Age | Commit message (Collapse) | Author | Files | Lines |
|
commit cdeb5d7d890e14f3b70e8087e745c4a6a7d9f337 upstream.
We call idle_kvm_start_guest() from power7_offline() if the thread has
been requested to enter KVM. We pass it the SRR1 value that was returned
from power7_idle_insn() which tells us what sort of wakeup we're
processing.
Depending on the SRR1 value we pass in, the KVM code might enter the
guest, or it might return to us to do some host action if the wakeup
requires it.
If idle_kvm_start_guest() is able to handle the wakeup, and enter the
guest it is supposed to indicate that by returning a zero SRR1 value to
us.
That was the behaviour prior to commit 10d91611f426 ("powerpc/64s:
Reimplement book3s idle code in C"), however in that commit the
handling of SRR1 was reworked, and the zeroing behaviour was lost.
Returning from idle_kvm_start_guest() without zeroing the SRR1 value can
confuse the host offline code, causing the guest to crash and other
weirdness.
Fixes: 10d91611f426 ("powerpc/64s: Reimplement book3s idle code in C")
Cc: stable@vger.kernel.org # v5.2+
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211015133929.832061-2-mpe@ellerman.id.au
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9b4416c5095c20e110c82ae602c254099b83b72f upstream.
In commit 10d91611f426 ("powerpc/64s: Reimplement book3s idle code in
C") kvm_start_guest() became idle_kvm_start_guest(). The old code
allocated a stack frame on the emergency stack, but didn't use the
frame to store anything, and also didn't store anything in its caller's
frame.
idle_kvm_start_guest() on the other hand is written more like a normal C
function, it creates a frame on entry, and also stores CR/LR into its
callers frame (per the ABI). The problem is that there is no caller
frame on the emergency stack.
The emergency stack for a given CPU is allocated with:
paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
So emergency_sp actually points to the first address above the emergency
stack allocation for a given CPU, we must not store above it without
first decrementing it to create a frame. This is different to the
regular kernel stack, paca->kstack, which is initialised to point at an
initial frame that is ready to use.
idle_kvm_start_guest() stores the backchain, CR and LR all of which
write outside the allocation for the emergency stack. It then creates a
stack frame and saves the non-volatile registers. Unfortunately the
frame it creates is not large enough to fit the non-volatiles, and so
the saving of the non-volatile registers also writes outside the
emergency stack allocation.
The end result is that we corrupt whatever is at 0-24 bytes, and 112-248
bytes above the emergency stack allocation.
In practice this has gone unnoticed because the memory immediately above
the emergency stack happens to be used for other stack allocations,
either another CPUs mc_emergency_sp or an IRQ stack. See the order of
calls to irqstack_early_init() and emergency_stack_init().
The low addresses of another stack are the top of that stack, and so are
only used if that stack is under extreme pressue, which essentially
never happens in practice - and if it did there's a high likelyhood we'd
crash due to that stack overflowing.
Still, we shouldn't be corrupting someone else's stack, and it is purely
luck that we aren't corrupting something else.
To fix it we save CR/LR into the caller's frame using the existing r1 on
entry, we then create a SWITCH_FRAME_SIZE frame (which has space for
pt_regs) on the emergency stack with the backchain pointing to the
existing stack, and then finally we switch to the new frame on the
emergency stack.
Fixes: 10d91611f426 ("powerpc/64s: Reimplement book3s idle code in C")
Cc: stable@vger.kernel.org # v5.2+
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211015133929.832061-1-mpe@ellerman.id.au
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 267cdfa21385d78c794768233678756e32b39ead upstream.
POWER9 DD2.2 and 2.3 hardware implements a "fake-suspend" mode where
certain TM instructions executed in HV=0 mode cause softpatch interrupts
so the hypervisor can emulate them and prevent problematic processor
conditions. In this fake-suspend mode, the treclaim. instruction does
not modify registers.
Unfortunately the rfscv instruction executed by the guest do not
generate softpatch interrupts, which can cause the hypervisor to lose
track of the fake-suspend mode, and it can execute this treclaim. while
not in fake-suspend mode. This modifies GPRs and crashes the hypervisor.
It's not trivial to disable scv in the guest with HFSCR now, because
they assume a POWER9 has scv available. So this fix saves and restores
checkpointed registers across the treclaim.
Fixes: 7854f7545bff ("KVM: PPC: Book3S: Rework TM save/restore code and make it C-callable")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210908101718.118522-2-npiggin@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 1d78dfde33a02da1d816279c2e3452978b7abd39 ]
Since commit e1a1ef84cd07 ("KVM: PPC: Book3S: Allocate guest TCEs on
demand too"), pages for TCE tables for KVM guests are allocated only
when needed. This allows skipping any update when clearing TCEs. This
works mostly fine as TCE updates are handled when the MMU is enabled.
The realmode handlers fail with H_TOO_HARD when pages are not yet
allocated, except when clearing a TCE in which case KVM prints a warning
and proceeds to dereference a NULL pointer, which crashes the host OS.
This has not been caught so far as the change in commit e1a1ef84cd07 is
reasonably new, and POWER9 runs mostly radix which does not use realmode
handlers. With hash, the default TCE table is memset() by QEMU when the
machine is reset which triggers page faults and the KVM TCE device's
kvm_spapr_tce_fault() handles those with MMU on. And the huge DMA
windows are not cleared by VMs which instead successfully create a DMA
window big enough to map the VM memory 1:1 and then VMs just map
everything without clearing.
This started crashing now as commit 381ceda88c4c ("powerpc/pseries/iommu:
Make use of DDW for indirect mapping") added a mode when a dymanic DMA
window not big enough to map the VM memory 1:1 but it is used anyway,
and the VM now is the first (i.e. not QEMU) to clear a just created
table. Note that upstream QEMU needs to be modified to trigger the VM to
trigger the host OS crash.
This replaces WARN_ON_ONCE_RM() with a check and return, and adds
another warning if TCE is not being cleared.
Fixes: e1a1ef84cd07 ("KVM: PPC: Book3S: Allocate guest TCEs on demand too")
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210827040706.517652-1-aik@ozlabs.ru
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
are live
[ Upstream commit 1782663897945a5cf28e564ba5eed730098e9aa4 ]
After the L1 saves its PMU SPRs but before loading the L2's PMU SPRs,
switch the pmcregs_in_use field in the L1 lppaca to the value advertised
by the L2 in its VPA. On the way out of the L2, set it back after saving
the L2 PMU registers (if they were in-use).
This transfers the PMU liveness indication between the L1 and L2 at the
points where the registers are not live.
This fixes the nested HV bug for which a workaround was added to the L0
HV by commit 63279eeb7f93a ("KVM: PPC: Book3S HV: Always save guest pmu
for guest capable of nesting"), which explains the problem in detail.
That workaround is no longer required for guests that include this bug
fix.
Fixes: 360cae313702 ("KVM: PPC: Book3S HV: Nested guest entry via hypercall")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Link: https://lore.kernel.org/r/20210811160134.904987-10-npiggin@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 5d7d6dac8fe99ed59eee2300e4a03370f94d5222 ]
The __kvmhv_copy_tofrom_guest_radix function was introduced along with
nested HV guest support. It uses the platform's Radix MMU quadrants to
provide a nested hypervisor with fast access to its nested guests
memory (H_COPY_TOFROM_GUEST hypercall). It has also since been added
as a fast path for the kvmppc_ld/st routines which are used during
instruction emulation.
The commit def0bfdbd603 ("powerpc: use probe_user_read() and
probe_user_write()") changed the low level copy function from
raw_copy_from_user to probe_user_read, which adds a check to
access_ok. In powerpc that is:
static inline bool __access_ok(unsigned long addr, unsigned long size)
{
return addr < TASK_SIZE_MAX && size <= TASK_SIZE_MAX - addr;
}
and TASK_SIZE_MAX is 0x0010000000000000UL for 64-bit, which means that
setting the two MSBs of the effective address (which correspond to the
quadrant) now cause access_ok to reject the access.
This was not caught earlier because the most common code path via
kvmppc_ld/st contains a fallback (kvm_read_guest) that is likely to
succeed for L1 guests. For nested guests there is no fallback.
Another issue is that probe_user_read (now __copy_from_user_nofault)
does not return the number of bytes not copied in case of failure, so
the destination memory is not being cleared anymore in
kvmhv_copy_from_guest_radix:
ret = kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, to, NULL, n);
if (ret > 0) <-- always false!
memset(to + (n - ret), 0, ret);
This patch fixes both issues by skipping access_ok and open-coding the
low level __copy_to/from_user_inatomic.
Fixes: def0bfdbd603 ("powerpc: use probe_user_read() and probe_user_write()")
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210805212616.2641017-2-farosas@linux.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit d9c57d3ed52a92536f5fa59dc5ccdd58b4875076 upstream.
The H_ENTER_NESTED hypercall is handled by the L0, and it is a request
by the L1 to switch the context of the vCPU over to that of its L2
guest, and return with an interrupt indication. The L1 is responsible
for switching some registers to guest context, and the L0 switches
others (including all the hypervisor privileged state).
If the L2 MSR has TM active, then the L1 is responsible for
recheckpointing the L2 TM state. Then the L1 exits to L0 via the
H_ENTER_NESTED hcall, and the L0 saves the TM state as part of the exit,
and then it recheckpoints the TM state as part of the nested entry and
finally HRFIDs into the L2 with TM active MSR. Not efficient, but about
the simplest approach for something that's horrendously complicated.
Problems arise if the L1 exits to the L0 with a TM state which does not
match the L2 TM state being requested. For example if the L1 is
transactional but the L2 MSR is non-transactional, or vice versa. The
L0's HRFID can take a TM Bad Thing interrupt and crash.
Fix this by disallowing H_ENTER_NESTED in TM[T] state entirely, and then
ensuring that if the L1 is suspended then the L2 must have TM active,
and if the L1 is not suspended then the L2 must not have TM active.
Fixes: 360cae313702 ("KVM: PPC: Book3S HV: Nested guest entry via hypercall")
Cc: stable@vger.kernel.org # v4.20+
Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Acked-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f62f3c20647ebd5fb6ecb8f0b477b9281c44c10a upstream.
The kvmppc_rtas_hcall() sets the host rtas_args.rets pointer based on
the rtas_args.nargs that was provided by the guest. That guest nargs
value is not range checked, so the guest can cause the host rets pointer
to be pointed outside the args array. The individual rtas function
handlers check the nargs and nrets values to ensure they are correct,
but if they are not, the handlers store a -3 (0xfffffffd) failure
indication in rets[0] which corrupts host memory.
Fix this by testing up front whether the guest supplied nargs and nret
would exceed the array size, and fail the hcall directly without storing
a failure indication to rets[0].
Also expand on a comment about why we kill the guest and try not to
return errors directly if we have a valid rets[0] pointer.
Fixes: 8e591cb72047 ("KVM: PPC: Book3S: Add infrastructure to implement kernel-side RTAS calls")
Cc: stable@vger.kernel.org # v3.10+
Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit bc4188a2f56e821ea057aca6bf444e138d06c252 ]
vcpu_put is not called if the user copy fails. This can result in preempt
notifier corruption and crashes, among other issues.
Fixes: b3cebfe8c1ca ("KVM: PPC: Move vcpu_load/vcpu_put down to each ioctl case in kvm_arch_vcpu_ioctl")
Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210716024310.164448-2-npiggin@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit bd31ecf44b8e18ccb1e5f6b50f85de6922a60de3 ]
When running CPU_FTR_P9_TM_HV_ASSIST, HFSCR[TM] is set for the guest
even if the host has CONFIG_TRANSACTIONAL_MEM=n, which causes it to be
unprepared to handle guest exits while transactional.
Normal guests don't have a problem because the HTM capability will not
be advertised, but a rogue or buggy one could crash the host.
Fixes: 4bb3c7a0208f ("KVM: PPC: Book3S HV: Work around transactional memory bugs in POWER9")
Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210716024310.164448-1-npiggin@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 77bbbc0cf84834ed130838f7ac1988567f4d0288 ]
The POWER9 vCPU TLB management code assumes all threads in a core share
a TLB, and that TLBIEL execued by one thread will invalidate TLBs for
all threads. This is not the case for SMT8 capable POWER9 and POWER10
(big core) processors, where the TLB is split between groups of threads.
This results in TLB multi-hits, random data corruption, etc.
Fix this by introducing cpu_first_tlb_thread_sibling etc., to determine
which siblings share TLBs, and use that in the guest TLB flushing code.
[npiggin@gmail.com: add changelog and comment]
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210602040441.3984352-1-npiggin@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 51696f39cbee5bb684e7959c0c98b5f54548aa34 upstream.
LLVM does not emit optimal byteswap assembly, which results in high
stack usage in kvmhv_enter_nested_guest() due to the inlining of
byteswap_pt_regs(). With LLVM 12.0.0:
arch/powerpc/kvm/book3s_hv_nested.c:289:6: error: stack frame size of
2512 bytes in function 'kvmhv_enter_nested_guest' [-Werror,-Wframe-larger-than=]
long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
^
1 error generated.
While this gets fixed in LLVM, mark byteswap_pt_regs() as
noinline_for_stack so that it does not get inlined and break the build
due to -Werror by default in arch/powerpc/. Not inlining saves
approximately 800 bytes with LLVM 12.0.0:
arch/powerpc/kvm/book3s_hv_nested.c:290:6: warning: stack frame size of
1728 bytes in function 'kvmhv_enter_nested_guest' [-Wframe-larger-than=]
long kvmhv_enter_nested_guest(struct kvm_vcpu *vcpu)
^
1 warning generated.
Cc: stable@vger.kernel.org # v4.20+
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://github.com/ClangBuiltLinux/linux/issues/1292
Link: https://bugs.llvm.org/show_bug.cgi?id=49610
Link: https://lore.kernel.org/r/202104031853.vDT0Qjqj-lkp@intel.com/
Link: https://gist.github.com/ba710e3703bf45043a31e2806c843ffd
Link: https://lore.kernel.org/r/20210621182440.990242-1-nathan@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 25edcc50d76c834479d11fcc7de46f3da4d95121 upstream.
The Facility Status and Control Register is a privileged SPR that
defines the availability of some features in problem state. Since it
can be written by the guest, we must restore it to the previous host
value after guest exit.
This restoration is currently done by taking the value from
current->thread.fscr, which in the P9 path is not enough anymore
because the guest could context switch the QEMU thread, causing the
guest-current value to be saved into the thread struct.
The above situation manifested when running a QEMU linked against a
libc with System Call Vectored support, which causes scv
instructions to be run by QEMU early during the guest boot (during
SLOF), at which point the FSCR is 0 due to guest entry. After a few
scv calls (1 to a couple hundred), the context switching happens and
the QEMU thread runs with the guest value, resulting in a Facility
Unavailable interrupt.
This patch saves and restores the host value of FSCR in the inner
guest entry loop in a way independent of current->thread.fscr. The old
way of doing it is still kept in place because it works for the old
entry path.
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Cc: Georgy Yakovlev <gyakovlev@gentoo.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 5088eb4092df12d701af8e0e92860b7186365279 ]
The host CTRL (runlatch) value is not restored after guest exit. The
host CTRL should always be 1 except in CPU idle code, so this can result
in the host running with runlatch clear, and potentially switching to
a different vCPU which then runs with runlatch clear as well.
This has little effect on P9 machines, CTRL is only responsible for some
PMU counter logic in the host and so other than corner cases of software
relying on that, or explicitly reading the runlatch value (Linux does
not appear to be affected but it's possible non-Linux guests could be),
there should be no execution correctness problem, though it could be
used as a covert channel between guests.
There may be microcontrollers, firmware or monitoring tools that sample
the runlatch value out-of-band, however since the register is writable
by guests, these values would (should) not be relied upon for correct
operation of the host, so suboptimal performance or incorrect reporting
should be the worst problem.
Fixes: 95a6432ce9038 ("KVM: PPC: Book3S HV: Streamlined guest entry/exit path on P9 for radix guests")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210412014845.1517916-2-npiggin@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 9236f57a9e51c72ce426ccd2e53e123de7196a0f ]
These are only used locally. It fixes these W=1 compile errors :
../arch/powerpc/kvm/powerpc.c:1521:5: error: no previous prototype for ‘kvmppc_get_vmx_dword’ [-Werror=missing-prototypes]
1521 | int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
| ^~~~~~~~~~~~~~~~~~~~
../arch/powerpc/kvm/powerpc.c:1539:5: error: no previous prototype for ‘kvmppc_get_vmx_word’ [-Werror=missing-prototypes]
1539 | int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
| ^~~~~~~~~~~~~~~~~~~
../arch/powerpc/kvm/powerpc.c:1557:5: error: no previous prototype for ‘kvmppc_get_vmx_hword’ [-Werror=missing-prototypes]
1557 | int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
| ^~~~~~~~~~~~~~~~~~~~
../arch/powerpc/kvm/powerpc.c:1575:5: error: no previous prototype for ‘kvmppc_get_vmx_byte’ [-Werror=missing-prototypes]
1575 | int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
| ^~~~~~~~~~~~~~~~~~~
Fixes: acc9eb9305fe ("KVM: PPC: Reimplement LOAD_VMX/STORE_VMX instruction mmio emulation with analyse_instr() input")
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210104143206.695198-19-clg@kaod.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
Commit 062cfab7069f ("KVM: PPC: Book3S HV: XIVE: Make VP block size
configurable") updated kvmppc_xive_vcpu_id_valid() in a way that
allows userspace to trigger an assertion in skiboot and crash the host:
[ 696.186248988,3] XIVE[ IC 08 ] eq_blk != vp_blk (0 vs. 1) for target 0x4300008c/0
[ 696.186314757,0] Assert fail: hw/xive.c:2370:0
[ 696.186342458,0] Aborting!
xive-kvCPU 0043 Backtrace:
S: 0000000031e2b8f0 R: 0000000030013840 .backtrace+0x48
S: 0000000031e2b990 R: 000000003001b2d0 ._abort+0x4c
S: 0000000031e2ba10 R: 000000003001b34c .assert_fail+0x34
S: 0000000031e2ba90 R: 0000000030058984 .xive_eq_for_target.part.20+0xb0
S: 0000000031e2bb40 R: 0000000030059fdc .xive_setup_silent_gather+0x2c
S: 0000000031e2bc20 R: 000000003005a334 .opal_xive_set_vp_info+0x124
S: 0000000031e2bd20 R: 00000000300051a4 opal_entry+0x134
--- OPAL call token: 0x8a caller R1: 0xc000001f28563850 ---
XIVE maintains the interrupt context state of non-dispatched vCPUs in
an internal VP structure. We allocate a bunch of those on startup to
accommodate all possible vCPUs. Each VP has an id, that we derive from
the vCPU id for efficiency:
static inline u32 kvmppc_xive_vp(struct kvmppc_xive *xive, u32 server)
{
return xive->vp_base + kvmppc_pack_vcpu_id(xive->kvm, server);
}
The KVM XIVE device used to allocate KVM_MAX_VCPUS VPs. This was
limitting the number of concurrent VMs because the VP space is
limited on the HW. Since most of the time, VMs run with a lot less
vCPUs, commit 062cfab7069f ("KVM: PPC: Book3S HV: XIVE: Make VP
block size configurable") gave the possibility for userspace to
tune the size of the VP block through the KVM_DEV_XIVE_NR_SERVERS
attribute.
The check in kvmppc_pack_vcpu_id() was changed from
cpu < KVM_MAX_VCPUS * xive->kvm->arch.emul_smt_mode
to
cpu < xive->nr_servers * xive->kvm->arch.emul_smt_mode
The previous check was based on the fact that the VP block had
KVM_MAX_VCPUS entries and that kvmppc_pack_vcpu_id() guarantees
that packed vCPU ids are below KVM_MAX_VCPUS. We've changed the
size of the VP block, but kvmppc_pack_vcpu_id() has nothing to
do with it and it certainly doesn't ensure that the packed vCPU
ids are below xive->nr_servers. kvmppc_xive_vcpu_id_valid() might
thus return true when the VM was configured with a non-standard
VSMT mode, even if the packed vCPU id is higher than what we
expect. We end up using an unallocated VP id, which confuses
OPAL. The assert in OPAL is probably abusive and should be
converted to a regular error that the kernel can handle, but
we shouldn't really use broken VP ids in the first place.
Fix kvmppc_xive_vcpu_id_valid() so that it checks the packed
vCPU id is below xive->nr_servers, which is explicitly what we
want.
Fixes: 062cfab7069f ("KVM: PPC: Book3S HV: XIVE: Make VP block size configurable")
Cc: stable@vger.kernel.org # v5.5+
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/160673876747.695514.1809676603724514920.stgit@bahia.lan
|
|
When accessing the ESB page of a source interrupt, the fault handler
will retrieve the page address from the XIVE interrupt 'xive_irq_data'
structure. If the associated KVM XIVE interrupt is not valid, that is
not allocated at the HW level for some reason, the fault handler will
dereference a NULL pointer leading to the oops below :
WARNING: CPU: 40 PID: 59101 at arch/powerpc/kvm/book3s_xive_native.c:259 xive_native_esb_fault+0xe4/0x240 [kvm]
CPU: 40 PID: 59101 Comm: qemu-system-ppc Kdump: loaded Tainted: G W --------- - - 4.18.0-240.el8.ppc64le #1
NIP: c00800000e949fac LR: c00000000044b164 CTR: c00800000e949ec8
REGS: c000001f69617840 TRAP: 0700 Tainted: G W --------- - - (4.18.0-240.el8.ppc64le)
MSR: 9000000000029033 <SF,HV,EE,ME,IR,DR,RI,LE> CR: 44044282 XER: 00000000
CFAR: c00000000044b160 IRQMASK: 0
GPR00: c00000000044b164 c000001f69617ac0 c00800000e96e000 c000001f69617c10
GPR04: 05faa2b21e000080 0000000000000000 0000000000000005 ffffffffffffffff
GPR08: 0000000000000000 0000000000000001 0000000000000000 0000000000000001
GPR12: c00800000e949ec8 c000001ffffd3400 0000000000000000 0000000000000000
GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
GPR20: 0000000000000000 0000000000000000 c000001f5c065160 c000000001c76f90
GPR24: c000001f06f20000 c000001f5c065100 0000000000000008 c000001f0eb98c78
GPR28: c000001dcab40000 c000001dcab403d8 c000001f69617c10 0000000000000011
NIP [c00800000e949fac] xive_native_esb_fault+0xe4/0x240 [kvm]
LR [c00000000044b164] __do_fault+0x64/0x220
Call Trace:
[c000001f69617ac0] [0000000137a5dc20] 0x137a5dc20 (unreliable)
[c000001f69617b50] [c00000000044b164] __do_fault+0x64/0x220
[c000001f69617b90] [c000000000453838] do_fault+0x218/0x930
[c000001f69617bf0] [c000000000456f50] __handle_mm_fault+0x350/0xdf0
[c000001f69617cd0] [c000000000457b1c] handle_mm_fault+0x12c/0x310
[c000001f69617d10] [c00000000007ef44] __do_page_fault+0x264/0xbb0
[c000001f69617df0] [c00000000007f8c8] do_page_fault+0x38/0xd0
[c000001f69617e30] [c00000000000a714] handle_page_fault+0x18/0x38
Instruction dump:
40c2fff0 7c2004ac 2fa90000 409e0118 73e90001 41820080 e8bd0008 7c2004ac
7ca90074 39400000 915c0000 7929d182 <0b090000> 2fa50000 419e0080 e89e0018
---[ end trace 66c6ff034c53f64f ]---
xive-kvm: xive_native_esb_fault: accessing invalid ESB page for source 8 !
Fix that by checking the validity of the KVM XIVE interrupt structure.
Fixes: 6520ca64cde7 ("KVM: PPC: Book3S HV: XIVE: Add a mapping for the source ESB pages")
Cc: stable@vger.kernel.org # v5.2+
Reported-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Tested-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20201105134713.656160-1-clg@kaod.org
|
|
Use a more generic form for __section that requires quotes to avoid
complications with clang and gcc differences.
Remove the quote operator # from compiler_attributes.h __section macro.
Convert all unquoted __section(foo) uses to quoted __section("foo").
Also convert __attribute__((section("foo"))) uses to __section("foo")
even if the __attribute__ has multiple list entry forms.
Conversion done using the script at:
https://lore.kernel.org/lkml/75393e5ddc272dc7403de74d645e6c6e0f4e70eb.camel@perches.com/2-convert_section.pl
Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@gooogle.com>
Reviewed-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Pull KVM updates from Paolo Bonzini:
"For x86, there is a new alternative and (in the future) more scalable
implementation of extended page tables that does not need a reverse
map from guest physical addresses to host physical addresses.
For now it is disabled by default because it is still lacking a few of
the existing MMU's bells and whistles. However it is a very solid
piece of work and it is already available for people to hammer on it.
Other updates:
ARM:
- New page table code for both hypervisor and guest stage-2
- Introduction of a new EL2-private host context
- Allow EL2 to have its own private per-CPU variables
- Support of PMU event filtering
- Complete rework of the Spectre mitigation
PPC:
- Fix for running nested guests with in-kernel IRQ chip
- Fix race condition causing occasional host hard lockup
- Minor cleanups and bugfixes
x86:
- allow trapping unknown MSRs to userspace
- allow userspace to force #GP on specific MSRs
- INVPCID support on AMD
- nested AMD cleanup, on demand allocation of nested SVM state
- hide PV MSRs and hypercalls for features not enabled in CPUID
- new test for MSR_IA32_TSC writes from host and guest
- cleanups: MMU, CPUID, shared MSRs
- LAPIC latency optimizations ad bugfixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (232 commits)
kvm: x86/mmu: NX largepage recovery for TDP MMU
kvm: x86/mmu: Don't clear write flooding count for direct roots
kvm: x86/mmu: Support MMIO in the TDP MMU
kvm: x86/mmu: Support write protection for nesting in tdp MMU
kvm: x86/mmu: Support disabling dirty logging for the tdp MMU
kvm: x86/mmu: Support dirty logging for the TDP MMU
kvm: x86/mmu: Support changed pte notifier in tdp MMU
kvm: x86/mmu: Add access tracking for tdp_mmu
kvm: x86/mmu: Support invalidate range MMU notifier for TDP MMU
kvm: x86/mmu: Allocate struct kvm_mmu_pages for all pages in TDP MMU
kvm: x86/mmu: Add TDP MMU PF handler
kvm: x86/mmu: Remove disallowed_hugepage_adjust shadow_walk_iterator arg
kvm: x86/mmu: Support zapping SPTEs in the TDP MMU
KVM: Cache as_id in kvm_memory_slot
kvm: x86/mmu: Add functions to handle changed TDP SPTEs
kvm: x86/mmu: Allocate and free TDP MMU roots
kvm: x86/mmu: Init / Uninit the TDP MMU
kvm: x86/mmu: Introduce tdp_iter
KVM: mmu: extract spte.h and spte.c
KVM: mmu: Separate updating a PTE from kvm_set_pte_rmapp
...
|
|
This should be const, so make it so.
Signed-off-by: Joe Perches <joe@perches.com>
Message-Id: <d130e88dd4c82a12d979da747cc0365c72c3ba15.1601770305.git.joe@perches.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
- A series from Nick adding ARCH_WANT_IRQS_OFF_ACTIVATE_MM & selecting
it for powerpc, as well as a related fix for sparc.
- Remove support for PowerPC 601.
- Some fixes for watchpoints & addition of a new ptrace flag for
detecting ISA v3.1 (Power10) watchpoint features.
- A fix for kernels using 4K pages and the hash MMU on bare metal
Power9 systems with > 16TB of RAM, or RAM on the 2nd node.
- A basic idle driver for shallow stop states on Power10.
- Tweaks to our sched domains code to better inform the scheduler about
the hardware topology on Power9/10, where two SMT4 cores can be
presented by firmware as an SMT8 core.
- A series doing further reworks & cleanups of our EEH code.
- Addition of a filter for RTAS (firmware) calls done via sys_rtas(),
to prevent root from overwriting kernel memory.
- Other smaller features, fixes & cleanups.
Thanks to: Alexey Kardashevskiy, Andrew Donnellan, Aneesh Kumar K.V,
Athira Rajeev, Biwen Li, Cameron Berkenpas, Cédric Le Goater, Christophe
Leroy, Christoph Hellwig, Colin Ian King, Daniel Axtens, David Dai, Finn
Thain, Frederic Barrat, Gautham R. Shenoy, Greg Kurz, Gustavo Romero,
Ira Weiny, Jason Yan, Joel Stanley, Jordan Niethe, Kajol Jain, Konrad
Rzeszutek Wilk, Laurent Dufour, Leonardo Bras, Liu Shixin, Luca
Ceresoli, Madhavan Srinivasan, Mahesh Salgaonkar, Nathan Lynch, Nicholas
Mc Guire, Nicholas Piggin, Nick Desaulniers, Oliver O'Halloran, Pedro
Miraglia Franco de Carvalho, Pratik Rajesh Sampat, Qian Cai, Qinglang
Miao, Ravi Bangoria, Russell Currey, Satheesh Rajendran, Scott Cheloha,
Segher Boessenkool, Srikar Dronamraju, Stan Johnson, Stephen Kitt,
Stephen Rothwell, Thiago Jung Bauermann, Tyrel Datwyler, Vaibhav Jain,
Vaidyanathan Srinivasan, Vasant Hegde, Wang Wensheng, Wolfram Sang, Yang
Yingliang, zhengbin.
* tag 'powerpc-5.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (228 commits)
Revert "powerpc/pci: unmap legacy INTx interrupts when a PHB is removed"
selftests/powerpc: Fix eeh-basic.sh exit codes
cpufreq: powernv: Fix frame-size-overflow in powernv_cpufreq_reboot_notifier
powerpc/time: Make get_tb() common to PPC32 and PPC64
powerpc/time: Make get_tbl() common to PPC32 and PPC64
powerpc/time: Remove get_tbu()
powerpc/time: Avoid using get_tbl() and get_tbu() internally
powerpc/time: Make mftb() common to PPC32 and PPC64
powerpc/time: Rename mftbl() to mftb()
powerpc/32s: Remove #ifdef CONFIG_PPC_BOOK3S_32 in head_book3s_32.S
powerpc/32s: Rename head_32.S to head_book3s_32.S
powerpc/32s: Setup the early hash table at all time.
powerpc/time: Remove ifdef in get_dec() and set_dec()
powerpc: Remove get_tb_or_rtc()
powerpc: Remove __USE_RTC()
powerpc: Tidy up a bit after removal of PowerPC 601.
powerpc: Remove support for PowerPC 601
powerpc: Remove PowerPC 601
powerpc: Drop SYNC_601() ISYNC_601() and SYNC()
powerpc: Remove CONFIG_PPC601_SYNC_FIX
...
|
|
Patch series "memblock: seasonal cleaning^w cleanup", v3.
These patches simplify several uses of memblock iterators and hide some of
the memblock implementation details from the rest of the system.
This patch (of 17):
The memory size calculation in kvm_cma_reserve() traverses memblock.memory
rather than simply call memblock_phys_mem_size(). The comment in that
function suggests that at some point there should have been call to
memblock_analyze() before memblock_phys_mem_size() could be used. As of
now, there is no memblock_analyze() at all and memblock_phys_mem_size()
can be used as soon as cold-plug memory is registered with memblock.
Replace loop over memblock.memory with a call to memblock_phys_mem_size().
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Daniel Axtens <dja@axtens.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Emil Renner Berthing <kernel@esmil.dk>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Hari Bathini <hbathini@linux.ibm.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Link: https://lkml.kernel.org/r/20200818151634.14343-1-rppt@kernel.org
Link: https://lkml.kernel.org/r/20200818151634.14343-2-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In support of device-dax growing the ability to front physically
dis-contiguous ranges of memory, update devm_memremap_pages() to track
multiple ranges with a single reference counter and devm instance.
Convert all [devm_]memremap_pages() users to specify the number of ranges
they are mapping in their 'struct dev_pagemap' instance.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: "Jérôme Glisse" <jglisse@redhat.co
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brice Goglin <Brice.Goglin@inria.fr>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Hulk Robot <hulkci@huawei.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Jason Yan <yanaijie@huawei.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Jia He <justin.he@arm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lkml.kernel.org/r/159643103789.4062302.18426128170217903785.stgit@dwillia2-desk3.amr.corp.intel.com
Link: https://lkml.kernel.org/r/160106116293.30709.13350662794915396198.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The 'struct resource' in 'struct dev_pagemap' is only used for holding
resource span information. The other fields, 'name', 'flags', 'desc',
'parent', 'sibling', and 'child' are all unused wasted space.
This is in preparation for introducing a multi-range extension of
devm_memremap_pages().
The bulk of this change is unwinding all the places internal to libnvdimm
that used 'struct resource' unnecessarily, and replacing instances of
'struct dev_pagemap'.res with 'struct dev_pagemap'.range.
P2PDMA had a minor usage of the resource flags field, but only to report
failures with "%pR". That is replaced with an open coded print of the
range.
[dan.carpenter@oracle.com: mm/hmm/test: use after free in dmirror_allocate_chunk()]
Link: https://lkml.kernel.org/r/20200926121402.GA7467@kadam
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> [xen]
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brice Goglin <Brice.Goglin@inria.fr>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Hulk Robot <hulkci@huawei.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Jason Yan <yanaijie@huawei.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Jia He <justin.he@arm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lkml.kernel.org/r/159643103173.4062302.768998885691711532.stgit@dwillia2-desk3.amr.corp.intel.com
Link: https://lkml.kernel.org/r/160106115761.30709.13539840236873663620.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Build the kernel with `C=2`:
arch/powerpc/kvm/book3s_hv_nested.c:572:25: warning: symbol
'kvmhv_alloc_nested' was not declared. Should it be static?
arch/powerpc/kvm/book3s_64_mmu_radix.c:350:6: warning: symbol
'kvmppc_radix_set_pte_at' was not declared. Should it be static?
arch/powerpc/kvm/book3s_hv.c:3568:5: warning: symbol
'kvmhv_p9_guest_entry' was not declared. Should it be static?
arch/powerpc/kvm/book3s_hv_rm_xics.c:767:15: warning: symbol 'eoi_rc'
was not declared. Should it be static?
arch/powerpc/kvm/book3s_64_vio_hv.c:240:13: warning: symbol
'iommu_tce_kill_rm' was not declared. Should it be static?
arch/powerpc/kvm/book3s_64_vio.c:492:6: warning: symbol
'kvmppc_tce_iommu_do_map' was not declared. Should it be static?
arch/powerpc/kvm/book3s_pr.c:572:6: warning: symbol 'kvmppc_set_pvr_pr'
was not declared. Should it be static?
Those symbols are used only in the files that define them so make them
static to fix the warnings.
Signed-off-by: Wang Wensheng <wangwensheng4@huawei.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
|
The variable ret is being initialized with '-ENOMEM' that is meaningless.
So remove it.
Signed-off-by: Jing Xiangfeng <jingxiangfeng@huawei.com>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
|
Use DEFINE_SHOW_ATTRIBUTE macro to simplify the code.
Signed-off-by: Qinglang Miao <miaoqinglang@huawei.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
|
POWER8 and POWER9 machines have a hardware deviation where generation
of a hypervisor decrementer exception is suppressed if the HDICE bit
in the LPCR register is 0 at the time when the HDEC register
decrements from 0 to -1. When entering a guest, KVM first writes the
HDEC register with the time until it wants the CPU to exit the guest,
and then writes the LPCR with the guest value, which includes
HDICE = 1. If HDEC decrements from 0 to -1 during the interval
between those two events, it is possible that we can enter the guest
with HDEC already negative but no HDEC exception pending, meaning that
no HDEC interrupt will occur while the CPU is in the guest, or at
least not until HDEC wraps around. Thus it is possible for the CPU to
keep executing in the guest for a long time; up to about 4 seconds on
POWER8, or about 4.46 years on POWER9 (except that the host kernel
hard lockup detector will fire first).
To fix this, we set the LPCR[HDICE] bit before writing HDEC on guest
entry.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
|
|
The current nested KVM code does not support HPT guests. This is
informed/enforced in some ways:
- Hosts < P9 will not be able to enable the nested HV feature;
- The nested hypervisor MMU capabilities will not contain
KVM_CAP_PPC_MMU_HASH_V3;
- QEMU reflects the MMU capabilities in the
'ibm,arch-vec-5-platform-support' device-tree property;
- The nested guest, at 'prom_parse_mmu_model' ignores the
'disable_radix' kernel command line option if HPT is not supported;
- The KVM_PPC_CONFIGURE_V3_MMU ioctl will fail if trying to use HPT.
There is, however, still a way to start a HPT guest by using
max-compat-cpu=power8 at the QEMU machine options. This leads to the
guest being set to use hash after QEMU calls the KVM_PPC_ALLOCATE_HTAB
ioctl.
With the guest set to hash, the nested hypervisor goes through the
entry path that has no knowledge of nesting (kvmppc_run_vcpu) and
crashes when it tries to execute an hypervisor-privileged (mtspr
HDEC) instruction at __kvmppc_vcore_entry:
root@L1:~ $ qemu-system-ppc64 -machine pseries,max-cpu-compat=power8 ...
<snip>
[ 538.543303] CPU: 83 PID: 25185 Comm: CPU 0/KVM Not tainted 5.9.0-rc4 #1
[ 538.543355] NIP: c00800000753f388 LR: c00800000753f368 CTR: c0000000001e5ec0
[ 538.543417] REGS: c0000013e91e33b0 TRAP: 0700 Not tainted (5.9.0-rc4)
[ 538.543470] MSR: 8000000002843033 <SF,VEC,VSX,FP,ME,IR,DR,RI,LE> CR: 22422882 XER: 20040000
[ 538.543546] CFAR: c00800000753f4b0 IRQMASK: 3
GPR00: c0080000075397a0 c0000013e91e3640 c00800000755e600 0000000080000000
GPR04: 0000000000000000 c0000013eab19800 c000001394de0000 00000043a054db72
GPR08: 00000000003b1652 0000000000000000 0000000000000000 c0080000075502e0
GPR12: c0000000001e5ec0 c0000007ffa74200 c0000013eab19800 0000000000000008
GPR16: 0000000000000000 c00000139676c6c0 c000000001d23948 c0000013e91e38b8
GPR20: 0000000000000053 0000000000000000 0000000000000001 0000000000000000
GPR24: 0000000000000001 0000000000000001 0000000000000000 0000000000000001
GPR28: 0000000000000001 0000000000000053 c0000013eab19800 0000000000000001
[ 538.544067] NIP [c00800000753f388] __kvmppc_vcore_entry+0x90/0x104 [kvm_hv]
[ 538.544121] LR [c00800000753f368] __kvmppc_vcore_entry+0x70/0x104 [kvm_hv]
[ 538.544173] Call Trace:
[ 538.544196] [c0000013e91e3640] [c0000013e91e3680] 0xc0000013e91e3680 (unreliable)
[ 538.544260] [c0000013e91e3820] [c0080000075397a0] kvmppc_run_core+0xbc8/0x19d0 [kvm_hv]
|