summaryrefslogtreecommitdiff
path: root/kernel/workqueue.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/workqueue.c')
-rw-r--r--kernel/workqueue.c1616
1 files changed, 900 insertions, 716 deletions
diff --git a/kernel/workqueue.c b/kernel/workqueue.c
index 800b4208dba9..c85825e17df8 100644
--- a/kernel/workqueue.c
+++ b/kernel/workqueue.c
@@ -122,11 +122,6 @@ enum {
*
* L: pool->lock protected. Access with pool->lock held.
*
- * X: During normal operation, modification requires pool->lock and should
- * be done only from local cpu. Either disabling preemption on local
- * cpu or grabbing pool->lock is enough for read access. If
- * POOL_DISASSOCIATED is set, it's identical to L.
- *
* K: Only modified by worker while holding pool->lock. Can be safely read by
* self, while holding pool->lock or from IRQ context if %current is the
* kworker.
@@ -160,7 +155,7 @@ struct worker_pool {
int cpu; /* I: the associated cpu */
int node; /* I: the associated node ID */
int id; /* I: pool ID */
- unsigned int flags; /* X: flags */
+ unsigned int flags; /* L: flags */
unsigned long watchdog_ts; /* L: watchdog timestamp */
bool cpu_stall; /* WD: stalled cpu bound pool */
@@ -216,6 +211,7 @@ enum pool_workqueue_stats {
PWQ_STAT_CPU_TIME, /* total CPU time consumed */
PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */
PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */
+ PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */
PWQ_STAT_MAYDAY, /* maydays to rescuer */
PWQ_STAT_RESCUED, /* linked work items executed by rescuer */
@@ -262,12 +258,12 @@ struct pool_workqueue {
u64 stats[PWQ_NR_STATS];
/*
- * Release of unbound pwq is punted to system_wq. See put_pwq()
- * and pwq_unbound_release_workfn() for details. pool_workqueue
- * itself is also RCU protected so that the first pwq can be
- * determined without grabbing wq->mutex.
+ * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
+ * and pwq_release_workfn() for details. pool_workqueue itself is also
+ * RCU protected so that the first pwq can be determined without
+ * grabbing wq->mutex.
*/
- struct work_struct unbound_release_work;
+ struct kthread_work release_work;
struct rcu_head rcu;
} __aligned(1 << WORK_STRUCT_FLAG_BITS);
@@ -326,14 +322,33 @@ struct workqueue_struct {
/* hot fields used during command issue, aligned to cacheline */
unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
- struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
- struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
+ struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
};
static struct kmem_cache *pwq_cache;
-static cpumask_var_t *wq_numa_possible_cpumask;
- /* possible CPUs of each node */
+/*
+ * Each pod type describes how CPUs should be grouped for unbound workqueues.
+ * See the comment above workqueue_attrs->affn_scope.
+ */
+struct wq_pod_type {
+ int nr_pods; /* number of pods */
+ cpumask_var_t *pod_cpus; /* pod -> cpus */
+ int *pod_node; /* pod -> node */
+ int *cpu_pod; /* cpu -> pod */
+};
+
+static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
+static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
+
+static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
+ [WQ_AFFN_DFL] = "default",
+ [WQ_AFFN_CPU] = "cpu",
+ [WQ_AFFN_SMT] = "smt",
+ [WQ_AFFN_CACHE] = "cache",
+ [WQ_AFFN_NUMA] = "numa",
+ [WQ_AFFN_SYSTEM] = "system",
+};
/*
* Per-cpu work items which run for longer than the following threshold are
@@ -345,19 +360,14 @@ static cpumask_var_t *wq_numa_possible_cpumask;
static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
-static bool wq_disable_numa;
-module_param_named(disable_numa, wq_disable_numa, bool, 0444);
-
/* see the comment above the definition of WQ_POWER_EFFICIENT */
static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
module_param_named(power_efficient, wq_power_efficient, bool, 0444);
static bool wq_online; /* can kworkers be created yet? */
-static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
-
-/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
-static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
+/* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
+static struct workqueue_attrs *wq_update_pod_attrs_buf;
static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
@@ -371,6 +381,9 @@ static bool workqueue_freezing; /* PL: have wqs started freezing? */
/* PL&A: allowable cpus for unbound wqs and work items */
static cpumask_var_t wq_unbound_cpumask;
+/* for further constrain wq_unbound_cpumask by cmdline parameter*/
+static struct cpumask wq_cmdline_cpumask __initdata;
+
/* CPU where unbound work was last round robin scheduled from this CPU */
static DEFINE_PER_CPU(int, wq_rr_cpu_last);
@@ -400,6 +413,13 @@ static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
/* I: attributes used when instantiating ordered pools on demand */
static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
+/*
+ * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
+ * process context while holding a pool lock. Bounce to a dedicated kthread
+ * worker to avoid A-A deadlocks.
+ */
+static struct kthread_worker *pwq_release_worker;
+
struct workqueue_struct *system_wq __read_mostly;
EXPORT_SYMBOL(system_wq);
struct workqueue_struct *system_highpri_wq __read_mostly;
@@ -606,35 +626,6 @@ static int worker_pool_assign_id(struct worker_pool *pool)
return ret;
}
-/**
- * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
- * @wq: the target workqueue
- * @node: the node ID
- *
- * This must be called with any of wq_pool_mutex, wq->mutex or RCU
- * read locked.
- * If the pwq needs to be used beyond the locking in effect, the caller is
- * responsible for guaranteeing that the pwq stays online.
- *
- * Return: The unbound pool_workqueue for @node.
- */
-static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
- int node)
-{
- assert_rcu_or_wq_mutex_or_pool_mutex(wq);
-
- /*
- * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
- * delayed item is pending. The plan is to keep CPU -> NODE
- * mapping valid and stable across CPU on/offlines. Once that
- * happens, this workaround can be removed.
- */
- if (unlikely(node == NUMA_NO_NODE))
- return wq->dfl_pwq;
-
- return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
-}
-
static unsigned int work_color_to_flags(int color)
{
return color << WORK_STRUCT_COLOR_SHIFT;
@@ -825,11 +816,6 @@ static bool work_is_canceling(struct work_struct *work)
* they're being called with pool->lock held.
*/
-static bool __need_more_worker(struct worker_pool *pool)
-{
- return !pool->nr_running;
-}
-
/*
* Need to wake up a worker? Called from anything but currently
* running workers.
@@ -840,7 +826,7 @@ static bool __need_more_worker(struct worker_pool *pool)
*/
static bool need_more_worker(struct worker_pool *pool)
{
- return !list_empty(&pool->worklist) && __need_more_worker(pool);
+ return !list_empty(&pool->worklist) && !pool->nr_running;
}
/* Can I start working? Called from busy but !running workers. */
@@ -871,51 +857,18 @@ static bool too_many_workers(struct worker_pool *pool)
return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
}
-/*
- * Wake up functions.
- */
-
-/* Return the first idle worker. Called with pool->lock held. */
-static struct worker *first_idle_worker(struct worker_pool *pool)
-{
- if (unlikely(list_empty(&pool->idle_list)))
- return NULL;
-
- return list_first_entry(&pool->idle_list, struct worker, entry);
-}
-
-/**
- * wake_up_worker - wake up an idle worker
- * @pool: worker pool to wake worker from
- *
- * Wake up the first idle worker of @pool.
- *
- * CONTEXT:
- * raw_spin_lock_irq(pool->lock).
- */
-static void wake_up_worker(struct worker_pool *pool)
-{
- struct worker *worker = first_idle_worker(pool);
-
- if (likely(worker))
- wake_up_process(worker->task);
-}
-
/**
* worker_set_flags - set worker flags and adjust nr_running accordingly
* @worker: self
* @flags: flags to set
*
* Set @flags in @worker->flags and adjust nr_running accordingly.
- *
- * CONTEXT:
- * raw_spin_lock_irq(pool->lock)
*/
static inline void worker_set_flags(struct worker *worker, unsigned int flags)
{
struct worker_pool *pool = worker->pool;
- WARN_ON_ONCE(worker->task != current);
+ lockdep_assert_held(&pool->lock);
/* If transitioning into NOT_RUNNING, adjust nr_running. */
if ((flags & WORKER_NOT_RUNNING) &&
@@ -932,16 +885,13 @@ static inline void worker_set_flags(struct worker *worker, unsigned int flags)
* @flags: flags to clear
*
* Clear @flags in @worker->flags and adjust nr_running accordingly.
- *
- * CONTEXT:
- * raw_spin_lock_irq(pool->lock)
*/
static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
{
struct worker_pool *pool = worker->pool;
unsigned int oflags = worker->flags;
- WARN_ON_ONCE(worker->task != current);
+ lockdep_assert_held(&pool->lock);
worker->flags &= ~flags;
@@ -955,6 +905,244 @@ static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
pool->nr_running++;
}
+/* Return the first idle worker. Called with pool->lock held. */
+static struct worker *first_idle_worker(struct worker_pool *pool)
+{
+ if (unlikely(list_empty(&pool->idle_list)))
+ return NULL;
+
+ return list_first_entry(&pool->idle_list, struct worker, entry);
+}
+
+/**
+ * worker_enter_idle - enter idle state
+ * @worker: worker which is entering idle state
+ *
+ * @worker is entering idle state. Update stats and idle timer if
+ * necessary.
+ *
+ * LOCKING:
+ * raw_spin_lock_irq(pool->lock).
+ */
+static void worker_enter_idle(struct worker *worker)
+{
+ struct worker_pool *pool = worker->pool;
+
+ if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
+ WARN_ON_ONCE(!list_empty(&worker->entry) &&
+ (worker->hentry.next || worker->hentry.pprev)))
+ return;
+
+ /* can't use worker_set_flags(), also called from create_worker() */
+ worker->flags |= WORKER_IDLE;
+ pool->nr_idle++;
+ worker->last_active = jiffies;
+
+ /* idle_list is LIFO */
+ list_add(&worker->entry, &pool->idle_list);
+
+ if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
+ mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
+
+ /* Sanity check nr_running. */
+ WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
+}
+
+/**
+ * worker_leave_idle - leave idle state
+ * @worker: worker which is leaving idle state
+ *
+ * @worker is leaving idle state. Update stats.
+ *
+ * LOCKING:
+ * raw_spin_lock_irq(pool->lock).
+ */
+static void worker_leave_idle(struct worker *worker)
+{
+ struct worker_pool *pool = worker->pool;
+
+ if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
+ return;
+ worker_clr_flags(worker, WORKER_IDLE);
+ pool->nr_idle--;
+ list_del_init(&worker->entry);
+}
+
+/**
+ * find_worker_executing_work - find worker which is executing a work
+ * @pool: pool of interest
+ * @work: work to find worker for
+ *
+ * Find a worker which is executing @work on @pool by searching
+ * @pool->busy_hash which is keyed by the address of @work. For a worker
+ * to match, its current execution should match the address of @work and
+ * its work function. This is to avoid unwanted dependency between
+ * unrelated work executions through a work item being recycled while still
+ * being executed.
+ *
+ * This is a bit tricky. A work item may be freed once its execution
+ * starts and nothing prevents the freed area from being recycled for
+ * another work item. If the same work item address ends up being reused
+ * before the original execution finishes, workqueue will identify the
+ * recycled work item as currently executing and make it wait until the
+ * current execution finishes, introducing an unwanted dependency.
+ *
+ * This function checks the work item address and work function to avoid
+ * false positives. Note that this isn't complete as one may construct a
+ * work function which can introduce dependency onto itself through a
+ * recycled work item. Well, if somebody wants to shoot oneself in the
+ * foot that badly, there's only so much we can do, and if such deadlock
+ * actually occurs, it should be easy to locate the culprit work function.
+ *
+ * CONTEXT:
+ * raw_spin_lock_irq(pool->lock).
+ *
+ * Return:
+ * Pointer to worker which is executing @work if found, %NULL
+ * otherwise.
+ */
+static struct worker *find_worker_executing_work(struct worker_pool *pool,
+ struct work_struct *work)
+{
+ struct worker *worker;
+
+ hash_for_each_possible(pool->busy_hash, worker, hentry,
+ (unsigned long)work)
+ if (worker->current_work == work &&
+ worker->current_func == work->func)
+ return worker;
+
+ return NULL;
+}
+
+/**
+ * move_linked_works - move linked works to a list
+ * @work: start of series of works to be scheduled
+ * @head: target list to append @work to
+ * @nextp: out parameter for nested worklist walking
+ *
+ * Schedule linked works starting from @work to @head. Work series to be
+ * scheduled starts at @work and includes any consecutive work with
+ * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
+ * @nextp.
+ *
+ * CONTEXT:
+ * raw_spin_lock_irq(pool->lock).
+ */
+static void move_linked_works(struct work_struct *work, struct list_head *head,
+ struct work_struct **nextp)
+{
+ struct work_struct *n;
+
+ /*
+ * Linked worklist will always end before the end of the list,
+ * use NULL for list head.
+ */
+ list_for_each_entry_safe_from(work, n, NULL, entry) {
+ list_move_tail(&work->entry, head);
+ if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
+ break;
+ }
+
+ /*
+ * If we're already inside safe list traversal and have moved
+ * multiple works to the scheduled queue, the next position
+ * needs to be updated.
+ */
+ if (nextp)
+ *nextp = n;
+}
+
+/**
+ * assign_work - assign a work item and its linked work items to a worker
+ * @work: work to assign
+ * @worker: worker to assign to
+ * @nextp: out parameter for nested worklist walking
+ *
+ * Assign @work and its linked work items to @worker. If @work is already being
+ * executed by another worker in the same pool, it'll be punted there.
+ *
+ * If @nextp is not NULL, it's updated to point to the next work of the last
+ * scheduled work. This allows assign_work() to be nested inside
+ * list_for_each_entry_safe().
+ *
+ * Returns %true if @work was successfully assigned to @worker. %false if @work
+ * was punted to another worker already executing it.
+ */
+static bool assign_work(struct work_struct *work, struct worker *worker,
+ struct work_struct **nextp)
+{
+ struct worker_pool *pool = worker->pool;
+ struct worker *collision;
+
+ lockdep_assert_held(&pool->lock);
+
+ /*
+ * A single work shouldn't be executed concurrently by multiple workers.
+ * __queue_work() ensures that @work doesn't jump to a different pool
+ * while still running in the previous pool. Here, we should ensure that
+ * @work is not executed concurrently by multiple workers from the same
+ * pool. Check whether anyone is already processing the work. If so,
+ * defer the work to the currently executing one.
+ */
+ collision = find_worker_executing_work(pool, work);
+ if (unlikely(collision)) {
+ move_linked_works(work, &collision->scheduled, nextp);
+ return false;
+ }
+
+ move_linked_works(work, &worker->scheduled, nextp);
+ return true;
+}
+
+/**
+ * kick_pool - wake up an idle worker if necessary
+ * @pool: pool to kick
+ *
+ * @pool may have pending work items. Wake up worker if necessary. Returns
+ * whether a worker was woken up.
+ */
+static bool kick_pool(struct worker_pool *pool)
+{
+ struct worker *worker = first_idle_worker(pool);
+ struct task_struct *p;
+
+ lockdep_assert_held(&pool->lock);
+
+ if (!need_more_worker(pool) || !worker)
+ return false;
+
+ p = worker->task;
+
+#ifdef CONFIG_SMP
+ /*
+ * Idle @worker is about to execute @work and waking up provides an
+ * opportunity to migrate @worker at a lower cost by setting the task's
+ * wake_cpu field. Let's see if we want to move @worker to improve
+ * execution locality.
+ *
+ * We're waking the worker that went idle the latest and there's some
+ * chance that @worker is marked idle but hasn't gone off CPU yet. If
+ * so, setting the wake_cpu won't do anything. As this is a best-effort
+ * optimization and the race window is narrow, let's leave as-is for
+ * now. If this becomes pronounced, we can skip over workers which are
+ * still on cpu when picking an idle worker.
+ *
+ * If @pool has non-strict affinity, @worker might have ended up outside
+ * its affinity scope. Repatriate.
+ */
+ if (!pool->attrs->affn_strict &&
+ !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
+ struct work_struct *work = list_first_entry(&pool->worklist,
+ struct work_struct, entry);
+ p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask);
+ get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
+ }
+#endif
+ wake_up_process(p);
+ return true;
+}
+
#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
/*
@@ -1120,10 +1308,9 @@ void wq_worker_sleeping(struct task_struct *task)
}
pool->nr_running--;
- if (need_more_worker(pool)) {
+ if (kick_pool(pool))
worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
- wake_up_worker(pool);
- }
+
raw_spin_unlock_irq(&pool->lock);
}
@@ -1171,10 +1358,8 @@ void wq_worker_tick(struct task_struct *task)
wq_cpu_intensive_report(worker->current_func);
pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
- if (need_more_worker(pool)) {
+ if (kick_pool(pool))
pwq->stats[PWQ_STAT_CM_WAKEUP]++;
- wake_up_worker(pool);
- }
raw_spin_unlock(&pool->lock);
}
@@ -1211,94 +1396,6 @@ work_func_t wq_worker_last_func(struct task_struct *task)
}
/**
- * find_worker_executing_work - find worker which is executing a work
- * @pool: pool of interest
- * @work: work to find worker for
- *
- * Find a worker which is executing @work on @pool by searching
- * @pool->busy_hash which is keyed by the address of @work. For a worker
- * to match, its current execution should match the address of @work and
- * its work function. This is to avoid unwanted dependency between
- * unrelated work executions through a work item being recycled while still
- * being executed.
- *
- * This is a bit tricky. A work item may be freed once its execution
- * starts and nothing prevents the freed area from being recycled for
- * another work item. If the same work item address ends up being reused
- * before the original execution finishes, workqueue will identify the
- * recycled work item as currently executing and make it wait until the
- * current execution finishes, introducing an unwanted dependency.
- *
- * This function checks the work item address and work function to avoid
- * false positives. Note that this isn't complete as one may construct a
- * work function which can introduce dependency onto itself through a
- * recycled work item. Well, if somebody wants to shoot oneself in the
- * foot that badly, there's only so much we can do, and if such deadlock
- * actually occurs, it should be easy to locate the culprit work function.
- *
- * CONTEXT:
- * raw_spin_lock_irq(pool->lock).
- *
- * Return:
- * Pointer to worker which is executing @work if found, %NULL
- * otherwise.
- */
-static struct worker *find_worker_executing_work(struct worker_pool *pool,
- struct work_struct *work)
-{
- struct worker *worker;
-
- hash_for_each_possible(pool->busy_hash, worker, hentry,
- (unsigned long)work)
- if (worker->current_work == work &&
- worker->current_func == work->func)
- return worker;
-
- return NULL;
-}
-
-/**
- * move_linked_works - move linked works to a list
- * @work: start of series of works to be scheduled
- * @head: target list to append @work to
- * @nextp: out parameter for nested worklist walking
- *
- * Schedule linked works starting from @work to @head. Work series to
- * be scheduled starts at @work and includes any consecutive work with
- * WORK_STRUCT_LINKED set in its predecessor.
- *
- * If @nextp is not NULL, it's updated to point to the next work of
- * the last scheduled work. This allows move_linked_works() to be
- * nested inside outer list_for_each_entry_safe().
- *
- * CONTEXT:
- * raw_spin_lock_irq(pool->lock).
- */
-static void move_linked_works(struct work_struct *work, struct list_head *head,
- struct work_struct **nextp)
-{
- struct work_struct *n;
-
- /*
- * Linked worklist will always end before the end of the list,
- * use NULL for list head.
- */
- list_for_each_entry_safe_from(work, n, NULL, entry) {
- list_move_tail(&work->entry, head);
- if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
- break;
- }
-
- /*
- * If we're already inside safe list traversal and have moved
- * multiple works to the scheduled queue, the next position
- * needs to be updated.
- */
- if (nextp)
- *nextp = n;
-}
-
-/**
* get_pwq - get an extra reference on the specified pool_workqueue
* @pwq: pool_workqueue to get
*
@@ -1324,17 +1421,11 @@ static void put_pwq(struct pool_workqueue *pwq)
lockdep_assert_held(&pwq->pool->lock);
if (likely(--pwq->refcnt))
return;
- if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
- return;
/*
- * @pwq can't be released under pool->lock, bounce to
- * pwq_unbound_release_workfn(). This never recurses on the same
- * pool->lock as this path is taken only for unbound workqueues and
- * the release work item is scheduled on a per-cpu workqueue. To
- * avoid lockdep warning, unbound pool->locks are given lockdep
- * subclass of 1 in get_unbound_pool().
+ * @pwq can't be released under pool->lock, bounce to a dedicated
+ * kthread_worker to avoid A-A deadlocks.
*/
- schedule_work(&pwq->unbound_release_work);
+ kthread_queue_work(pwq_release_worker, &pwq->release_work);
}
/**
@@ -1550,7 +1641,7 @@ fail:
static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
struct list_head *head, unsigned int extra_flags)
{
- struct worker_pool *pool = pwq->pool;
+ debug_work_activate(work);
/* record the work call stack in order to print it in KASAN reports */
kasan_record_aux_stack_noalloc(work);
@@ -1559,9 +1650,6 @@ static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
set_work_pwq(work, pwq, extra_flags);
list_add_tail(&work->entry, head);
get_pwq(pwq);
-
- if (__need_more_worker(pool))
- wake_up_worker(pool);
}
/*
@@ -1615,8 +1703,7 @@ static void __queue_work(int cpu, struct workqueue_struct *wq,
struct work_struct *work)
{
struct pool_workqueue *pwq;
- struct worker_pool *last_pool;
- struct list_head *worklist;
+ struct worker_pool *last_pool, *pool;
unsigned int work_flags;
unsigned int req_cpu = cpu;
@@ -1640,23 +1727,23 @@ static void __queue_work(int cpu, struct workqueue_struct *wq,
rcu_read_lock();
retry:
/* pwq which will be used unless @work is executing elsewhere */
- if (wq->flags & WQ_UNBOUND) {
- if (req_cpu == WORK_CPU_UNBOUND)
+ if (req_cpu == WORK_CPU_UNBOUND) {
+ if (wq->flags & WQ_UNBOUND)
cpu = wq_select_unbound_cpu(raw_smp_processor_id());
- pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
- } else {
- if (req_cpu == WORK_CPU_UNBOUND)
+ else
cpu = raw_smp_processor_id();
- pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
}
+ pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
+ pool = pwq->pool;
+
/*
* If @work was previously on a different pool, it might still be
* running there, in which case the work needs to be queued on that
* pool to guarantee non-reentrancy.
*/
last_pool = get_work_pool(work);
- if (last_pool && last_pool != pwq->pool) {
+ if (last_pool && last_pool != pool) {
struct worker *worker;
raw_spin_lock(&last_pool->lock);
@@ -1665,26 +1752,27 @@ retry:
if (worker && worker->current_pwq->wq == wq) {
pwq = worker->current_pwq;
+ pool = pwq->pool;
+ WARN_ON_ONCE(pool != last_pool);
} else {
/* meh... not running there, queue here */
raw_spin_unlock(&last_pool->lock);
- raw_spin_lock(&pwq->pool->lock);
+ raw_spin_lock(&pool->lock);
}
} else {
- raw_spin_lock(&pwq->pool->lock);
+ raw_spin_lock(&pool->lock);
}
/*
- * pwq is determined and locked. For unbound pools, we could have
- * raced with pwq release and it could already be dead. If its
- * refcnt is zero, repeat pwq selection. Note that pwqs never die
- * without another pwq replacing it in the numa_pwq_tbl or while
- * work items are executing on it, so the retrying is guaranteed to
- * make forward-progress.
+ * pwq is determined and locked. For unbound pools, we could have raced
+ * with pwq release and it could already be dead. If its refcnt is zero,
+ * repeat pwq selection. Note that unbound pwqs never die without
+ * another pwq replacing it in cpu_pwq or while work items are executing
+ * on it, so the retrying is guaranteed to make forward-progress.
*/
if (unlikely(!pwq->refcnt)) {
if (wq->flags & WQ_UNBOUND) {
- raw_spin_unlock(&pwq->pool->lock);
+ raw_spin_unlock(&pool->lock);
cpu_relax();
goto retry;
}
@@ -1703,21 +1791,20 @@ retry:
work_flags = work_color_to_flags(pwq->work_color);
if (likely(pwq->nr_active < pwq->max_active)) {
+ if (list_empty(&pool->worklist))
+ pool->watchdog_ts = jiffies;
+
trace_workqueue_activate_work(work);
pwq->nr_active++;
- worklist = &pwq->pool->worklist;
- if (list_empty(worklist))
- pwq->pool->watchdog_ts = jiffies;
+ insert_work(pwq, work, &pool->worklist, work_flags);
+ kick_pool(pool);
} else {
work_flags |= WORK_STRUCT_INACTIVE;
- worklist = &pwq->inactive_works;
+ insert_work(pwq, work, &pwq->inactive_works, work_flags);
}
- debug_work_activate(work);
- insert_work(pwq, work, worklist, work_flags);
-
out:
- raw_spin_unlock(&pwq->pool->lock);
+ raw_spin_unlock(&pool->lock);
rcu_read_unlock();
}
@@ -1754,7 +1841,7 @@ bool queue_work_on(int cpu, struct workqueue_struct *wq,
EXPORT_SYMBOL(queue_work_on);
/**
- * workqueue_select_cpu_near - Select a CPU based on NUMA node
+ * select_numa_node_cpu - Select a CPU based on NUMA node
* @node: NUMA node ID that we want to select a CPU from
*
* This function will attempt to find a "random" cpu available on a given
@@ -1762,14 +1849,10 @@ EXPORT_SYMBOL(queue_work_on);
* WORK_CPU_UNBOUND indicating that we should just schedule to any
* available CPU if we need to schedule this work.
*/
-static int workqueue_select_cpu_near(int node)
+static int select_numa_node_cpu(int node)
{
int cpu;
- /* No point in doing this if NUMA isn't enabled for workqueues */
- if (!wq_numa_enabled)
- return WORK_CPU_UNBOUND;
-
/* Delay binding to CPU if node is not valid or online */
if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
return WORK_CPU_UNBOUND;
@@ -1826,7 +1909,7 @@ bool queue_work_node(int node, struct workqueue_struct *wq,
local_irq_save(flags);
if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
- int cpu = workqueue_select_cpu_near(node);
+ int cpu = select_numa_node_cpu(node);
__queue_work(cpu, wq, work);
ret = true;
@@ -1981,60 +2064,6 @@ bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
}
EXPORT_SYMBOL(queue_rcu_work);
-/**
- * worker_enter_idle - enter idle state
- * @worker: worker which is entering idle state
- *
- * @worker is entering idle state. Update stats and idle timer if
- * necessary.
- *
- * LOCKING:
- * raw_spin_lock_irq(pool->lock).
- */
-static void worker_enter_idle(struct worker *worker)
-{
- struct worker_pool *pool = worker->pool;
-
- if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
- WARN_ON_ONCE(!list_empty(&worker->entry) &&
- (worker->hentry.next || worker->hentry.pprev)))
- return;
-
- /* can't use worker_set_flags(), also called from create_worker() */
- worker->flags |= WORKER_IDLE;
- pool->nr_idle++;
- worker->last_active = jiffies;
-
- /* idle_list is LIFO */
- list_add(&worker->entry, &pool->idle_list);
-
- if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
- mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
-
- /* Sanity check nr_running. */
- WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
-}
-
-/**
- * worker_leave_idle - leave idle state
- * @worker: worker which is leaving idle state
- *
- * @worker is leaving idle state. Update stats.
- *
- * LOCKING:
- * raw_spin_lock_irq(pool->lock).
- */
-static void worker_leave_idle(struct worker *worker)
-{
- struct worker_pool *pool = worker->pool;
-
- if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
- return;
- worker_clr_flags(worker, WORKER_IDLE);
- pool->nr_idle--;
- list_del_init(&worker->entry);
-}
-
static struct worker *alloc_worker(int node)
{
struct worker *worker;
@@ -2050,6 +2079,14 @@ static struct worker *alloc_worker(int node)
return worker;
}
+static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
+{
+ if (pool->cpu < 0 && pool->attrs->affn_strict)
+ return pool->attrs->__pod_cpumask;
+ else
+ return pool->attrs->cpumask;
+}
+
/**
* worker_attach_to_pool() - attach a worker to a pool
* @worker: worker to be attached
@@ -2075,7 +2112,7 @@ static void worker_attach_to_pool(struct worker *worker,
kthread_set_per_cpu(worker->task, pool->cpu);
if (worker->rescue_wq)
- set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
+ set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
list_add_tail(&worker->node, &pool->workers);
worker->pool = pool;
@@ -2167,16 +2204,25 @@ static struct worker *create_worker(struct worker_pool *pool)
}
set_user_nice(worker->task, pool->attrs->nice);
- kthread_bind_mask(worker->task, pool->attrs->cpumask);
+ kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
/* successful, attach the worker to the pool */
worker_attach_to_pool(worker, pool);
/* start the newly created worker */
raw_spin_lock_irq(&pool->lock);
+
worker->pool->nr_workers++;
worker_enter_idle(worker);
+ kick_pool(pool);
+
+ /*
+ * @worker is waiting on a completion in kthread() and will trigger hung
+ * check if not woken up soon. As kick_pool() might not have waken it
+ * up, wake it up explicitly once more.
+ */
wake_up_process(worker->task);
+
raw_spin_unlock_irq(&pool->lock);
return worker;
@@ -2304,9 +2350,8 @@ static void idle_worker_timeout(struct timer_list *t)
static void idle_cull_fn(struct work_struct *work)
{
struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
- struct list_head cull_list;
+ LIST_HEAD(cull_list);
- INIT_LIST_HEAD(&cull_list);
/*
* Grabbing wq_pool_attach_mutex here ensures an already-running worker
* cannot proceed beyong worker_detach_from_pool() in its self-destruct
@@ -2495,7 +2540,6 @@ __acquires(&pool->lock)
struct pool_workqueue *pwq = get_work_pwq(work);
struct worker_pool *pool = worker->pool;
unsigned long work_data;
- struct worker *collision;
#ifdef CONFIG_LOCKDEP
/*
* It is permissible to free the struct work_struct from
@@ -2512,18 +2556,6 @@ __acquires(&pool->lock)
WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
raw_smp_processor_id() != pool->cpu);
- /*
- * A single work shouldn't be executed concurrently by
- * multiple workers on a single cpu. Check whether anyone is
- * already processing the work. If so, defer the work to the
- * currently executing one.
- */
- collision = find_worker_executing_work(pool, work);
- if (unlikely(collision)) {
- move_linked_works(work, &collision->scheduled, NULL);
- return;
- }
-
/* claim and dequeue */
debug_work_deactivate(work);
hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
@@ -2552,14 +2584,12 @@ __acquires(&pool->lock)
worker_set_flags(worker, WORKER_CPU_INTENSIVE);
/*
- * Wake up another worker if necessary. The condition is always
- * false for normal per-cpu workers since nr_running would always
- * be >= 1 at this point. This is used to chain execution of the
- * pending work items for WORKER_NOT_RUNNING workers such as the
- * UNBOUND and CPU_INTENSIVE ones.
+ * Kick @pool if necessary. It's always noop for per-cpu worker pools
+ * since nr_running would always be >= 1 at this point. This is used to
+ * chain execution of the pending work items for WORKER_NOT_RUNNING
+ * workers such as the UNBOUND and CPU_INTENSIVE ones.
*/
- if (need_more_worker(pool))
- wake_up_worker(pool);
+ kick_pool(pool);
/*
* Record the last pool and clear PENDING which should be the last
@@ -2569,6 +2599,7 @@ __acquires(&pool->lock)
*/
set_work_pool_and_clear_pending(work, pool->id);
+ pwq->stats[PWQ_STAT_STARTED]++;
raw_spin_unlock_irq(&pool->lock);
lock_map_acquire(&pwq->wq->lockdep_map);
@@ -2595,7 +2626,6 @@ __acquires(&pool->lock)
* workqueues), so hiding them isn't a problem.
*/
lockdep_invariant_state(true);
- pwq->stats[PWQ_STAT_STARTED]++;
trace_workqueue_execute_start(work);
worker->current_func(work);
/*
@@ -2661,9 +2691,15 @@ __acquires(&pool->lock)
*/
static void process_scheduled_works(struct worker *worker)
{
- while (!list_empty(&worker->scheduled)) {
- struct work_struct *work = list_first_entry(&worker->scheduled,
- struct work_struct, entry);
+ struct work_struct *work;
+ bool first = true;
+
+ while ((work = list_first_entry_or_null(&worker->scheduled,
+ struct work_struct, entry))) {
+ if (first) {
+ worker->pool->watchdog_ts = jiffies;
+ first = false;
+ }
process_one_work(worker, work);
}
}
@@ -2744,17 +2780,8 @@ recheck:
list_first_entry(&pool->worklist,
struct work_struct, entry);
- pool->watchdog_ts = jiffies;
-
- if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
- /* optimization path, not strictly necessary */
- process_one_work(worker, work);
- if (unlikely(!list_empty(&worker->scheduled)))
- process_scheduled_works(worker);
- } else {
- move_linked_works(work, &worker->scheduled, NULL);
+ if (assign_work(work, worker, NULL))
process_scheduled_works(worker);
- }
} while (keep_working(pool));
worker_set_flags(worker, WORKER_PREP);
@@ -2798,7 +2825,6 @@ static int rescuer_thread(void *__rescuer)
{
struct worker *rescuer = __rescuer;
struct workqueue_struct *wq = rescuer->rescue_wq;
- struct list_head *scheduled = &rescuer->scheduled;
bool should_stop;
set_user_nice(current, RESCUER_NICE_LEVEL);
@@ -2829,7 +2855,6 @@ repeat:
struct pool_workqueue, mayday_node);
struct worker_pool *pool = pwq->pool;
struct work_struct *work, *n