_init(new_mutex!(42, "example::mtx"));
+//! ```
+//!
+//! To declare an init macro/function you just return an [`impl PinInit<T, E>`]:
+//!
+//! ```rust
+//! # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
+//! # use kernel::{sync::Mutex, prelude::*, new_mutex, init::PinInit, try_pin_init};
+//! #[pin_data]
+//! struct DriverData {
+//! #[pin]
+//! status: Mutex<i32>,
+//! buffer: Box<[u8; 1_000_000]>,
+//! }
+//!
+//! impl DriverData {
+//! fn new() -> impl PinInit<Self, Error> {
+//! try_pin_init!(Self {
+//! status <- new_mutex!(0, "DriverData::status"),
+//! buffer: Box::init(kernel::init::zeroed())?,
+//! })
+//! }
+//! }
+//! ```
+//!
+//! ## Manual creation of an initializer
+//!
+//! Often when working with primitives the previous approaches are not sufficient. That is where
+//! [`pin_init_from_closure()`] comes in. This `unsafe` function allows you to create a
+//! [`impl PinInit<T, E>`] directly from a closure. Of course you have to ensure that the closure
+//! actually does the initialization in the correct way. Here are the things to look out for
+//! (we are calling the parameter to the closure `slot`):
+//! - when the closure returns `Ok(())`, then it has completed the initialization successfully, so
+//! `slot` now contains a valid bit pattern for the type `T`,
+//! - when the closure returns `Err(e)`, then the caller may deallocate the memory at `slot`, so
+//! you need to take care to clean up anything if your initialization fails mid-way,
+//! - you may assume that `slot` will stay pinned even after the closure returns until `drop` of
+//! `slot` gets called.
+//!
+//! ```rust
+//! use kernel::{prelude::*, init};
+//! use core::{ptr::addr_of_mut, marker::PhantomPinned, pin::Pin};
+//! # mod bindings {
+//! # pub struct foo;
+//! # pub unsafe fn init_foo(_ptr: *mut foo) {}
+//! # pub unsafe fn destroy_foo(_ptr: *mut foo) {}
+//! # pub unsafe fn enable_foo(_ptr: *mut foo, _flags: u32) -> i32 { 0 }
+//! # }
+//! /// # Invariants
+//! ///
+//! /// `foo` is always initialized
+//! #[pin_data(PinnedDrop)]
+//! pub struct RawFoo {
+//! #[pin]
+//! foo: Opaque<bindings::foo>,
+//! #[pin]
+//! _p: PhantomPinned,
+//! }
+//!
+//! impl RawFoo {
+//! pub fn new(flags: u32) -> impl PinInit<Self, Error> {
+//! // SAFETY:
+//! // - when the closure returns `Ok(())`, then it has successfully initialized and
+//! // enabled `foo`,
+//! // - when it returns `Err(e)`, then it has cleaned up before
+//! unsafe {
+//! init::pin_init_from_closure(move |slot: *mut Self| {
+//! // `slot` contains uninit memory, avoid creating a reference.
+//! let foo = addr_of_mut!((*slot).foo);
+//!
+//! // Initialize the `foo`
+//! bindings::init_foo(Opaque::raw_get(foo));
+//!
+//! // Try to enable it.
+//! let err = bindings::enable_foo(Opaque::raw_get(foo), flags);
+//! if err != 0 {
+//! // Enabling has failed, first clean up the foo and then return the error.
+//! bindings::destroy_foo(Opaque::raw_get(foo));
+//! return Err(Error::from_kernel_errno(err));
+//! }
+//!
+//! // All fields of `RawFoo` have been initialized, since `_p` is a ZST.
+//! Ok(())
+//! })
+//! }
+//! }
+//! }
+//!
+//! #[pinned_drop]
+//! impl PinnedDrop for RawFoo {
+//! fn drop(self: Pin<&mut Self>) {
+//! // SAFETY: Since `foo` is initialized, destroying is safe.
+//! unsafe { bindings::destroy_foo(self.foo.get()) };
+//! }
+//! }
+//! ```
+//!
+//! For the special case where initializing a field is a single FFI-function call that cannot fail,
+//! there exist the helper function [`Opaque::ffi_init`]. This function initialize a single
+//! [`Opaque`] field by just delegating to the supplied closure. You can use these in combination
+//! with [`pin_init!`].
+//!
+//! For more information on how to use [`pin_init_from_closure()`], take a look at the uses inside
+//! the `kernel` crate. The [`sync`] module is a good starting point.
+//!
+//! [`sync`]: kernel::sync
+//! [pinning]: https://doc.rust-lang.org/std/pin/index.html
+//! [structurally pinned fields]:
+//! https://doc.rust-lang.org/std/pin/index.html#pinning-is-structural-for-field
+//! [stack]: crate::stack_pin_init
+//! [`Arc<T>`]: crate::sync::Arc
+//! [`impl PinInit<Foo>`]: PinInit
+//! [`impl PinInit<T, E>`]: PinInit
+//! [`impl Init<T, E>`]: Init
+//! [`Opaque`]: kernel::types::Opaque
+//! [`Opaque::ffi_init`]: kernel::types::Opaque::ffi_init
+//! [`pin_data`]: ::macros::pin_data
+
+use crate::{
+ error::{self, Error},
+ sync::UniqueArc,
+};
+use alloc::boxed::Box;
+use core::{
+ alloc::AllocError,
+ cell::Cell,
+ convert::Infallible,
+ marker::PhantomData,
+ mem::MaybeUninit,
+ num::*,
+ pin::Pin,
+ ptr::{self, NonNull},
+};
+
+#[doc(hidden)]
+pub mod __internal;
+#[doc(hidden)]
+pub mod macros;
+
+/// Initialize and pin a type directly on the stack.
+///
+/// # Examples
+///
+/// ```rust
+/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
+/// # use kernel::{init, pin_init, stack_pin_init, init::*, sync::Mutex, new_mutex};
+/// # use macros::pin_data;
+/// # use core::pin::Pin;
+/// #[pin_data]
+/// struct Foo {
+/// #[pin]
+/// a: Mutex<usize>,
+/// b: Bar,
+/// }
+///
+/// #[pin_data]
+/// struct Bar {
+/// x: u32,
+/// }
+///
+/// stack_pin_init!(let foo = pin_init!(Foo {
+/// a <- new_mutex!(42),
+/// b: Bar {
+/// x: 64,
+/// },
+/// }));
+/// let foo: Pin<&mut Foo> = foo;
+/// pr_info!("a: {}", &*foo.a.lock());
+/// ```
+///
+/// # Syntax
+///
+/// A normal `let` binding with optional type annotation. The expression is expected to implement
+/// [`PinInit`]/[`Init`] with the error type [`Infallible`]. If you want to use a different error
+/// type, then use [`stack_try_pin_init!`].
+#[macro_export]
+macro_rules! stack_pin_init {
+ (let $var:ident $(: $t:ty)? = $val:expr) => {
+ let val = $val;
+ let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
+ let mut $var = match $crate::init::__internal::StackInit::init($var, val) {
+ Ok(res) => res,
+ Err(x) => {
+ let x: ::core::convert::Infallible = x;
+ match x {}
+ }
+ };
+ };
+}
+
+/// Initialize and pin a type directly on the stack.
+///
+/// # Examples
+///
+/// ```rust
+/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
+/// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex};
+/// # use macros::pin_data;
+/// # use core::{alloc::AllocError, pin::Pin};
+/// #[pin_data]
+/// struct Foo {
+/// #[pin]
+/// a: Mutex<usize>,
+/// b: Box<Bar>,
+/// }
+///
+/// struct Bar {
+/// x: u32,
+/// }
+///
+/// stack_try_pin_init!(let foo: Result<Pin<&mut Foo>, AllocError> = pin_init!(Foo {
+/// a <- new_mutex!(42),
+/// b: Box::try_new(Bar {
+/// x: 64,
+/// })?,
+/// }));
+/// let foo = foo.unwrap();
+/// pr_info!("a: {}", &*foo.a.lock());
+/// ```
+///
+/// ```rust
+/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
+/// # use kernel::{init, pin_init, stack_try_pin_init, init::*, sync::Mutex, new_mutex};
+/// # use macros::pin_data;
+/// # use core::{alloc::AllocError, pin::Pin};
+/// #[pin_data]
+/// struct Foo {
+/// #[pin]
+/// a: Mutex<usize>,
+/// b: Box<Bar>,
+/// }
+///
+/// struct Bar {
+/// x: u32,
+/// }
+///
+/// stack_try_pin_init!(let foo: Pin<&mut Foo> =? pin_init!(Foo {
+/// a <- new_mutex!(42),
+/// b: Box::try_new(Bar {
+/// x: 64,
+/// })?,
+/// }));
+/// pr_info!("a: {}", &*foo.a.lock());
+/// # Ok::<_, AllocError>(())
+/// ```
+///
+/// # Syntax
+///
+/// A normal `let` binding with optional type annotation. The expression is expected to implement
+/// [`PinInit`]/[`Init`]. This macro assigns a result to the given variable, adding a `?` after the
+/// `=` will propagate this error.
+#[macro_export]
+macro_rules! stack_try_pin_init {
+ (let $var:ident $(: $t:ty)? = $val:expr) => {
+ let val = $val;
+ let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
+ let mut $var = $crate::init::__internal::StackInit::init($var, val);
+ };
+ (let $var:ident $(: $t:ty)? =? $val:expr) => {
+ let val = $val;
+ let mut $var = ::core::pin::pin!($crate::init::__internal::StackInit$(::<$t>)?::uninit());
+ let mut $var = $crate::init::__internal::StackInit::init($var, val)?;
+ };
+}
+
+/// Construct an in-place, pinned initializer for `struct`s.
+///
+/// This macro defaults the error to [`Infallible`]. If you need [`Error`], then use
+/// [`try_pin_init!`].
+///
+/// The syntax is almost identical to that of a normal `struct` initializer:
+///
+/// ```rust
+/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
+/// # use kernel::{init, pin_init, macros::pin_data, init::*};
+/// # use core::pin::Pin;
+/// #[pin_data]
+/// struct Foo {
+/// a: usize,
+/// b: Bar,
+/// }
+///
+/// #[pin_data]
+/// struct Bar {
+/// x: u32,
+/// }
+///
+/// # fn demo() -> impl PinInit<Foo> {
+/// let a = 42;
+///
+/// let initializer = pin_init!(Foo {
+/// a,
+/// b: Bar {
+/// x: 64,
+/// },
+/// });
+/// # initializer }
+/// # Box::pin_init(demo()).unwrap();
+/// ```
+///
+/// Arbitrary Rust expressions can be used to set the value of a variable.
+///
+/// The fields are initialized in the order that they appear in the initializer. So it is possible
+/// to read already initialized fields using raw pointers.
+///
+/// IMPORTANT: You are not allowed to create references to fields of the struct inside of the
+/// initializer.
+///
+/// # Init-functions
+///
+/// When working with this API it is often desired to let others construct your types without
+/// giving access to all fields. This is where you would normally write a plain function `new`
+/// that would return a new instance of your type. With this API that is also possible.
+/// However, there are a few extra things to keep in mind.
+///
+/// To create an initializer function, simply declare it like this:
+///
+/// ```rust
+/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
+/// # use kernel::{init, pin_init, prelude::*, init::*};
+/// # use core::pin::Pin;
+/// # #[pin_data]
+/// # struct Foo {
+/// # a: usize,
+/// # b: Bar,
+/// # }
+/// # #[pin_data]
+/// # struct Bar {
+/// # x: u32,
+/// # }
+/// impl Foo {
+/// fn new() -> impl PinInit<Self> {
+/// pin_init!(Self {
+/// a: 42,
+/// b: Bar {
+/// x: 64,
+/// },
+/// })
+/// }
+/// }
+/// ```
+///
+/// Users of `Foo` can now create it like this:
+///
+/// ```rust
+/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
+/// # use kernel::{init, pin_init, macros::pin_data, init::*};
+/// # use core::pin::Pin;
+/// # #[pin_data]
+/// # struct Foo {
+/// # a: usize,
+/// # b: Bar,
+/// # }
+/// # #[pin_data]
+/// # struct Bar {
+/// # x: u32,
+/// # }
+/// # impl Foo {
+/// # fn new() -> impl PinInit<Self> {
+/// # pin_init!(Self {
+/// # a: 42,
+/// # b: Bar {
+/// # x: 64,
+/// # },
+/// # })
+/// # }
+/// # }
+/// let foo = Box::pin_init(Foo::new());
+/// ```
+///
+/// They can also easily embed it into their own `struct`s:
+///
+/// ```rust
+/// # #![allow(clippy::disallowed_names, clippy::new_ret_no_self)]
+/// # use kernel::{init, pin_init, macros::pin_data, init::*};
+/// # use core::pin::Pin;
+/// # #[pin_data]
+/// # struct Foo {
+/// # a: usize,
+/// # b: Bar,
+/// # }
+/// # #[pin_data]
+/// # struct Bar {
+/// # x: u32,
+/// # }
+/// # impl Foo {
+/// # fn new() -> impl PinInit<Self> {
+/// # pin_init!(Self {
+/// # a: 42,
+/// # b: Bar {
+/// # x: 64,
+/// # },
+/// # })
+/// # }
+/// # }
+/// #[pin_data]
+/// struct FooContainer {
+/// #[pin]
+/// foo1: Foo,
+/// #[pin]
+/// foo2: Foo,
+/// other: u32,
+/// }
+///
+/// impl FooContainer {
+/// fn new(other: u32) -> impl PinInit<Self> {
+/// pin_init!(Self {
+/// foo1 <- Foo::new(),
+/// foo2 <- Foo::new(),
+/// other,
+/// })
+/// }
+/// }
+/// ```
+///
+/// Here we see that when using `pin_init!` with `PinInit`, one needs to write `<-` instead of `:`.
+/// This signifies that the given field is initialized in-place. As with `struct` initializers, just
+/// writing the field (in this case `other`) without `:` or `<-` means `other: other,`.
+///
+/// # Syntax
+///
+/// As already mentioned in the examples above, inside of `pin_init!` a `struct` initializer with
+/// the following modifications is expected:
+/// - Fields that you want to initialize in-place have to use `<-` instead of `:`.
+/// - In front of the initializer you can write `&this in` to have access to a [`NonNull<Self>`]
+/// pointer named `this` inside of the initializer.
+///
+/// For instance:
+///
+/// ```rust
+/// # use kernel::pin_init;
+/// # use macros::pin_data;
+/// # use core::{ptr::addr_of_mut, marker::PhantomPinned};
+/// #[pin_data]
+/// struct Buf {
+/// // `ptr` points into `buf`.
+/// ptr: *mut u8,
+/// buf: [u8; 64],
+/// #[pin]
+/// pin: PhantomPinned,
+/// }
+/// pin_init!(&this in Buf {
+/// buf: [0; 64],
+/// ptr: unsafe { addr_of_mut!((*this.as_ptr()).buf).cast() },
+/// pin: PhantomPinned,
+/// });
+/// ```
+///
+/// [`try_pin_init!`]: kernel::try_pin_init
+/// [`NonNull<Self>`]: core::ptr::NonNull
+// For a detailed example of how this macro works, see the module documentation of the hidden
+// module `__internal` inside of `init/__internal.rs`.
+#[macro_export]
+macro_rules! pin_init {
+ ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
+ $($fields:tt)*
+ }) => {
+ $crate::try_pin_init!(
+ @this($($this)?),
+ @typ($t $(::<$($generics),*>)?),
+ @fields($($fields)*),
+ @error(::core::convert::Infallible),
+ )
+ };
+}
+
+/// Construct an in-place, fallible pinned initializer for `struct`s.
+///
+/// If the initialization can complete without error (or [`Infallible`]), then use [`pin_init!`].
+///
+/// You can use the `?` operator or use `return Err(err)` inside the initializer to stop
+/// initialization and return the error.
+///
+/// IMPORTANT: if you have `unsafe` code inside of the initializer you have to ensure that when
+/// initialization fails, the memory can be safely deallocated without any further modifications.
+///
+/// This macro defaults the error to [`Error`].
+///
+/// The syntax is identical to [`pin_init!`] with the following exception: you can append `? $type`
+/// after the `struct` initializer to specify the error type you want to use.
+///
+/// # Examples
+///
+/// ```rust
+/// # #![feature(new_uninit)]
+/// use kernel::{init::{self, PinInit}, error::Error};
+/// #[pin_data]
+/// struct BigBuf {
+/// big: Box<[u8; 1024 * 1024 * 1024]>,
+/// small: [u8; 1024 * 1024],
+/// ptr: *mut u8,
+/// }
+///
+/// impl BigBuf {
+/// fn new() -> impl PinInit<Self, Error> {
+/// try_pin_init!(Self {
+/// big: Box::init(init::zeroed())?,
+/// small: [0; 1024 * 1024],
+/// ptr: core::ptr::null_mut(),
+/// }? Error)
+/// }
+/// }
+/// ```
+// For a detailed example of how this macro works, see the module documentation of the hidden
+// module `__internal` inside of `init/__internal.rs`.
+#[macro_export]
+macro_rules! try_pin_init {
+ ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
+ $($fields:tt)*
+ }) => {
+ $crate::try_pin_init!(
+ @this($($this)?),
+ @typ($t $(::<$($generics),*>)? ),
+ @fields($($fields)*),
+ @error($crate::error::Error),
+ )
+ };
+ ($(&$this:ident in)? $t:ident $(::<$($generics:ty),* $(,)?>)? {
+ $($fields:tt)*
+ }? $err:ty) => {
+ $crate::try_pin_init!(
+ @this($($this)?),
+ @typ($t $(::<$($generics),*>)? ),
+ @fields($($fields)*),
+ @error($err),
+ )
+ };
+ (
+ @this($($this:ident)?),
+ @typ($t:ident $(::<$($generics:ty),*>)?),
+ @fields($($fields:tt)*),
+ @error($err:ty),
+ ) => {{
+ // We do not want to allow arbitrary returns, so we declare this type as the `Ok` return
+ // type and shadow it later when we insert the arbitrary user code. That way there will be
+ // no possibility of returning without `unsafe`.
+ struct __InitOk;
+ // Get the pin data from the supplied type.
+ let data = unsafe {
+ use $crate::init::__internal::HasPinData;
+ $t$(::<$($generics),*>)?::__pin_data()
+ };
+ // Ensure that `data` really is of type `PinData` and help with type inference:
+ let init = $crate::init::__internal::PinData::make_closure::<_, __InitOk, $err>(
+ data,
+ move |slot| {
+ {
+ // Shadow the structure so it cannot be used to return early.
+ struct __InitOk;
+ // Create the `this` so it can be referenced by the user inside of the
+ // expressions creating the individual fields.
+ $(let $this = unsafe { ::core::ptr::NonNull::new_unchecked(slot) };)?
+ // Initialize every field.
+ $crate::try_pin_init!(init_slot:
+ @data(data),
+ @slot(slot),
+ @munch_fields($($fields)*,),
+ );
+ // We use unreachable code to ensure that all fields have been mentioned exactly
+ // once, this struct initializer will still be type-checked and complain with a
+ // very natural error message if a field is forgotten/mentioned more than once.
+ #[allow(unreachable_code, clippy::diverging_sub_expression)]
+ if false {
+ $crate::try_pin_init!(make_initializer:
+ @slot(slot),
+ @type_name($t),