Age | Commit message (Collapse) | Author | Files | Lines |
|
In the current code, if multiple hardware breakpoints/watchpoints in
a user-space thread, some of them will not be triggered.
When debugging the following code using gdb.
lihui@bogon:~$ cat test.c
#include <stdio.h>
int a = 0;
int main()
{
printf("start test\n");
a = 1;
printf("a = %d\n", a);
printf("end test\n");
return 0;
}
lihui@bogon:~$ gcc -g test.c -o test
lihui@bogon:~$ gdb test
...
(gdb) start
...
Temporary breakpoint 1, main () at test.c:5
5 printf("start test\n");
(gdb) watch a
Hardware watchpoint 2: a
(gdb) hbreak 8
Hardware assisted breakpoint 3 at 0x1200006ec: file test.c, line 8.
(gdb) c
Continuing.
start test
a = 1
Breakpoint 3, main () at test.c:8
8 printf("end test\n");
...
The first hardware watchpoint is not triggered, the root causes are:
1. In hw_breakpoint_control(), The FWPnCFG1.2.4/MWPnCFG1.2.4 register
settings are not distinguished. They should be set based on hardware
watchpoint functions (fetch or load/store operations).
2. In breakpoint_handler() and watchpoint_handler(), it doesn't identify
which watchpoint is triggered. So, all watchpoint-related perf_event
callbacks are called and siginfo is sent to the user space. This will
cause user-space unable to determine which watchpoint is triggered.
The kernel need to identity which watchpoint is triggered via MWPS/
FWPS registers, and then call the corresponding perf event callbacks
to report siginfo to the user-space.
Modify the relevant code to solve above issues.
All changes according to the LoongArch Reference Manual:
https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#control-and-status-registers-related-to-watchpoints
With this patch:
lihui@bogon:~$ gdb test
...
(gdb) start
...
Temporary breakpoint 1, main () at test.c:5
5 printf("start test\n");
(gdb) watch a
Hardware watchpoint 2: a
(gdb) hbreak 8
Hardware assisted breakpoint 3 at 0x1200006ec: file test.c, line 8.
(gdb) c
Continuing.
start test
Hardware watchpoint 2: a
Old value = 0
New value = 1
main () at test.c:7
7 printf("a = %d\n", a);
(gdb) c
Continuing.
a = 1
Breakpoint 3, main () at test.c:8
8 printf("end test\n");
(gdb) c
Continuing.
end test
[Inferior 1 (process 778) exited normally]
Cc: stable@vger.kernel.org
Signed-off-by: Hui Li <lihui@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
|
|
In the current code, gdb can set the watchpoint successfully through
ptrace interface, but watchpoint will not be triggered.
When debugging the following code using gdb.
lihui@bogon:~$ cat test.c
#include <stdio.h>
int a = 0;
int main()
{
a = 1;
printf("a = %d\n", a);
return 0;
}
lihui@bogon:~$ gcc -g test.c -o test
lihui@bogon:~$ gdb test
...
(gdb) watch a
...
(gdb) r
...
a = 1
[Inferior 1 (process 4650) exited normally]
No watchpoints were triggered, the root causes are:
1. Kernel uses perf_event and hw_breakpoint framework to control
watchpoint, but the perf_event corresponding to watchpoint is
not enabled. So it needs to be enabled according to MWPnCFG3
or FWPnCFG3 PLV bit field in ptrace_hbp_set_ctrl(), and privilege
is set according to the monitored addr in hw_breakpoint_control().
Furthermore, add a judgment in ptrace_hbp_set_addr() to ensure
kernel-space addr cannot be monitored in user mode.
2. The global enable control for all watchpoints is the WE bit of
CSR.CRMD, and hardware sets the value to 0 when an exception is
triggered. When the ERTN instruction is executed to return, the
hardware restores the value of the PWE field of CSR.PRMD here.
So, before a thread containing watchpoints be scheduled, the PWE
field of CSR.PRMD needs to be set to 1. Add this modification in
hw_breakpoint_control().
All changes according to the LoongArch Reference Manual:
https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#control-and-status-registers-related-to-watchpoints
https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#basic-control-and-status-registers
With this patch:
lihui@bogon:~$ gdb test
...
(gdb) watch a
Hardware watchpoint 1: a
(gdb) r
...
Hardware watchpoint 1: a
Old value = 0
New value = 1
main () at test.c:6
6 printf("a = %d\n", a);
(gdb) c
Continuing.
a = 1
[Inferior 1 (process 775) exited normally]
Cc: stable@vger.kernel.org
Signed-off-by: Hui Li <lihui@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
|
|
In the current code, when debugging the following code using gdb,
"invalid argument ..." message will be displayed.
lihui@bogon:~$ cat test.c
#include <stdio.h>
int a = 0;
int main()
{
a = 1;
return 0;
}
lihui@bogon:~$ gcc -g test.c -o test
lihui@bogon:~$ gdb test
...
(gdb) watch a
Hardware watchpoint 1: a
(gdb) r
...
Invalid argument setting hardware debug registers
There are mainly two types of issues.
1. Some incorrect judgment condition existed in user_watch_state
argument parsing, causing -EINVAL to be returned.
When setting up a watchpoint, gdb uses the ptrace interface,
ptrace(PTRACE_SETREGSET, tid, NT_LOONGARCH_HW_WATCH, (void *) &iov)).
Register values in user_watch_state as follows:
addr[0] = 0x0, mask[0] = 0x0, ctrl[0] = 0x0
addr[1] = 0x0, mask[1] = 0x0, ctrl[1] = 0x0
addr[2] = 0x0, mask[2] = 0x0, ctrl[2] = 0x0
addr[3] = 0x0, mask[3] = 0x0, ctrl[3] = 0x0
addr[4] = 0x0, mask[4] = 0x0, ctrl[4] = 0x0
addr[5] = 0x0, mask[5] = 0x0, ctrl[5] = 0x0
addr[6] = 0x0, mask[6] = 0x0, ctrl[6] = 0x0
addr[7] = 0x12000803c, mask[7] = 0x0, ctrl[7] = 0x610
In arch_bp_generic_fields(), return -EINVAL when ctrl.len is
LOONGARCH_BREAKPOINT_LEN_8(0b00). So delete the incorrect judgment here.
In ptrace_hbp_fill_attr_ctrl(), when note_type is NT_LOONGARCH_HW_WATCH
and ctrl[0] == 0x0, if ((type & HW_BREAKPOINT_RW) != type) will return
-EINVAL. Here ctrl.type should be set based on note_type, and unnecessary
judgments can be removed.
2. The watchpoint argument was not set correctly due to unnecessary
offset and alignment_mask.
Modify ptrace_hbp_fill_attr_ctrl() and hw_breakpoint_arch_parse(), which
ensure the watchpont argument is set correctly.
All changes according to the LoongArch Reference Manual:
https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html#control-and-status-registers-related-to-watchpoints
Cc: stable@vger.kernel.org
Signed-off-by: Hui Li <lihui@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
|
|
Currently kernel entry in head.S is in DMW address range, firmware is
instructed to jump to this address after loading the kernel image.
However kernel should not make any assumption on firmware's DMW
setting, thus the entry point should be a physical address falls into
direct translation region.
Fix by converting entry address to physical and amend entry calculation
logic in libstub accordingly.
BTW, use ABSOLUTE() to calculate variables to make Clang/LLVM happy.
Cc: stable@vger.kernel.org
Signed-off-by: Jiaxun Yang <jiaxun.yang@flygoat.com>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
|
|
NUMA enabled kernel on FDT based machine fails to boot because CPUs
are all in NUMA_NO_NODE and mm subsystem won't accept that.
Fix by adding them to default NUMA node at FDT parsing phase and move
numa_add_cpu(0) to a later point.
Cc: stable@vger.kernel.org
Fixes: 88d4d957edc7 ("LoongArch: Add FDT booting support from efi system table")
Signed-off-by: Jiaxun Yang <jiaxun.yang@flygoat.com>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
|
|
fdt_check_header(__dtb_start) will always success because kernel
provides a dummy dtb, and by coincidence __dtb_start clashed with
entry of this dummy dtb. The consequence is fdt passed from firmware
will never be taken.
Fix by trying to utilise __dtb_start only when CONFIG_BUILTIN_DTB is
enabled.
Cc: stable@vger.kernel.org
Fixes: 7b937cc243e5 ("of: Create of_root if no dtb provided by firmware")
Signed-off-by: Jiaxun Yang <jiaxun.yang@flygoat.com>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
|
|
Both acpi_table_upgrade() and acpi_boot_table_init() are defined as
empty functions under !CONFIG_ACPI_TABLE_UPGRADE and !CONFIG_ACPI in
include/linux/acpi.h, there are no implicit declaration errors with
various configs.
#ifdef CONFIG_ACPI_TABLE_UPGRADE
void acpi_table_upgrade(void);
#else
static inline void acpi_table_upgrade(void) { }
#endif
#ifdef CONFIG_ACPI
...
void acpi_boot_table_init (void);
...
#else /* !CONFIG_ACPI */
...
static inline void acpi_boot_table_init(void)
{
}
...
#endif /* !CONFIG_ACPI */
As Huacai suggested, CONFIG_ACPI_TABLE_UPGRADE is ugly and not necessary
here, just remove it. At the same time, just keep CONFIG_ACPI to prevent
potential build errors in future, and give a signal to indicate the code
is ACPI-specific. For the same reason, we also put acpi_table_upgrade()
under CONFIG_ACPI.
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
Pull LoongArch updates from Huacai Chen:
- Select some options in Kconfig
- Give a chance to build with !CONFIG_SMP
- Switch to use built-in rustc target
- Add new supported device nodes to dts
- Some bug fixes and other small changes
- Update the default config file
* tag 'loongarch-6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson:
LoongArch: Update Loongson-3 default config file
LoongArch: dts: Add new supported device nodes to Loongson-2K2000
LoongArch: dts: Add new supported device nodes to Loongson-2K0500
LoongArch: dts: Remove "disabled" state of clock controller node
LoongArch: rust: Switch to use built-in rustc target
LoongArch: Fix callchain parse error with kernel tracepoint events again
LoongArch: Give a chance to build with !CONFIG_SMP
LoongArch: Select THP_SWAP if HAVE_ARCH_TRANSPARENT_HUGEPAGE
LoongArch: Select ARCH_WANT_DEFAULT_BPF_JIT
LoongArch: Select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
LoongArch: Select ARCH_HAS_FAST_MULTIPLIER
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu
Pull iommu updates from Joerg Roedel:
"Core:
- IOMMU memory usage observability - This will make the memory used
for IO page tables explicitly visible.
- Simplify arch_setup_dma_ops()
Intel VT-d:
- Consolidate domain cache invalidation
- Remove private data from page fault message
- Allocate DMAR fault interrupts locally
- Cleanup and refactoring
ARM-SMMUv2:
- Support for fault debugging hardware on Qualcomm implementations
- Re-land support for the ->domain_alloc_paging() callback
ARM-SMMUv3:
- Improve handling of MSI allocation failure
- Drop support for the "disable_bypass" cmdline option
- Major rework of the CD creation code, following on directly from
the STE rework merged last time around.
- Add unit tests for the new STE/CD manipulation logic
AMD-Vi:
- Final part of SVA changes with generic IO page fault handling
Renesas IPMMU:
- Add support for R8A779H0 hardware
... and a couple smaller fixes and updates across the sub-tree"
* tag 'iommu-updates-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (80 commits)
iommu/arm-smmu-v3: Make the kunit into a module
arm64: Properly clean up iommu-dma remnants
iommu/amd: Enable Guest Translation after reading IOMMU feature register
iommu/vt-d: Decouple igfx_off from graphic identity mapping
iommu/amd: Fix compilation error
iommu/arm-smmu-v3: Add unit tests for arm_smmu_write_entry
iommu/arm-smmu-v3: Build the whole CD in arm_smmu_make_s1_cd()
iommu/arm-smmu-v3: Move the CD generation for SVA into a function
iommu/arm-smmu-v3: Allocate the CD table entry in advance
iommu/arm-smmu-v3: Make arm_smmu_alloc_cd_ptr()
iommu/arm-smmu-v3: Consolidate clearing a CD table entry
iommu/arm-smmu-v3: Move the CD generation for S1 domains into a function
iommu/arm-smmu-v3: Make CD programming use arm_smmu_write_entry()
iommu/arm-smmu-v3: Add an ops indirection to the STE code
iommu/arm-smmu-qcom: Don't build debug features as a kernel module
iommu/amd: Add SVA domain support
iommu: Add ops->domain_alloc_sva()
iommu/amd: Initial SVA support for AMD IOMMU
iommu/amd: Add support for enable/disable IOPF
iommu/amd: Add IO page fault notifier handler
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull probes updates from Masami Hiramatsu:
- tracing/probes: Add new pseudo-types %pd and %pD support for dumping
dentry name from 'struct dentry *' and file name from 'struct file *'
- uprobes performance optimizations:
- Speed up the BPF uprobe event by delaying the fetching of the
uprobe event arguments that are not used in BPF
- Avoid locking by speculatively checking whether uprobe event is
valid
- Reduce lock contention by using read/write_lock instead of
spinlock for uprobe list operation. This improved BPF uprobe
benchmark result 43% on average
- rethook: Remove non-fatal warning messages when tracing stack from
BPF and skip rcu_is_watching() validation in rethook if possible
- objpool: Optimize objpool (which is used by kretprobes and fprobe as
rethook backend storage) by inlining functions and avoid caching
nr_cpu_ids because it is a const value
- fprobe: Add entry/exit callbacks types (code cleanup)
- kprobes: Check ftrace was killed in kprobes if it uses ftrace
* tag 'probes-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
kprobe/ftrace: bail out if ftrace was killed
selftests/ftrace: Fix required features for VFS type test case
objpool: cache nr_possible_cpus() and avoid caching nr_cpu_ids
objpool: enable inlining objpool_push() and objpool_pop() operations
rethook: honor CONFIG_FTRACE_VALIDATE_RCU_IS_WATCHING in rethook_try_get()
ftrace: make extra rcu_is_watching() validation check optional
uprobes: reduce contention on uprobes_tree access
rethook: Remove warning messages printed for finding return address of a frame.
fprobe: Add entry/exit callbacks types
selftests/ftrace: add fprobe test cases for VFS type "%pd" and "%pD"
selftests/ftrace: add kprobe test cases for VFS type "%pd" and "%pD"
Documentation: tracing: add new type '%pd' and '%pD' for kprobe
tracing/probes: support '%pD' type for print struct file's name
tracing/probes: support '%pd' type for print struct dentry's name
uprobes: add speculative lockless system-wide uprobe filter check
uprobes: prepare uprobe args buffer lazily
uprobes: encapsulate preparation of uprobe args buffer
|
|
If an error happens in ftrace, ftrace_kill() will prevent disarming
kprobes. Eventually, the ftrace_ops associated with the kprobes will be
freed, yet the kprobes will still be active, and when triggered, they
will use the freed memory, likely resulting in a page fault and panic.
This behavior can be reproduced quite easily, by creating a kprobe and
then triggering a ftrace_kill(). For simplicity, we can simulate an
ftrace error with a kernel module like [1]:
[1]: https://github.com/brenns10/kernel_stuff/tree/master/ftrace_killer
sudo perf probe --add commit_creds
sudo perf trace -e probe:commit_creds
# In another terminal
make
sudo insmod ftrace_killer.ko # calls ftrace_kill(), simulating bug
# Back to perf terminal
# ctrl-c
sudo perf probe --del commit_creds
After a short period, a page fault and panic would occur as the kprobe
continues to execute and uses the freed ftrace_ops. While ftrace_kill()
is supposed to be used only in extreme circumstances, it is invoked in
FTRACE_WARN_ON() and so there are many places where an unexpected bug
could be triggered, yet the system may continue operating, possibly
without the administrator noticing. If ftrace_kill() does not panic the
system, then we should do everything we can to continue operating,
rather than leave a ticking time bomb.
Link: https://lore.kernel.org/all/20240501162956.229427-1-stephen.s.brennan@oracle.com/
Signed-off-by: Stephen Brennan <stephen.s.brennan@oracle.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Guo Ren <guoren@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
|
|
Pull KVM updates from Paolo Bonzini:
"ARM:
- Move a lot of state that was previously stored on a per vcpu basis
into a per-CPU area, because it is only pertinent to the host while
the vcpu is loaded. This results in better state tracking, and a
smaller vcpu structure.
- Add full handling of the ERET/ERETAA/ERETAB instructions in nested
virtualisation. The last two instructions also require emulating
part of the pointer authentication extension. As a result, the trap
handling of pointer authentication has been greatly simplified.
- Turn the global (and not very scalable) LPI translation cache into
a per-ITS, scalable cache, making non directly injected LPIs much
cheaper to make visible to the vcpu.
- A batch of pKVM patches, mostly fixes and cleanups, as the
upstreaming process seems to be resuming. Fingers crossed!
- Allocate PPIs and SGIs outside of the vcpu structure, allowing for
smaller EL2 mapping and some flexibility in implementing more or
less than 32 private IRQs.
- Purge stale mpidr_data if a vcpu is created after the MPIDR map has
been created.
- Preserve vcpu-specific ID registers across a vcpu reset.
- Various minor cleanups and improvements.
LoongArch:
- Add ParaVirt IPI support
- Add software breakpoint support
- Add mmio trace events support
RISC-V:
- Support guest breakpoints using ebreak
- Introduce per-VCPU mp_state_lock and reset_cntx_lock
- Virtualize SBI PMU snapshot and counter overflow interrupts
- New selftests for SBI PMU and Guest ebreak
- Some preparatory work for both TDX and SNP page fault handling.
This also cleans up the page fault path, so that the priorities of
various kinds of fauls (private page, no memory, write to read-only
slot, etc.) are easier to follow.
x86:
- Minimize amount of time that shadow PTEs remain in the special
REMOVED_SPTE state.
This is a state where the mmu_lock is held for reading but
concurrent accesses to the PTE have to spin; shortening its use
allows other vCPUs to repopulate the zapped region while the zapper
finishes tearing down the old, defunct page tables.
- Advertise the max mappable GPA in the "guest MAXPHYADDR" CPUID
field, which is defined by hardware but left for software use.
This lets KVM communicate its inability to map GPAs that set bits
51:48 on hosts without 5-level nested page tables. Guest firmware
is expected to use the information when mapping BARs; this avoids
that they end up at a legal, but unmappable, GPA.
- Fixed a bug where KVM would not reject accesses to MSR that aren't
supposed to exist given the vCPU model and/or KVM configuration.
- As usual, a bunch of code cleanups.
x86 (AMD):
- Implement a new and improved API to initialize SEV and SEV-ES VMs,
which will also be extendable to SEV-SNP.
The new API specifies the desired encryption in KVM_CREATE_VM and
then separately initializes the VM. The new API also allows
customizing the desired set of VMSA features; the features affect
the measurement of the VM's initial state, and therefore enabling
them cannot be done tout court by the hypervisor.
While at it, the new API includes two bugfixes that couldn't be
applied to the old one without a flag day in userspace or without
affecting the initial measurement. When a SEV-ES VM is created with
the new VM type, KVM_GET_REGS/KVM_SET_REGS and friends are rejected
once the VMSA has been encrypted. Also, the FPU and AVX state will
be synchronized and encrypted too.
- Support for GHCB version 2 as applicable to SEV-ES guests.
This, once more, is only accessible when using the new
KVM_SEV_INIT2 flow for initialization of SEV-ES VMs.
x86 (Intel):
- An initial bunch of prerequisite patches for Intel TDX were merged.
They generally don't do anything interesting. The only somewhat
user visible change is a new debugging mode that checks that KVM's
MMU never triggers a #VE virtualization exception in the guest.
- Clear vmcs.EXIT_QUALIFICATION when synthesizing an EPT Misconfig
VM-Exit to L1, as per the SDM.
Generic:
- Use vfree() instead of kvfree() for allocations that always use
vcalloc() or __vcalloc().
- Remove .change_pte() MMU notifier - the changes to non-KVM code are
small and Andrew Morton asked that I also take those through the
KVM tree.
The callback was only ever implemented by KVM (which was also the
original user of MMU notifiers) but it had been nonfunctional ever
since calls to set_pte_at_notify were wrapped with
invalidate_range_start and invalidate_range_end... in 2012.
Selftests:
- Enhance the demand paging test to allow for better reporting and
stressing of UFFD performance.
- Convert the steal time test to generate TAP-friendly output.
- Fix a flaky false positive in the xen_shinfo_test due to comparing
elapsed time across two different clock domains.
- Skip the MONITOR/MWAIT test if the host doesn't actually support
MWAIT.
- Avoid unnecessary use of "sudo" in the NX hugepage test wrapper
shell script, to play nice with running in a minimal userspace
environment.
- Allow skipping the RSEQ test's sanity check that the vCPU was able
to complete a reasonable number of KVM_RUNs, as the assert can fail
on a completely valid setup.
If the test is run on a large-ish system that is otherwise idle,
and the test isn't affined to a low-ish number of CPUs, the vCPU
task can be repeatedly migrated to CPUs that are in deep sleep
states, which results in the vCPU having very little net runtime
before the next migration due to high wakeup latencies.
- Define _GNU_SOURCE for all selftests to fix a warning that was
introduced by a change to kselftest_harness.h late in the 6.9
cycle, and because forcing every test to #define _GNU_SOURCE is
painful.
- Provide a global pseudo-RNG instance for all tests, so that library
code can generate random, but determinstic numbers.
- Use the global pRNG to randomly force emulation of select writes
from guest code on x86, e.g. to help validate KVM's emulation of
locked accesses.
- Allocate and initialize x86's GDT, IDT, TSS, segments, and default
exception handlers at VM creation, instead of forcing tests to
manually trigger the related setup.
Documentation:
- Fix a goof in the KVM_CREATE_GUEST_MEMFD documentation"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (225 commits)
selftests/kvm: remove dead file
KVM: selftests: arm64: Test vCPU-scoped feature ID registers
KVM: selftests: arm64: Test that feature ID regs survive a reset
KVM: selftests: arm64: Store expected register value in set_id_regs
KVM: selftests: arm64: Rename helper in set_id_regs to imply VM scope
KVM: arm64: Only reset vCPU-scoped feature ID regs once
KVM: arm64: Reset VM feature ID regs from kvm_reset_sys_regs()
KVM: arm64: Rename is_id_reg() to imply VM scope
KVM: arm64: Destroy mpidr_data for 'late' vCPU creation
KVM: arm64: Use hVHE in pKVM by default on CPUs with VHE support
KVM: arm64: Fix hvhe/nvhe early alias parsing
KVM: SEV: Allow per-guest configuration of GHCB protocol version
KVM: SEV: Add GHCB handling for termination requests
KVM: SEV: Add GHCB handling for Hypervisor Feature Support requests
KVM: SEV: Add support to handle AP reset MSR protocol
KVM: x86: Explicitly zero kvm_caps during vendor module load
KVM: x86: Fully re-initialize supported_mce_cap on vendor module load
KVM: x86: Fully re-initialize supported_vm_types on vendor module load
KVM: x86/mmu: Sanity check that __kvm_faultin_pfn() doesn't create noslot pfns
KVM: x86/mmu: Initialize kvm_page_fault's pfn and hva to error values
...
|
|
execmem does not depend on modules, on the contrary modules use
execmem.
To make execmem available when CONFIG_MODULES=n, for instance for
kprobes, split execmem_params initialization out from
arch/*/kernel/module.c and compile it when CONFIG_EXECMEM=y
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
Several architectures override module_alloc() only to define address
range for code allocations different than VMALLOC address space.
Provide a generic implementation in execmem that uses the parameters for
address space ranges, required alignment and page protections provided
by architectures.
The architectures must fill execmem_info structure and implement
execmem_arch_setup() that returns a pointer to that structure. This way the
execmem initialization won't be called from every architecture, but rather
from a central place, namely a core_initcall() in execmem.
The execmem provides execmem_alloc() API that wraps __vmalloc_node_range()
with the parameters defined by the architectures. If an architecture does
not implement execmem_arch_setup(), execmem_alloc() will fall back to
module_alloc().
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
In the current code, SMP is selected in Kconfig for LoongArch, the users
can not unset it, this is reasonable for a multi-processor machine. But
as the help info of config SMP said, if you have a system with only one
CPU, say N. On a uni-processor machine, the kernel will run faster if you
say N here.
Loongson-2K0500 is a single-core CPU for applications like industrial
control, printing terminals, and BMC (Baseboard Management Controller),
there are many development boards, products and solutions on the market,
so it is better and necessary to give a chance to build with !CONFIG_SMP
for a uni-processor machine.
First of all, do not select SMP for config LOONGARCH in Kconfig to make
it possible to unset CONFIG_SMP. Then, do some changes to fix warnings
and errors if CONFIG_SMP is not set.
(1) Define get_ipi_irq() only if CONFIG_SMP is set to fix the warning:
arch/loongarch/kernel/irq.c:90:19: warning: 'get_ipi_irq' defined but not used [-Wunused-function]
(2) Add "#ifdef CONFIG_SMP" in asm/smp.h to fix the warning:
./arch/loongarch/include/asm/smp.h:49:9: warning: "raw_smp_processor_id" redefined
49 | #define raw_smp_processor_id raw_smp_processor_id
| ^~~~~~~~~~~~~~~~~~~~
./include/linux/smp.h:198:9: note: this is the location of the previous definition
198 | #define raw_smp_processor_id() 0
(3) Define machine_shutdown() as empty under !CONFIG_SMP to fix the error:
arch/loongarch/kernel/machine_kexec.c: In function 'machine_shutdown':
arch/loongarch/kernel/machine_kexec.c:233:25: error: implicit declaration of function 'cpu_device_up'; did you mean 'put_device'? [-Wimplicit-function-declaration]
(4) Make config SCHED_SMT depends on SMP to fix many errors such as:
kernel/sched/core.c: In function 'sched_core_find':
kernel/sched/core.c:310:43: error: 'struct rq' has no member named 'cpu'
(5) Define cpu_logical_map(cpu) as 0 under !CONFIG_SMP in asm/smp.h,
then include asm/smp.h in asm/acpi.h (because acpi.h is included in
linux/irq.h indirectly) to fix many build errors under drivers/irqchip
such as:
drivers/irqchip/irq-loongson-eiointc.c: In function 'cpu_to_eio_node':
drivers/irqchip/irq-loongson-eiointc.c:59:16: error: implicit declaration of function 'cpu_logical_map' [-Wimplicit-function-declaration]
(6) Do not write per_cpu_offset(0) to PERCPU_BASE_KS when resume because
the per_cpu_offset(x) macro is defined as (__per_cpu_offset[x]) only
under CONFIG_SMP in include/asm-generic/percpu.h. Just save the value of
PERCPU_BASE_KS when suspend and restore it when resume to fix the error:
arch/loongarch/power/suspend.c: In function 'loongarch_common_resume':
arch/loongarch/power/suspend.c:47:21: error: implicit declaration of function 'per_cpu_offset' [-Wimplicit-function-declaration]
(7) Fix huge page handling under !CONFIG_SMP in tlbex.S.
When running the UnixBench tests with "-c 1" single-streamed pass, the
improvement of performance is about 9 percent with this patch.
By the way, it is helpful to debug and analysis the kernel issues of
multi-processor system under !CONFIG_SMP.
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
|
|
into next
|
|
PARAVIRT config option and PV IPI is added for the guest side, function
pv_ipi_init() is used to add IPI sending and IPI receiving hooks. This
function firstly checks whether system runs in VM mode, and if kernel
runs in VM mode, it will call function kvm_para_available() to detect
the current hypervirsor type (now only KVM type detection is supported).
The paravirt functions can work only if current hypervisor type is KVM,
since there is only KVM supported on LoongArch now.
PV IPI uses virtual IPI sender and virtual IPI receiver functions. With
virtual IPI sender, IPI message is stored in memory rather than emulated
HW. IPI multicast is also supported, and 128 vcpus can received IPIs
at the same time like X86 KVM method. Hypercall method is used for IPI
sending.
With virtual IPI receiver, HW SWI0 is used rather than real IPI HW.
Since VCPU has separate HW SWI0 like HW timer, there is no trap in IPI
interrupt acknowledge. Since IPI message is stored in memory, there is
no trap in getting IPI message.
Signed-off-by: Bibo Mao <maobibo@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
|
|
Refine the ipi handling on LoongArch platform, there are three
modifications:
1. Add generic function get_percpu_irq(), replacing some percpu irq
functions such as get_ipi_irq()/get_pmc_irq()/get_timer_irq() with
get_percpu_irq().
2. Change definition about parameter action called by function
loongson_send_ipi_single() and loongson_send_ipi_mask(), and it is
defined as decimal encoding format at ipi sender side. Normal decimal
encoding is used rather than binary bitmap encoding for ipi action, ipi
hw sender uses decimal encoding code, and ipi receiver will get binary
bitmap encoding, the ipi hw will convert it into bitmap in ipi message
buffer.
3. Add a structure smp_ops on LoongArch platform so that pv ipi can be
used later.
Signed-off-by: Bibo Mao <maobibo@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
|
|
Several places want to compute the lower and/or upper bounds of a
dma_range_map, so let's factor that out into reusable helpers.
Acked-by: Rob Herring <robh@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hanjun Guo <guohanjun@huawei.com> # For arm64
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Link: https://lore.kernel.org/r/45ec52f033ec4dfb364e23f48abaf787f612fa53.1713523152.git.robin.murphy@arm.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
|
|
There is an smp function call named reset_counters() to init PMU
registers of every CPU in PMU initialization state. It requires that all
CPUs are online. However there is an early_initcall() wrapper for the
PMU init funciton init_hw_perf_events(), so that pmu init funciton is
called in do_pre_smp_initcalls() which before function smp_init().
Function reset_counters() cannot work on other CPUs since they haven't
boot up still.
Here replace the wrapper early_initcall() with pure_initcall(), so that
the PMU init function is called after every cpu is online.
Signed-off-by: Bibo Mao <maobibo@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
Pull LoongArch updates from Huacai Chen:
- Add objtool support for LoongArch
- Add ORC stack unwinder support for LoongArch
- Add kernel livepatching support for LoongArch
- Select ARCH_HAS_CURRENT_STACK_POINTER in Kconfig
- Select HAVE_ARCH_USERFAULTFD_MINOR in Kconfig
- Some bug fixes and other small changes
* tag 'loongarch-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson:
LoongArch/crypto: Clean up useless assignment operations
LoongArch: Define the __io_aw() hook as mmiowb()
LoongArch: Remove superfluous flush_dcache_page() definition
LoongArch: Move {dmw,tlb}_virt_to_page() definition to page.h
LoongArch: Change __my_cpu_offset definition to avoid mis-optimization
LoongArch: Select HAVE_ARCH_USERFAULTFD_MINOR in Kconfig
LoongArch: Select ARCH_HAS_CURRENT_STACK_POINTER in Kconfig
LoongArch: Add kernel livepatching support
LoongArch: Add ORC stack unwinder support
objtool: Check local label in read_unwind_hints()
objtool: Check local label in add_dead_ends()
objtool/LoongArch: Enable orc to be built
objtool/x86: Separate arch-specific and generic parts
objtool/LoongArch: Implement instruction decoder
objtool/LoongArch: Enable objtool to be built
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Sumanth Korikkar has taught s390 to allocate hotplug-time page frames
from hotplugged memory rather than only from main memory. Series
"implement "memmap on memory" feature on s390".
- More folio conversions from Matthew Wilcox in the series
"Convert memcontrol charge moving to use folios"
"mm: convert mm counter to take a folio"
- Chengming Zhou has optimized zswap's rbtree locking, providing
significant reductions in system time and modest but measurable
reductions in overall runtimes. The series is "mm/zswap: optimize the
scalability of zswap rb-tree".
- Chengming Zhou has also provided the series "mm/zswap: optimize zswap
lru list" which provides measurable runtime benefits in some
swap-intensive situations.
- And Chengming Zhou further optimizes zswap in the series "mm/zswap:
optimize for dynamic zswap_pools". Measured improvements are modest.
- zswap cleanups and simplifications from Yosry Ahmed in the series
"mm: zswap: simplify zswap_swapoff()".
- In the series "Add DAX ABI for memmap_on_memory", Vishal Verma has
contributed several DAX cleanups as well as adding a sysfs tunable to
control the memmap_on_memory setting when the dax device is
hotplugged as system memory.
- Johannes Weiner has added the large series "mm: zswap: cleanups",
which does that.
- More DAMON work from SeongJae Park in the series
"mm/damon: make DAMON debugfs interface deprecation unignorable"
"selftests/damon: add more tests for core functionalities and corner cases"
"Docs/mm/damon: misc readability improvements"
"mm/damon: let DAMOS feeds and tame/auto-tune itself"
- In the series "mm/mempolicy: weighted interleave mempolicy and sysfs
extension" Rakie Kim has developed a new mempolicy interleaving
policy wherein we allocate memory across nodes in a weighted fashion
rather than uniformly. This is beneficial in heterogeneous memory
environments appearing with CXL.
- Christophe Leroy has contributed some cleanup and consolidation work
against the ARM pagetable dumping code in the series "mm: ptdump:
Refactor CONFIG_DEBUG_WX and check_wx_pages debugfs attribute".
- Luis Chamberlain has added some additional xarray selftesting in the
series "test_xarray: advanced API multi-index tests".
- Muhammad Usama Anjum has reworked the selftest code to make its
human-readable output conform to the TAP ("Test Anything Protocol")
format. Amongst other things, this opens up the use of third-party
tools to parse and process out selftesting results.
- Ryan Roberts has added fork()-time PTE batching of THP ptes in the
series "mm/memory: optimize fork() with PTE-mapped THP". Mainly
targeted at arm64, this significantly speeds up fork() when the
process has a large number of pte-mapped folios.
- David Hildenbrand also gets in on the THP pte batching game in his
series "mm/memory: optimize unmap/zap with PTE-mapped THP". It
implements batching during munmap() and other pte teardown
situations. The microbenchmark improvements are nice.
- And in the series "Transparent Contiguous PTEs for User Mappings"
Ryan Roberts further utilizes arm's pte's contiguous bit ("contpte
mappings"). Kernel build times on arm64 improved nicely. Ryan's
series "Address some contpte nits" provides some followup work.
- In the series "mm/hugetlb: Restore the reservation" Breno Leitao has
fixed an obscure hugetlb race which was causing unnecessary page
faults. He has also added a reproducer under the selftest code.
- In the series "selftests/mm: Output cleanups for the compaction
test", Mark Brown did what the title claims.
- Kinsey Ho has added the series "mm/mglru: code cleanup and
refactoring".
- Even more zswap material from Nhat Pham. The series "fix and extend
zswap kselftests" does as claimed.
- In the series "Introduce cpu_dcache_is_aliasing() to fix DAX
regression" Mathieu Desnoyers has cleaned up and fixed rather a mess
in our handling of DAX on archiecctures which have virtually aliasing
data caches. The arm architecture is the main beneficiary.
- Lokesh Gidra's series "per-vma locks in userfaultfd" provides
dramatic improvements in worst-case mmap_lock hold times during
certain userfaultfd operations.
- Some page_owner enhancements and maintenance work from Oscar Salvador
in his series
"page_owner: print stacks and their outstanding allocations"
"page_owner: Fixup and cleanup"
- Uladzislau Rezki has contributed some vmalloc scalability
improvements in his series "Mitigate a vmap lock contention". It
realizes a 12x improvement for a certain microbenchmark.
- Some kexec/crash cleanup work from Baoquan He in the series "Split
crash out from kexec and clean up related config items".
- Some zsmalloc maintenance work from Chengming Zhou in the series
"mm/zsmalloc: fix and optimize objects/page migration"
"mm/zsmalloc: some cleanup for get/set_zspage_mapping()"
- Zi Yan has taught the MM to perform compaction on folios larger than
order=0. This a step along the path to implementaton of the merging
of large anonymous folios. The series is named "Enable >0 order folio
memory compaction".
- Christoph Hellwig has done quite a lot of cleanup work in the
pagecache writeback code in his series "convert write_cache_pages()
to an iterator".
- Some modest hugetlb cleanups and speedups in Vishal Moola's series
"Handle hugetlb faults under the VMA lock".
- Zi Yan has changed the page splitting code so we can split huge pages
into sizes other than order-0 to better utilize large folios. The
series is named "Split a folio to any lower order folios".
- David Hildenbrand has contributed the series "mm: remove
total_mapcount()", a cleanup.
- Matthew Wilcox has sought to improve the performance of bulk memory
freeing in his series "Rearrange batched folio freeing".
- Gang Li's series "hugetlb: parallelize hugetlb page init on boot"
provides large improvements in bootup times on large machines which
are configured to use large numbers of hugetlb pages.
- Matthew Wilcox's series "PageFlags cleanups" does that.
- Qi Zheng's series "minor fixes and supplement for ptdesc" does that
also. S390 is affected.
- Cleanups to our pagemap utility functions from Peter Xu in his series
"mm/treewide: Replace pXd_large() with pXd_leaf()".
- Nico Pache has fixed a few things with our hugepage selftests in his
series "selftests/mm: Improve Hugepage Test Handling in MM
Selftests".
- Also, of course, many singleton patches to many things. Please see
the individual changelogs for details.
* tag 'mm-stable-2024-03-13-20-04' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (435 commits)
mm/zswap: remove the memcpy if acomp is not sleepable
crypto: introduce: acomp_is_async to expose if comp drivers might sleep
memtest: use {READ,WRITE}_ONCE in memory scanning
mm: prohibit the last subpage from reusing the entire large folio
mm: recover pud_leaf() definitions in nopmd case
selftests/mm: skip the hugetlb-madvise tests on unmet hugepage requirements
selftests/mm: skip uffd hugetlb tests with insufficient hugepages
selftests/mm: dont fail testsuite due to a lack of hugepages
mm/huge_memory: skip invalid debugfs new_order input for folio split
mm/huge_memory: check new folio order when split a folio
mm, vmscan: retry kswapd's priority loop with cache_trim_mode off on failure
mm: add an explicit smp_wmb() to UFFDIO_CONTINUE
mm: fix list corruption in put_pages_list
mm: remove folio from deferred split list before uncharging it
filemap: avoid unnecessary major faults in filemap_fault()
mm,page_owner: drop unnecessary check
mm,page_owner: check for null stack_record before bumping its refcount
mm: swap: fix race between free_swap_and_cache() and swapoff()
mm/treewide: align up pXd_leaf() retval across archs
mm/treewide: drop pXd_large()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from Jakub Kicinski:
"Core & protocols:
- Large effort by Eric to lower rtnl_lock pressure and remove locks:
- Make commonly used parts of rtnetlink (address, route dumps
etc) lockless, protected by RCU instead of rtnl_lock.
- Add a netns exit callback which already holds rtnl_lock,
allowing netns exit to take rtnl_lock once in the core instead
of once for each driver / callback.
- Remove locks / serialization in the socket diag interface.
- Remove 6 calls to synchronize_rcu() while holding rtnl_lock.
- Remove the dev_base_lock, depend on RCU where necessary.
- Support busy polling on a per-epoll context basis. Poll length and
budget parameters can be set independently of system defaults.
- Introduce struct net_hotdata, to make sure read-mostly global
config variables fit in as few cache lines as possible.
- Add optional per-nexthop statistics to ease monitoring / debug of
ECMP imbalance problems.
- Support TCP_NOTSENT_LOWAT in MPTCP.
- Ensure that IPv6 temporary addresses' preferred lifetimes are long
enough, compared to other configured lifetimes, and at least 2 sec.
- Support forwarding of ICMP Error messages in IPSec, per RFC 4301.
- Add support for the independent control state machine for bonding
per IEEE 802.1AX-2008 5.4.15 in addition to the existing coupled
control state machine.
- Add "network ID" to MCTP socket APIs to support hosts with multiple
disjoint MCTP networks.
- Re-use the mono_delivery_time skbuff bit for packets which user
space wants to be sent at a specified time. Maintain the timing
information while traversing veth links, bridge etc.
- Take advantage of MSG_SPLICE_PAGES for RxRPC DATA and ACK packets.
- Simplify many places iterating over netdevs by using an xarray
instead of a hash table walk (hash table remains in place, for use
on fastpaths).
- Speed up scanning for expired routes by keeping a dedicated list.
- Speed up "generic" XDP by trying harder to avoid large allocations.
- Support attaching arbitrary metadata to netconsole messages.
Things we sprinkled into general kernel code:
- Enforce VM_IOREMAP flag and range in ioremap_page_range and
introduce VM_SPARSE kind and vm_area_[un]map_pages (used by
bpf_arena).
- Rework selftest harness to enable the use of the full range of ksft
exit code (pass, fail, skip, xfail, xpass).
Netfilter:
- Allow userspace to define a table that is exclusively owned by a
daemon (via netlink socket aliveness) without auto-removing this
table when the userspace program exits. Such table gets marked as
orphaned and a restarting management daemon can re-attach/regain
ownership.
- Speed up element insertions to nftables' concatenated-ranges set
type. Compact a few related data structures.
BPF:
- Add BPF token support for delegating a subset of BPF subsystem
functionality from privileged system-wide daemons such as systemd
through special mount options for userns-bound BPF fs to a trusted
& unprivileged application.
- Introduce bpf_arena which is sparse shared memory region between
BPF program and user space where structures inside the arena can
have pointers to other areas of the arena, and pointers work
seamlessly for both user-space programs and BPF programs.
- Introduce may_goto instruction that is a contract between the
verifier and the program. The verifier allows the program to loop
assuming it's behaving well, but reserves the right to terminate
it.
- Extend the BPF verifier to enable static subprog calls in spin lock
critical sections.
- Support registration of struct_ops types from modules which helps
projects like fuse-bpf that seeks to implement a new struct_ops
type.
- Add support for retrieval of cookies for perf/kprobe multi links.
- Support arbitrary TCP SYN cookie generation / validation in the TC
layer with BPF to allow creating SYN flood handling in BPF
firewalls.
- Add code generation to inline the bpf_kptr_xchg() helper which
improves performance when stashing/popping the allocated BPF
objects.
Wireless:
- Add SPP (signaling and payload protected) AMSDU support.
- Support wider bandwidth OFDMA, as required for EHT operation.
Driver API:
- Major overhaul of the Energy Efficient Ethernet internals to
support new link modes (2.5GE, 5GE), share more code between
drivers (especially those using phylib), and encourage more
uniform behavior. Convert and clean up drivers.
- Define an API for querying per netdev queue statistics from
drivers.
- IPSec: account in global stats for fully offloaded sessions.
- Create a concept of Ethernet PHY Packages at the Device Tree level,
to allow parameterizing the existing PHY package code.
- Enable Rx hashing (RSS) on GTP protocol fields.
Misc:
- Improvements and refactoring all over networking selftests.
- Create uniform module aliases for TC classifiers, actions, and
packet schedulers to simplify creating modprobe policies.
- Address all missing MODULE_DESCRIPTION() warnings in networking.
- Extend the Netlink descriptions in YAML to cover message
encapsulation or "Netlink polymorphism", where interpretation of
nested attributes depends on link type, classifier type or some
other "class type".
Drivers:
- Ethernet high-speed NICs:
- Add a new driver for Marvell's Octeon PCI Endpoint NIC VF.
- Intel (100G, ice, idpf):
- support E825-C devices
- nVidia/Mellanox:
- support devices with one port and multiple PCIe links
- Broadcom (bnxt):
- support n-tuple filters
- support configuring the RSS key
- Wangxun (ngbe/txgbe):
- implement irq_domain for TXGBE's sub-interrupts
- Pensando/AMD:
- support XDP
- optimize queue submission and wakeup handling (+17% bps)
- optimize struct layout, saving 28% of memory on queues
- Ethernet NICs embedded and virtual:
- Google cloud vNIC:
- refactor driver to perform memory allocations for new queue
config before stopping and freeing the old queue memory
- Synopsys (stmmac):
- obey queueMaxSDU and implement counters required by 802.1Qbv
- Renesas (ravb):
- support packet checksum offload
- suspend to RAM and runtime PM support
- Ethernet switches:
- nVidia/Mellanox:
- support for nexthop group statistics
- Microchip:
- ksz8: implement PHY loopback
- add support for KSZ8567, a 7-port 10/100Mbps switch
- PTP:
- New driver for RENESAS FemtoClock3 Wireless clock generator.
- Support OCP PTP cards designed and built by Adva.
- CAN:
- Support recvmsg() flags for own, local and remote traffic on CAN
BCM sockets.
- Support for esd GmbH PCIe/402 CAN device family.
- m_can:
- Rx/Tx submission coalescing
- wake on frame Rx
- WiFi:
- Intel (iwlwifi):
- enable signaling and payload protected A-MSDUs
- support wider-bandwidth OFDMA
- support for new devices
- bump FW API to 89 for AX devices; 90 for BZ/SC devices
- MediaTek (mt76):
- mt7915: newer ADIE version support
- mt7925: radio temperature sensor support
- Qualcomm (ath11k):
- support 6 GHz station power modes: Low Power Indoor (LPI),
Standard Power) SP and Very Low Power (VLP)
- QCA6390 & WCN6855: support 2 concurrent station interfaces
- QCA2066 support
- Qualcomm (ath12k):
- refactoring in preparation for Multi-Link Operation (MLO)
support
- 1024 Block Ack window size support
- firmware-2.bin support
- support having multiple identical PCI devices (firmware needs
to have ATH12K_FW_FEATURE_MULTI_QRTR_ID)
- QCN9274: support split-PHY devices
- WCN7850: enable Power Save Mode in station mode
- WCN7850: P2P support
- RealTek:
- rtw88: support for more rtw8811cu and rtw8821cu devices
- rtw89: support SCAN_RANDOM_SN and SET_SCAN_DWELL
- rtlwifi: speed up USB firmware initialization
- rtwl8xxx |