summaryrefslogtreecommitdiff
path: root/arch/parisc
AgeCommit message (Collapse)AuthorFilesLines
2024-07-29parisc: fix a possible DMA corruptionMikulas Patocka2-1/+11
ARCH_DMA_MINALIGN was defined as 16 - this is too small - it may be possible that two unrelated 16-byte allocations share a cache line. If one of these allocations is written using DMA and the other is written using cached write, the value that was written with DMA may be corrupted. This commit changes ARCH_DMA_MINALIGN to be 128 on PA20 and 32 on PA1.1 - that's the largest possible cache line size. As different parisc microarchitectures have different cache line size, we define arch_slab_minalign(), cache_line_size() and dma_get_cache_alignment() so that the kernel may tune slab cache parameters dynamically, based on the detected cache line size. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Helge Deller <deller@gmx.de>
2024-07-29parisc: fix unaligned accesses in BPFMikulas Patocka1-1/+1
There were spurious unaligned access warnings when calling BPF code. Sometimes, the warnings were triggered with any incoming packet, making the machine hard to use. The reason for the warnings is this: on parisc64, pointers to functions are not really pointers to functions, they are pointers to 16-byte descriptor. The first 8 bytes of the descriptor is a pointer to the function and the next 8 bytes of the descriptor is the content of the "dp" register. This descriptor is generated in the function bpf_jit_build_prologue. The problem is that the function bpf_int_jit_compile advertises 4-byte alignment when calling bpf_jit_binary_alloc, bpf_jit_binary_alloc randomizes the returned array and if the array happens to be not aligned on 8-byte boundary, the descriptor generated in bpf_jit_build_prologue is also not aligned and this triggers the unaligned access warning. Fix this by advertising 8-byte alignment on parisc64 when calling bpf_jit_binary_alloc. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Helge Deller <deller@gmx.de>
2024-07-25Merge tag 'parisc-for-6.11-rc1' of ↵Linus Torvalds11-52/+124
git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux Pull parisc updates from Helge Deller: "The gettimeofday() and clock_gettime() syscalls are now available as vDSO functions, and Dave added a patch which allows to use NVMe cards in the PCI slots as fast and easy alternative to SCSI discs. Summary: - add gettimeofday() and clock_gettime() vDSO functions - enable PCI_MSI_ARCH_FALLBACKS to allow PCI to PCIe bridge adaptor with PCIe NVME card to function in parisc machines - allow users to reduce kernel unaligned runtime warnings - minor code cleanups" * tag 'parisc-for-6.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux: parisc: Add support for CONFIG_SYSCTL_ARCH_UNALIGN_NO_WARN parisc: Use max() to calculate parisc_tlb_flush_threshold parisc: Fix warning at drivers/pci/msi/msi.h:121 parisc: Add 64-bit gettimeofday() and clock_gettime() vDSO functions parisc: Add 32-bit gettimeofday() and clock_gettime() vDSO functions parisc: Clean up unistd.h file
2024-07-25Merge tag 'driver-core-6.11-rc1' of ↵Linus Torvalds2-3/+3
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core Pull driver core updates from Greg KH: "Here is the big set of driver core changes for 6.11-rc1. Lots of stuff in here, with not a huge diffstat, but apis are evolving which required lots of files to be touched. Highlights of the changes in here are: - platform remove callback api final fixups (Uwe took many releases to get here, finally!) - Rust bindings for basic firmware apis and initial driver-core interactions. It's not all that useful for a "write a whole driver in rust" type of thing, but the firmware bindings do help out the phy rust drivers, and the driver core bindings give a solid base on which others can start their work. There is still a long way to go here before we have a multitude of rust drivers being added, but it's a great first step. - driver core const api changes. This reached across all bus types, and there are some fix-ups for some not-common bus types that linux-next and 0-day testing shook out. This work is being done to help make the rust bindings more safe, as well as the C code, moving toward the end-goal of allowing us to put driver structures into read-only memory. We aren't there yet, but are getting closer. - minor devres cleanups and fixes found by code inspection - arch_topology minor changes - other minor driver core cleanups All of these have been in linux-next for a very long time with no reported problems" * tag 'driver-core-6.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (55 commits) ARM: sa1100: make match function take a const pointer sysfs/cpu: Make crash_hotplug attribute world-readable dio: Have dio_bus_match() callback take a const * zorro: make match function take a const pointer driver core: module: make module_[add|remove]_driver take a const * driver core: make driver_find_device() take a const * driver core: make driver_[create|remove]_file take a const * firmware_loader: fix soundness issue in `request_internal` firmware_loader: annotate doctests as `no_run` devres: Correct code style for functions that return a pointer type devres: Initialize an uninitialized struct member devres: Fix memory leakage caused by driver API devm_free_percpu() devres: Fix devm_krealloc() wasting memory driver core: platform: Switch to use kmemdup_array() driver core: have match() callback in struct bus_type take a const * MAINTAINERS: add Rust device abstractions to DRIVER CORE device: rust: improve safety comments MAINTAINERS: add Danilo as FIRMWARE LOADER maintainer MAINTAINERS: add Rust FW abstractions to FIRMWARE LOADER firmware: rust: improve safety comments ...
2024-07-24parisc: Add support for CONFIG_SYSCTL_ARCH_UNALIGN_NO_WARNHelge Deller2-0/+3
Allow users to disable kernel warnings for unaligned memory accesses from kernel via the /proc/sys/kernel/ignore-unaligned-usertrap procfs entry. That way users can disable those warnings in case they happen too often. Signed-off-by: Helge Deller <deller@gmx.de>
2024-07-23Merge tag 'kbuild-v6.11' of ↵Linus Torvalds1-0/+2
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild Pull Kbuild updates from Masahiro Yamada: - Remove tristate choice support from Kconfig - Stop using the PROVIDE() directive in the linker script - Reduce the number of links for the combination of CONFIG_KALLSYMS and CONFIG_DEBUG_INFO_BTF - Enable the warning for symbol reference to .exit.* sections by default - Fix warnings in RPM package builds - Improve scripts/make_fit.py to generate a FIT image with separate base DTB and overlays - Improve choice value calculation in Kconfig - Fix conditional prompt behavior in choice in Kconfig - Remove support for the uncommon EMAIL environment variable in Debian package builds - Remove support for the uncommon "name <email>" form for the DEBEMAIL environment variable - Raise the minimum supported GNU Make version to 4.0 - Remove stale code for the absolute kallsyms - Move header files commonly used for host programs to scripts/include/ - Introduce the pacman-pkg target to generate a pacman package used in Arch Linux - Clean up Kconfig * tag 'kbuild-v6.11' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (65 commits) kbuild: doc: gcc to CC change kallsyms: change sym_entry::percpu_absolute to bool type kallsyms: unify seq and start_pos fields of struct sym_entry kallsyms: add more original symbol type/name in comment lines kallsyms: use \t instead of a tab in printf() kallsyms: avoid repeated calculation of array size for markers kbuild: add script and target to generate pacman package modpost: use generic macros for hash table implementation kbuild: move some helper headers from scripts/kconfig/ to scripts/include/ Makefile: add comment to discourage tools/* addition for kernel builds kbuild: clean up scripts/remove-stale-files kconfig: recursive checks drop file/lineno kbuild: rpm-pkg: introduce a simple changelog section for kernel.spec kallsyms: get rid of code for absolute kallsyms kbuild: Create INSTALL_PATH directory if it does not exist kbuild: Abort make on install failures kconfig: remove 'e1' and 'e2' macros from expression deduplication kconfig: remove SYMBOL_CHOICEVAL flag kconfig: add const qualifiers to several function arguments kconfig: call expr_eliminate_yn() at least once in expr_eliminate_dups() ...
2024-07-20kbuild: Abort make on install failuresZhang Bingwu1-0/+2
Setting '-e' flag tells shells to exit with error exit code immediately after any of commands fails, and causes make(1) to regard recipes as failed. Before this, make will still continue to succeed even after the installation failed, for example, for insufficient permission or directory does not exist. Signed-off-by: Zhang Bingwu <xtexchooser@duck.com> Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2024-07-10clone3: drop __ARCH_WANT_SYS_CLONE3 macroArnd Bergmann1-1/+0
When clone3() was introduced, it was not obvious how each architecture deals with setting up the stack and keeping the register contents in a fork()-like system call, so this was left for the architecture maintainers to implement, with __ARCH_WANT_SYS_CLONE3 defined by those that already implement it. Five years later, we still have a few architectures left that are missing clone3(), and the macro keeps getting in the way as it's fundamentally different from all the other __ARCH_WANT_SYS_* macros that are meant to provide backwards-compatibility with applications using older syscalls that are no longer provided by default. Address this by reversing the polarity of the macro, adding an __ARCH_BROKEN_SYS_CLONE3 macro to all architectures that don't already provide the syscall, and remove __ARCH_WANT_SYS_CLONE3 from all the other ones. Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2024-07-04parisc: Use max() to calculate parisc_tlb_flush_thresholdThorsten Blum1-5/+1
Use max() to reduce 4 lines of code to a single line and improve its readability. Fixes the following Coccinelle/coccicheck warning reported by minmax.cocci: WARNING opportunity for max() Signed-off-by: Thorsten Blum <thorsten.blum@toblux.com> Signed-off-by: Helge Deller <deller@gmx.de>
2024-07-03parisc: Fix warning at drivers/pci/msi/msi.h:121John David Anglin1-0/+1
Fix warning at drivers/pci/msi/msi.h:121. Recently, I added a PCI to PCIe bridge adaptor and a PCIe NVME card to my rp3440. Then, I noticed this warning at boot: WARNING: CPU: 0 PID: 10 at drivers/pci/msi/msi.h:121 pci_msi_setup_msi_irqs+0x68/0x90 CPU: 0 PID: 10 Comm: kworker/u32:0 Not tainted 6.9.7-parisc64 #1 Debian 6.9.7-1 Hardware name: 9000/800/rp3440 Workqueue: async async_run_entry_fn We need to select PCI_MSI_ARCH_FALLBACKS when PCI_MSI is selected. Signed-off-by: John David Anglin <dave.anglin@bell.net> Cc: stable@vger.kernel.org # v6.0+ Signed-off-by: Helge Deller <deller@gmx.de>
2024-07-03driver core: have match() callback in struct bus_type take a const *Greg Kroah-Hartman2-3/+3
In the match() callback, the struct device_driver * should not be changed, so change the function callback to be a const *. This is one step of many towards making the driver core safe to have struct device_driver in read-only memory. Because the match() callback is in all busses, all busses are modified to handle this properly. This does entail switching some container_of() calls to container_of_const() to properly handle the constant *. For some busses, like PCI and USB and HV, the const * is cast away in the match callback as those busses do want to modify those structures at this point in time (they have a local lock in the driver structure.) That will have to be changed in the future if they wish to have their struct device * in read-only-memory. Cc: Rafael J. Wysocki <rafael@kernel.org> Reviewed-by: Alex Elder <elder@kernel.org> Acked-by: Sumit Garg <sumit.garg@linaro.org> Link: https://lore.kernel.org/r/2024070136-wrongdoer-busily-01e8@gregkh Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-06-25parisc: use generic sys_fanotify_mark implementationArnd Bergmann3-10/+2
The sys_fanotify_mark() syscall on parisc uses the reverse word order for the two halves of the 64-bit argument compared to all syscalls on all 32-bit architectures. As far as I can tell, the problem is that the function arguments on parisc are sorted backwards (26, 25, 24, 23, ...) compared to everyone else, so the calling conventions of using an even/odd register pair in native word order result in the lower word coming first in function arguments, matching the expected behavior on little-endian architectures. The system call conventions however ended up matching what the other 32-bit architectures do. A glibc cleanup in 2020 changed the userspace behavior in a way that handles all architectures consistently, but this inadvertently broke parisc32 by changing to the same method as everyone else. The change made it into glibc-2.35 and subsequently into debian 12 (bookworm), which is the latest stable release. This means we need to choose between reverting the glibc change or changing the kernel to match it again, but either hange will leave some systems broken. Pick the option that is more likely to help current and future users and change the kernel to match current glibc. This also means the behavior is now consistent across architectures, but it breaks running new kernels with old glibc builds before 2.35. Link: https://sourceware.org/git/?p=glibc.git;a=commitdiff;h=d150181d73d9 Link: https://git.kernel.org/pub/scm/linux/kernel/git/history/history.git/commit/arch/parisc/kernel/sys_parisc.c?h=57b1dfbd5b4a39d Cc: Adhemerval Zanella <adhemerval.zanella@linaro.org> Tested-by: Helge Deller <deller@gmx.de> Acked-by: Helge Deller <deller@gmx.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> --- I found this through code inspection, please double-check to make sure I got the bug and the fix right. The alternative is to fix this by reverting glibc back to the unusual behavior.
2024-06-25parisc: use correct compat recv/recvfrom syscallsArnd Bergmann1-2/+2
Johannes missed parisc back when he introduced the compat version of these syscalls, so receiving cmsg messages that require a compat conversion is still broken. Use the correct calls like the other architectures do. Fixes: 1dacc76d0014 ("net/compat/wext: send different messages to compat tasks") Acked-by: Helge Deller <deller@gmx.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2024-06-22parisc: Add 64-bit gettimeofday() and clock_gettime() vDSO functionsHelge Deller3-4/+47
Add 64-bit vDSO implementations for gettimeofday() and clock_gettime(). Signed-off-by: Helge Deller <deller@gmx.de>
2024-06-22parisc: Add 32-bit gettimeofday() and clock_gettime() vDSO functionsHelge Deller4-4/+57
Add vDSO implementations for gettimeofday(), clock_gettime() and clock_gettime64() kernel syscalls. Currently those functions are implemented as pure syscall wrappers. Signed-off-by: Helge Deller <deller@gmx.de>
2024-06-22parisc: Clean up unistd.h fileHelge Deller1-39/+15
Clean up the internal unistd.h file, so that syscallX() can be used internally to call syscalls from userspace. This is used later by the vDSO C-code. Signed-off-by: Helge Deller <deller@gmx.de>
2024-06-12parisc: Try to fix random segmentation faults in package buildsJohn David Anglin3-180/+275
PA-RISC systems with PA8800 and PA8900 processors have had problems with random segmentation faults for many years. Systems with earlier processors are much more stable. Systems with PA8800 and PA8900 processors have a large L2 cache which needs per page flushing for decent performance when a large range is flushed. The combined cache in these systems is also more sensitive to non-equivalent aliases than the caches in earlier systems. The majority of random segmentation faults that I have looked at appear to be memory corruption in memory allocated using mmap and malloc. My first attempt at fixing the random faults didn't work. On reviewing the cache code, I realized that there were two issues which the existing code didn't handle correctly. Both relate to cache move-in. Another issue is that the present bit in PTEs is racy. 1) PA-RISC caches have a mind of their own and they can speculatively load data and instructions for a page as long as there is a entry in the TLB for the page which allows move-in. TLBs are local to each CPU. Thus, the TLB entry for a page must be purged before flushing the page. This is particularly important on SMP systems. In some of the flush routines, the flush routine would be called and then the TLB entry would be purged. This was because the flush routine needed the TLB entry to do the flush. 2) My initial approach to trying the fix the random faults was to try and use flush_cache_page_if_present for all flush operations. This actually made things worse and led to a couple of hardware lockups. It finally dawned on me that some lines weren't being flushed because the pte check code was racy. This resulted in random inequivalent mappings to physical pages. The __flush_cache_page tmpalias flush sets up its own TLB entry and it doesn't need the existing TLB entry. As long as we can find the pte pointer for the vm page, we can get the pfn and physical address of the page. We can also purge the TLB entry for the page before doing the flush. Further, __flush_cache_page uses a special TLB entry that inhibits cache move-in. When switching page mappings, we need to ensure that lines are removed from the cache. It is not sufficient to just flush the lines to memory as they may come back. This made it clear that we needed to implement all the required flush operations using tmpalias routines. This includes flushes for user and kernel pages. After modifying the code to use tmpalias flushes, it became clear that the random segmentation faults were not fully resolved. The frequency of faults was worse on systems with a 64 MB L2 (PA8900) and systems with more CPUs (rp4440). The warning that I added to flush_cache_page_if_present to detect pages that couldn't be flushed triggered frequently on some systems. Helge and I looked at the pages that couldn't be flushed and found that the PTE was either cleared or for a swap page. Ignoring pages that were swapped out seemed okay but pages with cleared PTEs seemed problematic. I looked at routines related to pte_clear and noticed ptep_clear_flush. The default implementation just flushes the TLB entry. However, it was obvious that on parisc we need to flush the cache page as well. If we don't flush the cache page, stale lines will be left in the cache and cause random corruption. Once a PTE is cleared, there is no way to find the physical address associated with the PTE and flush the associated page at a later time. I implemented an updated change with a parisc specific version of ptep_clear_flush. It fixed the random data corruption on Helge's rp4440 and rp3440, as well as on my c8000. At this point, I realized that I could restore the code where we only flush in flush_cache_page_if_present if the page has been accessed. However, for this, we also need to flush the cache when the accessed bit is cleared in ptep_clear_flush_young to keep things synchronized. The default implementation only flushes the TLB entry. Other changes in this version are: 1) Implement parisc specific version of ptep_get. It's identical to default but needed in arch/parisc/include/asm/pgtable.h. 2) Revise parisc implementation of ptep_test_and_clear_young to use ptep_get (READ_ONCE). 3) Drop parisc implementation of ptep_get_and_clear. We can use default. 4) Revise flush_kernel_vmap_range and invalidate_kernel_vmap_range to use full data cache flush. 5) Move flush_cache_vmap and flush_cache_vunmap to cache.c. Handle VM_IOREMAP case in flush_cache_vmap. At this time, I don't know whether it is better to always flush when the PTE present bit is set or when both the accessed and present bits are set. The later saves flushing pages that haven't been accessed, but we need to flush in ptep_clear_flush_young. It also needs a page table lookup to find the PTE pointer. The lpa instruction only needs a page table lookup when the PTE entry isn't in the TLB. We don't atomically handle setting and clearing the _PAGE_ACCESSED bit. If we miss an update, we may miss a flush and the cache may get corrupted. Whether the current code is effectively atomic depends on process control. When CONFIG_FLUSH_PAGE_ACCESSED is set to zero, the page will eventually be flushed when the PTE is cleared or in flush_cache_page_if_present. The _PAGE_ACCESSED bit is not used, so the problem is avoided. The flush method can be selected using the CONFIG_FLUSH_PAGE_ACCESSED define in cache.c. The default is 0. I didn't see a large difference in performance. Signed-off-by: John David Anglin <dave.anglin@bell.net> Cc: <stable@vger.kernel.org> # v6.6+ Signed-off-by: Helge Deller <deller@gmx.de>
2024-05-23mseal: wire up mseal syscallJeff Xu1-0/+1
Patch series "Introduce mseal", v10. This patchset proposes a new mseal() syscall for the Linux kernel. In a nutshell, mseal() protects the VMAs of a given virtual memory range against modifications, such as changes to their permission bits. Modern CPUs support memory permissions, such as the read/write (RW) and no-execute (NX) bits. Linux has supported NX since the release of kernel version 2.6.8 in August 2004 [1]. The memory permission feature improves the security stance on memory corruption bugs, as an attacker cannot simply write to arbitrary memory and point the code to it. The memory must be marked with the X bit, or else an exception will occur. Internally, the kernel maintains the memory permissions in a data structure called VMA (vm_area_struct). mseal() additionally protects the VMA itself against modifications of the selected seal type. Memory sealing is useful to mitigate memory corruption issues where a corrupted pointer is passed to a memory management system. For example, such an attacker primitive can break control-flow integrity guarantees since read-only memory that is supposed to be trusted can become writable or .text pages can get remapped. Memory sealing can automatically be applied by the runtime loader to seal .text and .rodata pages and applications can additionally seal security critical data at runtime. A similar feature already exists in the XNU kernel with the VM_FLAGS_PERMANENT [3] flag and on OpenBSD with the mimmutable syscall [4]. Also, Chrome wants to adopt this feature for their CFI work [2] and this patchset has been designed to be compatible with the Chrome use case. Two system calls are involved in sealing the map: mmap() and mseal(). The new mseal() is an syscall on 64 bit CPU, and with following signature: int mseal(void addr, size_t len, unsigned long flags) addr/len: memory range. flags: reserved. mseal() blocks following operations for the given memory range. 1> Unmapping, moving to another location, and shrinking the size, via munmap() and mremap(), can leave an empty space, therefore can be replaced with a VMA with a new set of attributes. 2> Moving or expanding a different VMA into the current location, via mremap(). 3> Modifying a VMA via mmap(MAP_FIXED). 4> Size expansion, via mremap(), does not appear to pose any specific risks to sealed VMAs. It is included anyway because the use case is unclear. In any case, users can rely on merging to expand a sealed VMA. 5> mprotect() and pkey_mprotect(). 6> Some destructive madvice() behaviors (e.g. MADV_DONTNEED) for anonymous memory, when users don't have write permission to the memory. Those behaviors can alter region contents by discarding pages, effectively a memset(0) for anonymous memory. The idea that inspired this patch comes from Stephen Röttger’s work in V8 CFI [5]. Chrome browser in ChromeOS will be the first user of this API. Indeed, the Chrome browser has very specific requirements for sealing, which are distinct from those of most applications. For example, in the case of libc, sealing is only applied to read-only (RO) or read-execute (RX) memory segments (such as .text and .RELRO) to prevent them from becoming writable, the lifetime of those mappings are tied to the lifetime of the process. Chrome wants to seal two large address space reservations that are managed by different allocators. The memory is mapped RW- and RWX respectively but write access to it is restricted using pkeys (or in the future ARM permission overlay extensions). The lifetime of those mappings are not tied to the lifetime of the process, therefore, while the memory is sealed, the allocators still need to free or discard the unused memory. For example, with madvise(DONTNEED). However, always allowing madvise(DONTNEED) on this range poses a security risk. For example if a jump instruction crosses a page boundary and the second page gets discarded, it will overwrite the target bytes with zeros and change the control flow. Checking write-permission before the discard operation allows us to control when the operation is valid. In this case, the madvise will only succeed if the executing thread has PKEY write permissions and PKRU changes are protected in software by control-flow integrity. Although the initial version of this patch series is targeting the Chrome browser as its first user, it became evident during upstream discussions that we would also want to ensure that the patch set eventually is a complete solution for memory sealing and compatible with other use cases. The specific scenario currently in mind is glibc's use case of loading and sealing ELF executables. To this end, Stephen is working on a change to glibc to add sealing support to the dynamic linker, which will seal all non-writable segments at startup. Once this work is completed, all applications will be able to automatically benefit from these new protections. In closing, I would like to formally acknowledge the valuable contributions received during the RFC process, which were instrumental in shaping this patch: Jann Horn: raising awareness and providing valuable insights on the destructive madvise operations. Liam R. Howlett: perf optimization. Linus Torvalds: assisting in defining system call signature and scope. Theo de Raadt: sharing the experiences and insight gained from implementing mimmutable() in OpenBSD. MM perf benchmarks ================== This patch adds a loop in the mprotect/munmap/madvise(DONTNEED) to check the VMAs’ sealing flag, so that no partial update can be made, when any segment within the given memory range is sealed. To measure the performance impact of this loop, two tests are developed. [8] The first is measuring the time taken for a particular system call, by using clock_gettime(CLOCK_MONOTONIC). The second is using PERF_COUNT_HW_REF_CPU_CYCLES (exclude user space). Both tests have similar results. The tests have roughly below sequence: for (i = 0; i < 1000, i++) create 1000 mappings (1 page per VMA) start the sampling for (j = 0; j < 1000, j++) mprotect one mapping stop and save the sample delete 1000 mappings calculates all samples. Below tests are performed on Intel(R) Pentium(R) Gold 7505 @ 2.00GHz, 4G memory, Chromebook. Based on the latest upstream code: The first test (measuring time) syscall__ vmas t t_mseal delta_ns per_vma % munmap__ 1 909 944 35 35 104% munmap__ 2 1398 1502 104 52 107% munmap__ 4 2444 2594 149 37 106% munmap__ 8 4029 4323 293 37 107% munmap__ 16 6647 6935 288 18 104% munmap__ 32 11811 12398 587 18 105% mprotect 1 439 465 26 26 106% mprotect 2 1659 1745 86 43 105% mprotect 4 3747 3889 142 36 104% mprotect 8 6755 6969 215 27 103% mprotect 16 13748 14144 396 25 103% mprotect 32 27827 28969 1142 36 104% madvise_ 1 240 262 22 22 109% madvise_ 2 366 442 76 38 121% madvise_ 4 623 751 128 32 121% madvise_ 8 1110 1324 215 27 119% madvise_ 16 2127 2451 324 20 115% madvise_ 32 4109 4642 534 17 113% The second test (measuring cpu cycle) syscall__ vmas cpu cmseal delta_cpu per_vma % munmap__ 1 1790 1890 100 100 106% munmap__ 2 2819 3033 214 107 108% munmap__ 4 4959 5271 312 78 106% munmap__ 8 8262 8745 483 60 106% munmap__ 16 13099 14116 1017 64 108% munmap__ 32 23221 24785 1565 49 107% mprotect 1 906 967 62 62 107% mprotect 2 3019 3203 184 92 106% mprotect 4 6149 6569 420 105 107% mprotect 8 9978 10524 545 68 105% mprotect 16 20448 21427 979 61 105% mprotect 32 40972 42935 1963 61 105% madvise_ 1 434 497 63 63 115% madvise_ 2 752 899 147 74 120% madvise_ 4 1313 1513 200 50 115% madvise_ 8 2271 2627 356 44 116% madvise_ 16 4312 4883 571 36 113% madvise_ 32 8376 9319 943 29 111% Based on the result, for 6.8 kernel, sealing check adds 20-40 nano seconds, or around 50-100 CPU cycles, per VMA. In addition, I applied the sealing to 5.10 kernel: The first test (measuring time) syscall__ vmas t tmseal delta_ns per_vma % munmap__ 1 357 390 33 33 109% munmap__ 2 442 463 21 11 105% munmap__ 4 614 634 20 5 103% munmap__ 8 1017 1137 120 15 112% munmap__ 16 1889 2153 263 16 114% munmap__ 32 4109 4088 -21 -1 99% mprotect 1 235 227 -7 -7 97% mprotect 2 495 464 -30 -15 94% mprotect 4 741 764 24 6 103% mprotect 8 1434 1437 2 0 100% mprotect 16 2958 2991 33 2 101% mprotect 32 6431 6608 177 6 103% madvise_ 1 191 208 16 16 109% madvise_ 2 300 324 24 12 108% madvise_ 4 450 473 23 6 105% madvise_ 8 753 806 53 7 107% madvise_ 16 1467 1592 125 8 108% madvise_ 32 2795 3405 610 19 122% The second test (measuring cpu cycle) syscall__ nbr_vma cpu cmseal delta_cpu per_vma % munmap__ 1 684 715 31 31 105% munmap__ 2 861 898 38 19 104% munmap__ 4 1183 1235 51 13 104% munmap__ 8 1999 2045 46 6 102% munmap__ 16 3839 3816 -23 -1 99% munmap__ 32 7672 7887 216 7 103% mprotect 1 397 443 46 46 112% mprotect 2 738 788 50 25 107% mprotect 4 1221 1256 35 9 103% mprotect 8 2356 2429 72 9 103% mprotect 16 4961 4935 -26 -2 99% mprotect 32 9882 10172 291 9 103% madvise_ 1 351 380 29 29 108% madvise_ 2 565 615 49 25 109% madvise_ 4 872 933 61 15 107% madvise_ 8 1508 1640 132 16 109% madvise_ 16 3078 3323 245 15 108% madvise_ 32 5893 6704 811 25 114% For 5.10 kernel, sealing check adds 0-15 ns in time, or 10-30 CPU cycles, there is even decrease in some cases. It might be interesting to compare 5.10 and 6.8 kernel The first test (measuring time) syscall__ vmas t_5_10 t_6_8 delta_ns per_vma % munmap__ 1 357 909 552 552 254% munmap__ 2 442 1398 956 478 316% munmap__ 4 614 2444 1830 458 398% munmap__ 8 1017 4029 3012 377 396% munmap__ 16 1889 6647 4758 297 352% munmap__ 32 4109 11811 7702 241 287% mprotect 1 235 439 204 204 187% mprotect 2 495 1659 1164 582 335% mprotect 4 741 3747 3006 752 506% mprotect 8 1434 6755 5320 665 471% mprotect 16 2958 13748 10790 674 465% mprotect 32 6431 27827 21397 669 433% madvise_ 1 191 240 49 49 125% madvise_ 2 300 366 67 33 122% madvise_ 4 450 623 173 43 138% madvise_ 8 753 1110 357 45 147% madvise_ 16 1467 2127 660 41 145% madvise_ 32 2795 4109 1314 41 147% The second test (measuring cpu cycle) syscall__ vmas cpu_5_10 c_6_8 delta_cpu per_vma % munmap__ 1 684 1790 1106 1106 262% munmap__ 2 861 2819 1958 979 327% munmap__ 4 1183 4959 3776 944 419% munmap__ 8 1999 8262 6263 783 413% munmap__ 16 3839 13099 9260 579 341% munmap__ 32 7672 23221 15549 486 303% mprotect 1 397 906 509 509 228% mprotect 2 738 3019 2281 1140 409% mprotect 4 1221 6149 4929 1232 504% mprotect 8 2356 9978 7622 953 423% mprotect 16 4961 20448 15487 968 412% mprotect 32 9882 40972 31091 972 415% madvise_ 1 351 434 82 82 123% madvise_ 2 565 752 186 93 133% madvise_ 4 872 1313 442 110 151% madvise_ 8 1508 2271 763 95 151% madvise_ 16 3078 4312 1234 77 140% madvise_ 32 5893 8376 2483 78 142% From 5.10 to 6.8 munmap: added 250-550 ns in time, or 500-1100 in cpu cycle, per vma. mprotect: added 200-750 ns in time, or 500-1200 in cpu cycle, per vma. madvise: added 33-50 ns in time, or 70-110 in cpu cycle, per vma. In comparison to mseal, which adds 20-40 ns or 50-100 CPU cycles, the increase from 5.10 to 6.8 is significantly larger, approximately ten times greater for munmap and mprotect. When I discuss the mm performance with Brian Makin, an engineer who worked on performance, it was brought to my attention that such performance benchmarks, which measuring millions of mm syscall in a tight loop, may not accurately reflect real-world scenarios, such as that of a database service. Also this is tested using a single HW and ChromeOS, the data from another HW or distribution might be different. It might be best to take this data with a grain of salt. This patch (of 5): Wire up mseal syscall for all architectures. Link: https://lkml.kernel.org/r/20240415163527.626541-1-jeffxu@chromium.org Link: https://lkml.kernel.org/r/20240415163527.626541-2-jeffxu@chromium.org Signed-off-by: Jeff Xu <jeffxu@chromium.org> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guenter Roeck <groeck@chromium.org> Cc: Jann Horn <jannh@google.com> [Bug #2] Cc: Jeff Xu <jeffxu@google.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Jorge Lucangeli Obes <jorgelo@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Muhammad Usama Anjum <usama.anjum@collabora.com> Cc: Pedro Falcato <pedro.falcato@gmail.com> Cc: Stephen Röttger <sroettger@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Amer Al Shanawany <amer.shanawany@gmail.com> Cc: Javier Carrasco <javier.carrasco.cruz@gmail.com> Cc: Shuah Khan <shuah@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-05-20Merge tag 'asm-generic-6.10' of ↵Linus Torvalds5-20/+23
git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic Pull asm-generic cleanups from Arnd Bergmann: "These are a few cross-architecture cleanup patches: - separate out fbdev support from the asm/video.h contents that may be used by either the old fbdev drivers or the newer drm display code (Thomas Zimmermann) - cleanups for the generic bitops code and asm-generic/bug.h (Thorsten Blum) - remove the orphaned include/asm-generic/page.h header that used to be included by long-removed mmu-less architectures (me)" * tag 'asm-generic-6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic: arch: Fix name collision with ACPI's video.o bug: Improve comment asm-generic: remove unused asm-generic/page.h arch: Rename fbdev header and source files arch: Remove struct fb_info from video helpers arch: Select fbdev helpers with CONFIG_VIDEO bitops: Change function return types from long to int
2024-05-19Merge tag 'mm-stable-2024-05-17-19-19' of ↵Linus Torvalds2-14/+3
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull mm updates from Andrew Morton: "The usual shower of singleton fixes and minor series all over MM, documented (hopefully adequately) in the respective changelogs. Notable series include: - Lucas Stach has provided some page-mapping cleanup/consolidation/ maintainability work in the series "mm/treewide: Remove pXd_huge() API". - In the series "Allow migrate on protnone reference with MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's MPOL_PREFERRED_MANY mode, yielding almost doubled performance in one test. - In their series "Memory allocation profiling" Kent Overstreet and Suren Baghdasaryan have contributed a means of determining (via /proc/allocinfo) whereabouts in the kernel memory is being allocated: number of calls and amount of memory. - Matthew Wilcox has provided the series "Various significant MM patches" which does a number of rather unrelated things, but in largely similar code sites. - In his series "mm: page_alloc: freelist migratetype hygiene" Johannes Weiner has fixed the page allocator's handling of migratetype requests, with resulting improvements in compaction efficiency. - In the series "make the hugetlb migration strategy consistent" Baolin Wang has fixed a hugetlb migration issue, which should improve hugetlb allocation reliability. - Liu Shixin has hit an I/O meltdown caused by readahead in a memory-tight memcg. Addressed in the series "Fix I/O high when memory almost met memcg limit". - In the series "mm/filemap: optimize folio adding and splitting" Kairui Song has optimized pagecache insertion, yielding ~10% performance improvement in one test. - Baoquan He has cleaned up and consolidated the early zone initialization code in the series "mm/mm_init.c: refactor free_area_init_core()". - Baoquan has also redone some MM initializatio code in the series "mm/init: minor clean up and improvement". - MM helper cleanups from Christoph Hellwig in his series "remove follow_pfn". - More cleanups from Matthew Wilcox in the series "Various page->flags cleanups". - Vlastimil Babka has contributed maintainability improvements in the series "memcg_kmem hooks refactoring". - More folio conversions and cleanups in Matthew Wilcox's series: "Convert huge_zero_page to huge_zero_folio" "khugepaged folio conversions" "Remove page_idle and page_young wrappers" "Use folio APIs in procfs" "Clean up __folio_put()" "Some cleanups for memory-failure" "Remove page_mapping()" "More folio compat code removal" - David Hildenbrand chipped in with "fs/proc/task_mmu: convert hugetlb functions to work on folis". - Code consolidation and cleanup work related to GUP's handling of hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2". - Rick Edgecombe has developed some fixes to stack guard gaps in the series "Cover a guard gap corner case". - Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the series "mm/ksm: fix ksm exec support for prctl". - Baolin Wang has implemented NUMA balancing for multi-size THPs. This is a simple first-cut implementation for now. The series is "support multi-size THP numa balancing". - Cleanups to vma handling helper functions from Matthew Wilcox in the series "Unify vma_address and vma_pgoff_address". - Some selftests maintenance work from Dev Jain in the series "selftests/mm: mremap_test: Optimizations and style fixes". - Improvements to the swapping of multi-size THPs from Ryan Roberts in the series "Swap-out mTHP without splitting". - Kefeng Wang has significantly optimized the handling of arm64's permission page faults in the series "arch/mm/fault: accelerate pagefault when badaccess" "mm: remove arch's private VM_FAULT_BADMAP/BADACCESS" - GUP cleanups from David Hildenbrand in "mm/gup: consistently call it GUP-fast". - hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault path to use struct vm_fault". - selftests build fixes from John Hubbard in the series "Fix selftests/mm build without requiring "make headers"". - Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the series "Improved Memory Tier Creation for CPUless NUMA Nodes". Fixes the initialization code so that migration between different memory types works as intended. - David Hildenbrand has improved follow_pte() and fixed an errant driver in the series "mm: follow_pte() improvements and acrn follow_pte() fixes". - David also did some cleanup work on large folio mapcounts in his series "mm: mapcount for large folios + page_mapcount() cleanups". - Folio conversions in KSM in Alex Shi's series "transfer page to folio in KSM". - Barry Song has added some sysfs stats for monitoring multi-size THP's in the series "mm: add per-order mTHP alloc and swpout counters". - Some zswap cleanups from Yosry Ahmed in the series "zswap same-filled and limit checking cleanups". - Matthew Wilcox has been looking at buffer_head code and found the documentation to be lacking. The series is "Improve buffer head documentation". - Multi-size THPs get more work, this time from Lance Yang. His series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free" optimizes the freeing of these things. - Kemeng Shi has added more userspace-visible writeback instrumentation in the series "Improve visibility of writeback". - Kemeng Shi then sent some maintenance work on top in the series "Fix and cleanups to page-writeback". - Matthew Wilcox reduces mmap_lock traffic in the anon vma code in the series "Improve anon_vma scalability for anon VMAs". Intel's test bot reported an improbable 3x improvement in one test. - SeongJae Park adds some DAMON feature work in the series "mm/damon: add a DAMOS filter type for page granularity access recheck" "selftests/damon: add DAMOS quota goal test" - Also some maintenance work in the series "mm/damon/paddr: simplify page level access re-check for pageout" "mm/damon: misc fixes and improvements" - David Hildenbrand has disabled some known-to-fail selftests ni the series "selftests: mm: cow: flag vmsplice() hugetlb tests as XFAIL". - memcg metadata storage optimizations from Shakeel Butt in "memcg: reduce memory consumption by memcg stats". - DAX fixes and maintenance work from Vishal Verma in the series "dax/bus.c: Fixups for dax-bus locking"" * tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (426 commits) memcg, oom: cleanup unused memcg_oom_gfp_mask and memcg_oom_order selftests/mm: hugetlb_madv_vs_map: avoid test skipping by querying hugepage size at runtime mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_wp mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_fault selftests: cgroup: add tests to verify the zswap writeback path mm: memcg: make alloc_mem_cgroup_per_node_info() return bool mm/damon/core: fix return value from damos_wmark_metric_value mm: do not update memcg stats for NR_{FILE/SHMEM}_PMDMAPPED selftests: cgroup: remove redundant enabling of memory controller Docs/mm/damon/maintainer-profile: allow posting patches based on damon/next tree Docs/mm/damon/maintainer-profile: change the maintainer's timezone from PST to PT Docs/mm/damon/design: use a list for supported filters Docs/admin-guide/mm/damon/usage: fix wrong schemes effective quota update command Docs/admin-guide/mm/damon/usage: fix wrong example of DAMOS filter matching sysfs file selftests/damon: classify tests for functionalities and regressions selftests/damon/_damon_sysfs: use 'is' instead of '==' for 'None' selftests/damon/_damon_sysfs: find sysfs mount point from /proc/mounts selftests/damon/_damon_sysfs: check errors from nr_schemes file reads mm/damon/core: initialize ->esz_bp from damos_quota_init_priv() selftests/damon: add a test for DAMOS quota goal ...
2024-05-18Merge tag 'kbuild-v6.10' of ↵Linus Torvalds3-13/+4
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild Pull Kbuild updates from Masahiro Yamada: - Avoid 'constexpr', which is a keyword in C23 - Allow 'dtbs_check' and 'dt_compatible_check' run independently of 'dt_binding_check' - Fix weak references to avoid GOT entries in position-independent code generation - Convert the last use of 'optional' property in arch/sh/Kconfig - Remove support for the 'optional' property in Kconfig - Remove support for Clang's ThinLTO caching, which does not work with the .incbin directive - Change the semantics of $(src) so it always points to the source directory, which fixes Makefile inconsistencies between upstream and downstream - Fix 'make tar-pkg' for RISC-V to produce a consistent package - Provide reasonable default coverage for objtool, sanitizers, and profilers - Remove redundant OBJECT_FILES_NON_STANDARD, KASAN_SANITIZE, etc. - Remove the last use of tristate choice in drivers/rapidio/Kconfig - Various cleanups and fixes in Kconfig * tag 'kbuild-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (46 commits) kconfig: use sym_get_choice_menu() in sym_check_prop() rapidio: remove choice for enumeration kconfig: lxdialog: remove initialization with A_NORMAL kconfig: m/nconf: merge two item_add_str() calls kconfig: m/nconf: remove dead code to display value of bool choice kconfig: m/nconf: remove dead code to display children of choice members kconfig: gconf: show checkbox for choice correctly kbuild: use GCOV_PROFILE and KCSAN_SANITIZE in scripts/Makefile.modfinal Makefile: remove redundant tool coverage variables kbuild: provide reasonable defaults for tool coverage modules: Drop the .export_symbol section from the final modules kconfig: use menu_list_for_each_sym() in sym_check_choice_deps() kconfig: use sym_get_choice_menu() in conf_write_defconfig() kconfig: add sym_get_choice_menu() helper kconfig: turn defaults and additional prompt for choice members into error kconfig: turn missing prompt for choice members into error kconfig: turn conf_choice() into void function kconfig: use linked list in sym_set_changed() kconfig: gconf: use MENU_CHANGED instead of SYMBOL_CHANGED kconfig: gconf: remove debug code ...
2024-05-17Merge tag 'probes-v6.10' of ↵Linus Torvalds1-0/+3
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace Pull probes updates from Masami Hiramatsu: - tracing/probes: Add new pseudo-types %pd and %pD support for dumping dentry name from 'struct dentry *' and file name from 'struct file *' - uprobes performance optimizations: - Speed up the BPF uprobe event by delaying the fetching of the uprobe event arguments that are not used in BPF - Avoid locking by speculatively checking whether uprobe event is valid - Reduce lock contention by using read/write_lock instead of spinlock for uprobe list operation. This improved BPF uprobe benchmark result 43% on average - rethook: Remove non-fatal warning messages when tracing stack from BPF and skip rcu_is_watching() validation in rethook if possible - objpool: Optimize objpool (which is used by kretprobes and fprobe as rethook backend storage) by inlining functions and avoid caching nr_cpu_ids because it is a const value - fprobe: Add entry/exit callbacks types (code cleanup) - kprobes: Check ftrace was killed in kprobes if it uses ftrace * tag 'probes-v6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: kprobe/ftrace: bail out if ftrace was killed selftests/ftrace: Fix required features for VFS type test case objpool: cache nr_possible_cpus() and avoid caching nr_cpu_ids objpool: enable inlining objpool_push() and objpool_pop() operations rethook: honor CONFIG_FTRACE_VALIDATE_RCU_IS_WATCHING in rethook_try_get() ftrace: make extra rcu_is_watching() validation check optional uprobes: reduce contention on uprobes_tree access rethook: Remove warning messages printed for finding return address of a frame. fprobe: Add entry/exit callbacks types selftests/ftrace: add fprobe test cases for VFS type "%pd" and "%pD" selftests/ftrace: add kprobe test cases for VFS type "%pd" and "%pD" Documentation: tracing: add new type '%pd' and '%pD' for kprobe tracing/probes: support '%pD' type for print struct file's name tracing/probes: support '%pd' type for print struct dentry's name uprobes: add speculative lockless system-wide uprobe filter check uprobes: prepare uprobe args buffer lazily uprobes: encapsulate preparation of uprobe args buffer
2024-05-17Merge tag 'parisc-for-6.10-1' of ↵Linus Torvalds4-18/+11
git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux Pull parisc updates from Helge Deller: - define sigset_t in parisc uapi header to fix build of util-linux - define HAVE_ARCH_HUGETLB_UNMAPPED_AREA to avoid compiler warning - drop unused 'exc_reg' struct in math-emu code * tag 'parisc-for-6.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux: parisc: Define HAVE_ARCH_HUGETLB_UNMAPPED_AREA parisc/math-emu: Remove unused struct 'exc_reg' parisc: Define sigset_t in parisc uapi header
2024-05-16kprobe/ftrace: bail out if ftrace was killedStephen Brennan1-0/+3
If an error happens in ftrace, ftrace_kill() will prevent disarming kprobes. Eventually, the ftrace_ops associated with the kprobes will be freed, yet the kprobes will still be active, and when triggered, they will use the freed memory, likely resulting in a page fault and panic. This behavior can be reproduced quite easily, by creating a kprobe and then triggering a ftrace_kill(). For simplicity, we can simulate an ftrace error with a kernel module like [1]: [1]: https://github.com/brenns10/kernel_stuff/tree/master/ftrace_killer sudo perf probe --add commit_creds sudo perf trace -e probe:commit_creds # In another terminal make sudo insmod ftrace_killer.ko # calls ftrace_kill(), simulating bug # Back to perf terminal # ctrl-c sudo perf probe --del commit_creds After a short period, a page fault and panic would occur as the kprobe continues to execute and uses the freed ftrace_ops. While ftrace_kill() is supposed to be used only in extreme circumstances, it is invoked in FTRACE_WARN_ON() and so there are many places where an unexpected bug could be triggered, yet the system may continue operating, possibly without the administrator noticing. If ftrace_kill() does not panic the system, then we should do everything we can to continue operating, rather than leave a ticking time bomb. Link: https://lore.kernel.org/all/20240501162956.229427-1-stephen.s.brennan@oracle.com/ Signed-off-by: Stephen Brennan <stephen.s.brennan@oracle.com> Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Guo Ren <guoren@kernel.org> Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2024-05-15Merge tag 'modules-6.10-rc1' of ↵Linus Torvalds2-13/+22
git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux Pull modules updates from Luis Chamberlain: "Finally something fun. Mike Rapoport does some cleanup to allow us to take out module_alloc() out of modules into a new paint shedded execmem_alloc() and execmem_free() so to make emphasis these helpers are actually used outside of modules. It starts with a non-functional changes API rename / placeholders to then allow architectures to define their requirements into a new shiny struct execmem_info with ranges, and requirements for those ranges. Archs now can intitialize this execmem_info as the last part of mm_core_init() if they have to diverge from the norm. Each range is a known type clearly articulated and spelled out in enum execmem_t