summaryrefslogtreecommitdiff
path: root/arch/sparc/mm
AgeCommit message (Collapse)AuthorFilesLines
2018-11-10sparc64: Fix regression in pmdp_invalidate().David S. Miller1-6/+13
[ Upstream commit cfb61b5e3e09f8b49bc4d685429df75f45127adc ] pmdp_invalidate() was changed to update the pmd atomically (to not lose dirty/access bits) and return the original pmd value. However, in doing so, we lost a lot of the essential work that set_pmd_at() does, namely to update hugepage mapping counts and queuing up the batched TLB flush entry. Thus we were not flushing entries out of the TLB when making such PMD changes. Fix this by abstracting the accounting work of set_pmd_at() out into a separate function, and call it from pmdp_establish(). Fixes: a8e654f01cb7 ("sparc64: update pmdp_invalidate() to return old pmd value") Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2018-05-30sparc64: update pmdp_invalidate() to return old pmd valueNitin Gupta1-5/+18
[ Upstream commit a8e654f01cb725d0bfd741ebca1bf4c9337969cc ] It's required to avoid losing dirty and accessed bits. [akpm@linux-foundation.org: add a `do' to the do-while loop] Link: http://lkml.kernel.org/r/20171213105756.69879-9-kirill.shutemov@linux.intel.com Signed-off-by: Nitin Gupta <nitin.m.gupta@oracle.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: David Miller <davem@davemloft.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-25sparc32: Export vac_cache_size to fix build errorGuenter Roeck1-0/+1
commit 9d262d95114cf2e2ac5e0ff358347fa2e214eda5 upstream. sparc32:allmodconfig fails to build with the following error. ERROR: "vac_cache_size" [drivers/infiniband/sw/rxe/rdma_rxe.ko] undefined! Fixes: cb8864559631 ("infiniband: Fix alignment of mmap cookies ...") Cc: Jason Gunthorpe <jgunthorpe@obsidianresearch.com> Cc: Doug Ledford <dledford@redhat.com> Signed-off-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-12-14sparc64/mm: set fields in deferred pagesPavel Tatashin1-1/+8
[ Upstream commit 2a20aa171071a334d80c4e5d5af719d8374702fc ] Without deferred struct page feature (CONFIG_DEFERRED_STRUCT_PAGE_INIT), flags and other fields in "struct page"es are never changed prior to first initializing struct pages by going through __init_single_page(). With deferred struct page feature enabled there is a case where we set some fields prior to initializing: mem_init() { register_page_bootmem_info(); free_all_bootmem(); ... } When register_page_bootmem_info() is called only non-deferred struct pages are initialized. But, this function goes through some reserved pages which might be part of the deferred, and thus are not yet initialized. mem_init register_page_bootmem_info register_page_bootmem_info_node get_page_bootmem .. setting fields here .. such as: page->freelist = (void *)type; free_all_bootmem() free_low_memory_core_early() for_each_reserved_mem_region() reserve_bootmem_region() init_reserved_page() <- Only if this is deferred reserved page __init_single_pfn() __init_single_page() memset(0) <-- Loose the set fields here We end up with similar issue as in the previous patch, where currently we do not observe problem as memory is zeroed. But, if flag asserts are changed we can start hitting issues. Also, because in this patch series we will stop zeroing struct page memory during allocation, we must make sure that struct pages are properly initialized prior to using them. The deferred-reserved pages are initialized in free_all_bootmem(). Therefore, the fix is to switch the above calls. Link: http://lkml.kernel.org/r/20171013173214.27300-4-pasha.tatashin@oracle.com Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Steven Sistare <steven.sistare@oracle.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Bob Picco <bob.picco@oracle.com> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-24mm: larger stack guard gap, between vmasHugh Dickins1-1/+1
commit 1be7107fbe18eed3e319a6c3e83c78254b693acb upstream. Stack guard page is a useful feature to reduce a risk of stack smashing into a different mapping. We have been using a single page gap which is sufficient to prevent having stack adjacent to a different mapping. But this seems to be insufficient in the light of the stack usage in userspace. E.g. glibc uses as large as 64kB alloca() in many commonly used functions. Others use constructs liks gid_t buffer[NGROUPS_MAX] which is 256kB or stack strings with MAX_ARG_STRLEN. This will become especially dangerous for suid binaries and the default no limit for the stack size limit because those applications can be tricked to consume a large portion of the stack and a single glibc call could jump over the guard page. These attacks are not theoretical, unfortunatelly. Make those attacks less probable by increasing the stack guard gap to 1MB (on systems with 4k pages; but make it depend on the page size because systems with larger base pages might cap stack allocations in the PAGE_SIZE units) which should cover larger alloca() and VLA stack allocations. It is obviously not a full fix because the problem is somehow inherent, but it should reduce attack space a lot. One could argue that the gap size should be configurable from userspace, but that can be done later when somebody finds that the new 1MB is wrong for some special case applications. For now, add a kernel command line option (stack_guard_gap) to specify the stack gap size (in page units). Implementation wise, first delete all the old code for stack guard page: because although we could get away with accounting one extra page in a stack vma, accounting a larger gap can break userspace - case in point, a program run with "ulimit -S -v 20000" failed when the 1MB gap was counted for RLIMIT_AS; similar problems could come with RLIMIT_MLOCK and strict non-overcommit mode. Instead of keeping gap inside the stack vma, maintain the stack guard gap as a gap between vmas: using vm_start_gap() in place of vm_start (or vm_end_gap() in place of vm_end if VM_GROWSUP) in just those few places which need to respect the gap - mainly arch_get_unmapped_area(), and and the vma tree's subtree_gap support for that. Original-patch-by: Oleg Nesterov <oleg@redhat.com> Original-patch-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Tested-by: Helge Deller <deller@gmx.de> # parisc Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [wt: backport to 4.11: adjust context] [wt: backport to 4.9: adjust context ; kernel doc was not in admin-guide] Signed-off-by: Willy Tarreau <w@1wt.eu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14sparc64: delete old wrap codePavel Tatashin1-5/+0
[ Upstream commit 0197e41ce70511dc3b71f7fefa1a676e2b5cd60b ] The old method that is using xcall and softint to get new context id is deleted, as it is replaced by a method of using per_cpu_secondary_mm without xcall to perform the context wrap. Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Bob Picco <bob.picco@oracle.com> Reviewed-by: Steven Sistare <steven.sistare@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14sparc64: new context wrapPavel Tatashin1-27/+54
[ Upstream commit a0582f26ec9dfd5360ea2f35dd9a1b026f8adda0 ] The current wrap implementation has a race issue: it is called outside of the ctx_alloc_lock, and also does not wait for all CPUs to complete the wrap. This means that a thread can get a new context with a new version and another thread might still be running with the same context. The problem is especially severe on CPUs with shared TLBs, like sun4v. I used the following test to very quickly reproduce the problem: - start over 8K processes (must be more than context IDs) - write and read values at a memory location in every process. Very quickly memory corruptions start happening, and what we read back does not equal what we wrote. Several approaches were explored before settling on this one: Approach 1: Move smp_new_mmu_context_version() inside ctx_alloc_lock, and wait for every process to complete the wrap. (Note: every CPU must WAIT before leaving smp_new_mmu_context_version_client() until every one arrives). This approach ends up with deadlocks, as some threads own locks which other threads are waiting for, and they never receive softint until these threads exit smp_new_mmu_context_version_client(). Since we do not allow the exit, deadlock happens. Approach 2: Handle wrap right during mondo interrupt. Use etrap/rtrap to enter into into C code, and issue new versions to every CPU. This approach adds some overhead to runtime: in switch_mm() we must add some checks to make sure that versions have not changed due to wrap while we were loading the new secondary context. (could be protected by PSTATE_IE but that degrades performance as on M7 and older CPUs as it takes 50 cycles for each access). Also, we still need a global per-cpu array of MMs to know where we need to load new contexts, otherwise we can change context to a thread that is going way (if we received mondo between switch_mm() and switch_to() time). Finally, there are some issues with window registers in rtrap() when context IDs are changed during CPU mondo time. The approach in this patch is the simplest and has almost no impact on runtime. We use the array with mm's where last secondary contexts were loaded onto CPUs and bump their versions to the new generation without changing context IDs. If a new process comes in to get a context ID, it will go through get_new_mmu_context() because of version mismatch. But the running processes do not need to be interrupted. And wrap is quicker as we do not need to xcall and wait for everyone to receive and complete wrap. Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Bob Picco <bob.picco@oracle.com> Reviewed-by: Steven Sistare <steven.sistare@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14sparc64: add per-cpu mm of secondary contextsPavel Tatashin1-0/+1
[ Upstream commit 7a5b4bbf49fe86ce77488a70c5dccfe2d50d7a2d ] The new wrap is going to use information from this array to figure out mm's that currently have valid secondary contexts setup. Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Bob Picco <bob.picco@oracle.com> Reviewed-by: Steven Sistare <steven.sistare@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14sparc64: redefine first versionPavel Tatashin1-3/+3
[ Upstream commit c4415235b2be0cc791572e8e7f7466ab8f73a2bf ] CTX_FIRST_VERSION defines the first context version, but also it defines first context. This patch redefines it to only include the first context version. Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Bob Picco <bob.picco@oracle.com> Reviewed-by: Steven Sistare <steven.sistare@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14sparc64: reset mm cpumask after wrapPavel Tatashin1-0/+2
[ Upstream commit 588974857359861891f478a070b1dc7ae04a3880 ] After a wrap (getting a new context version) a process must get a new context id, which means that we would need to flush the context id from the TLB before running for the first time with this ID on every CPU. But, we use mm_cpumask to determine if this process has been running on this CPU before, and this mask is not reset after a wrap. So, there are two possible fixes for this issue: 1. Clear mm cpumask whenever mm gets a new context id 2. Unconditionally flush context every time process is running on a CPU This patch implements the first solution Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Bob Picco <bob.picco@oracle.com> Reviewed-by: Steven Sistare <steven.sistare@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-14sparc64: mm: fix copy_tsb to correctly copy huge page TSBsMike Kravetz1-2/+5
[ Upstream commit 654f4807624a657f364417c2a7454f0df9961734 ] When a TSB grows beyond its current capacity, a new TSB is allocated and copy_tsb is called to copy entries from the old TSB to the new. A hash shift based on page size is used to calculate the index of an entry in the TSB. copy_tsb has hard coded PAGE_SHIFT in these calculations. However, for huge page TSBs the value REAL_HPAGE_SHIFT should be used. As a result, when copy_tsb is called for a huge page TSB the entries are placed at the incorrect index in the newly allocated TSB. When doing hardware table walk, the MMU does not match these entries and we end up in the TSB miss handling code. This code will then create and write an entry to the correct index in the TSB. We take a performance hit for the table walk miss and recreation of these entries. Pass a new parameter to copy_tsb that is the page size shift to be used when copying the TSB. Suggested-by: Anthony Yznaga <anthony.yznaga@oracle.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-06-07sparc: Fix -Wstringop-overflow warningOrlando Arias1-1/+1
[ Upstream commit deba804c90642c8ed0f15ac1083663976d578f54 ] Greetings, GCC 7 introduced the -Wstringop-overflow flag to detect buffer overflows in calls to string handling functions [1][2]. Due to the way ``empty_zero_page'' is declared in arch/sparc/include/setup.h, this causes a warning to trigger at compile time in the function mem_init(), which is subsequently converted to an error. The ensuing patch fixes this issue and aligns the declaration of empty_zero_page to that of other architectures. Thank you. Cheers, Orlando. [1] https://gcc.gnu.org/ml/gcc-patches/2016-10/msg02308.html [2] https://gcc.gnu.org/gcc-7/changes.html Signed-off-by: Orlando Arias <oarias@knights.ucf.edu> -------------------------------------------------------------------------------- Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-05-03sparc64: kern_addr_valid regressionbob picco1-1/+1
[ Upstream commit adfae8a5d833fa2b46577a8081f350e408851f5b ] I encountered this bug when using /proc/kcore to examine the kernel. Plus a coworker inquired about debugging tools. We computed pa but did not use it during the maximum physical address bits test. Instead we used the identity mapped virtual address which will always fail this test. I believe the defect came in here: [bpicco@zareason linus.git]$ git describe --contains bb4e6e85daa52 v3.18-rc1~87^2~4 . Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-11-14sparc64: fix compile warning section mismatch in find_node()Thomas Tai1-3/+3
A compile warning is introduced by a commit to fix the find_node(). This patch fix the compile warning by moving find_node() into __init section. Because find_node() is only used by memblock_nid_range() which is only used by a __init add_node_ranges(). find_node() and memblock_nid_range() should also be inside __init section. Signed-off-by: Thomas Tai <thomas.tai@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-11-10sparc64: Fix find_node warning if numa node cannot be foundThomas Tai1-4/+61
When booting up LDOM, find_node() warns that a physical address doesn't match a NUMA node. WARNING: CPU: 0 PID: 0 at arch/sparc/mm/init_64.c:835 find_node+0xf4/0x120 find_node: A physical address doesn't match a NUMA node rule. Some physical memory will be owned by node 0.Modules linked in: CPU: 0 PID: 0 Comm: swapper Not tainted 4.9.0-rc3 #4 Call Trace: [0000000000468ba0] __warn+0xc0/0xe0 [0000000000468c74] warn_slowpath_fmt+0x34/0x60 [00000000004592f4] find_node+0xf4/0x120 [0000000000dd0774] add_node_ranges+0x38/0xe4 [0000000000dd0b1c] numa_parse_mdesc+0x268/0x2e4 [0000000000dd0e9c] bootmem_init+0xb8/0x160 [0000000000dd174c] paging_init+0x808/0x8fc [0000000000dcb0d0] setup_arch+0x2c8/0x2f0 [0000000000dc68a0] start_kernel+0x48/0x424 [0000000000dcb374] start_early_boot+0x27c/0x28c [0000000000a32c08] tlb_fixup_done+0x4c/0x64 [0000000000027f08] 0x27f08 It is because linux use an internal structure node_masks[] to keep the best memory latency node only. However, LDOM mdesc can contain single latency-group with multiple memory latency nodes. If the address doesn't match the best latency node within node_masks[], it should check for an alternative via mdesc. The warning message should only be printed if the address doesn't match any node_masks[] nor within mdesc. To minimize the impact of searching mdesc every time, the last matched mask and index is stored in a variable. Signed-off-by: Thomas Tai <thomas.tai@oracle.com> Reviewed-by: Chris Hyser <chris.hyser@oracle.com> Reviewed-by: Liam Merwick <liam.merwick@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-27sparc64: Handle extremely large kernel TLB range flushes more gracefully.David S. Miller1-55/+228
When the vmalloc area gets fragmented, and because the firmware mapping area sits between where modules live and the vmalloc area, we can sometimes receive requests for enormous kernel TLB range flushes. When this happens the cpu just spins flushing billions of pages and this triggers the NMI watchdog and other problems. We took care of this on the TSB side by doing a linear scan of the table once we pass a certain threshold. Do something similar for the TLB flush, however we are limited by the TLB flush facilities provided by the different chip variants. First of all we use an (mostly arbitrary) cut-off of 256K which is about 32 pages. This can be tuned in the future. The huge range code path for each chip works as follows: 1) On spitfire we flush all non-locked TLB entries using diagnostic acceses. 2) On cheetah we use the "flush all" TLB flush. 3) On sun4v/hypervisor we do a TLB context flush on context 0, which unlike previous chips does not remove "permanent" or locked entries. We could probably do something better on spitfire, such as limiting the flush to kernel TLB entries or even doing range comparisons. However that probably isn't worth it since those chips are old and the TLB only had 64 entries. Reported-by: James Clarke <jrtc27@jrtc27.com> Tested-by: James Clarke <jrtc27@jrtc27.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-26sparc64: Fix illegal relative branches in hypervisor patched TLB cross-call ↵David S. Miller1-12/+30
code. Just like the non-cross-call TLB flush handlers, the cross-call ones need to avoid doing PC-relative branches outside of their code blocks. Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-26sparc64: Fix instruction count in comment for __hypervisor_flush_tlb_pending.David S. Miller1-1/+1
Noticed by James Clarke. Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-25sparc64: Handle extremely large kernel TSB range flushes sanely.David S. Miller1-0/+17
If the number of pages we are flushing is more than twice the number of entries in the TSB, just scan the TSB table for matches rather than probing each and every page in the range. Based upon a patch and report by James Clarke. Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-25sparc64: Fix illegal relative branches in hypervisor patched TLB code.David S. Miller1-14/+51
When we copy code over to patch another piece of code, we can only use PC-relative branches that target code within that piece of code. Such PC-relative branches cannot be made to external symbols because the patch moves the location of the code and thus modifies the relative address of external symbols. Use an absolute jmpl to fix this problem. Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-18mm: replace get_user_pages_unlocked() write/force parameters with gup_flagsLorenzo Stoakes1-1/+2
This removes the 'write' and 'force' use from get_user_pages_unlocked() and replaces them with 'gup_flags' to make the use of FOLL_FORCE explicit in callers as use of this flag can result in surprising behaviour (and hence bugs) within the mm subsystem. Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-06sparc: migrate exception table users off module.h and onto extable.hPaul Gortmaker2-2/+2
These files were only including module.h for exception table related functions. We've now separated that content out into its own file "extable.h" so now move over to that and avoid all the extra header content in module.h that we don't really need to compile these files. Cc: "David S. Miller" <davem@davemloft.net> Cc: sparclinux@vger.kernel.org Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-28sparc64: Fix irq stack bootmem allocation.Atish Patra1-16/+0
Currently, irq stack bootmem is allocated for all possible cpus before nr_cpus value changes the list of possible cpus. As a result, there is unnecessary wastage of bootmemory. Move the irq stack bootmem allocation so that it happens after possible cpu list is modified based on nr_cpus value. Signed-off-by: Atish Patra <atish.patra@oracle.com> Reviewed-by: Bob Picco <bob.picco@oracle.com> Reviewed-by: Vijay Kumar <vijay.ac.kumar@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-28sparc64 mm: Fix more TSB sizing issuesMike Kravetz3-10/+44
Commit af1b1a9b36b8 ("sparc64 mm: Fix base TSB sizing when hugetlb pages are used") addressed the difference between hugetlb and THP pages when computing TSB sizes. The following additional issues were also discovered while working with the code. In order to save memory, THP makes use of a huge zero page. This huge zero page does not count against a task's RSS, but it does consume TSB entries. This is similar to hugetlb pages. Therefore, count huge zero page entries in hugetlb_pte_count. Accounting of THP pages is done in the routine set_pmd_at(). Unfortunately, this does not catch the case where a THP page is split. To handle this case, decrement the count in pmdp_invalidate(). pmdp_invalidate is only called when splitting a THP. However, 'sanity checks' are added in case it is ever called for other purposes. A more general issue exists with HPAGE_SIZE accounting. hugetlb_pte_count tracks the number of HPAGE_SIZE (8M) pages. This value is used to size the TSB for HPAGE_SIZE pages. However, each HPAGE_SIZE page consists of two REAL_HPAGE_SIZE (4M) pages. The TSB contains an entry for each REAL_HPAGE_SIZE page. Therefore, the number of REAL_HPAGE_SIZE pages should be used to size the huge page TSB. A new compile time constant REAL_HPAGE_PER_HPAGE is used to multiply hugetlb_pte_count before sizing the TSB. Changes from V1 - Fixed build issue if hugetlb or THP not configured Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-28sparc64: fix section mismatch in find_numa_latencies_for_groupPaul Gortmaker1-3/+3
To fix: WARNING: vmlinux.o(.text.unlikely+0x580): Section mismatch in reference from the function find_numa_latencies_for_group() to the function .init.text:find_mlgroup() The function find_numa_latencies_for_group() references the function __init find_mlgroup(). This is often because find_numa_latencies_for_group lacks a __init annotation or the annotation of find_mlgroup is wrong. It turns out find_numa_latencies_for_group is only called from: static int __init numa_parse_mdesc(void) and hence we can tag find_numa_latencies_for_group with __init. In doing so we see that find_best_numa_node_for_mlgroup is only called from within __init and hence can also be marked with __init. Cc: "David S. Miller" <davem@davemloft.net> Cc: Nitin Gupta <nitin.m.gupta@oracle.com> Cc: Chris Hyser <chris.hyser@oracle.com> Cc: Santosh Shilimkar <santosh.shilimkar@oracle.com> Cc: sparclinux@vger.kernel.org Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-29sparc64: Trim page tables for 8M hugepagesNitin Gupta3-58/+118
For PMD aligned (8M) hugepages, we currently allocate all four page table levels which is wasteful. We now allocate till PMD level only which saves memory usage from page tables. Also, when freeing page table for 8M hugepage backed region, make sure we don't try to access non-existent PTE level. Orabug: 22630259 Signed-off-by: Nitin Gupta <nitin.m.gupta@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-28sparc64 mm: Fix base TSB sizing when hugetlb pages are usedMike Kravetz5-14/+17
do_sparc64_fault() calculates both the base and huge page RSS sizes and uses this information in calls to tsb_grow(). The calculation for base page TSB size is not correct if the task uses hugetlb pages. hugetlb pages are not accounted for in RSS, therefore the call to get_mm_rss(mm) does not include hugetlb pages. However, the number of pages based on huge_pte_count (which does include hugetlb pages) is subtracted from this value. This will result in an artificially small and often negative RSS calculation. The base TSB size is then often set to max_tsb_size as the passed RSS is unsigned, so a negative value looks really big. THP pages are also accounted for in huge_pte_count, and THP pages are accounted for in RSS so the calculation in do_sparc64_fault() is correct if a task only uses THP pages. A single huge_pte_count is not sufficient for TSB sizing if both hugetlb and THP pages can be used. Instead of a single counter, use two: one for hugetlb and one for THP. Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-07-26mm: do not pass mm_struct into handle_mm_faultKirill A. Shutemov2-3/+3
We always have vma->vm_mm around. Link: http://lkml.kernel.org/r/1466021202-61880-8-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-24tree wide: get rid of __GFP_REPEAT for order-0 allocations part IMichal Hocko1-4/+2
This is the third version of the patchset previously sent [1]. I have basically only rebased it on top of 4.7-rc1 tree and dropped "dm: get rid of superfluous gfp flags" which went through dm tree. I am sending it now because it is tree wide and chances for conflicts are reduced considerably when we want to target rc2. I plan to send the next step and rename the flag and move to a better semantic later during this release cycle so we will have a new semantic ready for 4.8 merge window hopefully. Motivation: While working on something unrelated I've checked the current usage of __GFP_REPEAT in the tree. It seems that a majority of the usage is and always has been bogus because __GFP_REPEAT has always been about costly high order allocations while we are using it for order-0 or very small orders very often. It seems that a big pile of them is just a copy&paste when a code has been adopted from one arch to another. I think it makes some sense to get rid of them because they are just making the semantic more unclear. Please note that GFP_REPEAT is documented as * __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt * _might_ fail. This depends upon the particular VM implementation. while !costly requests have basically nofail semantic. So one could reasonably expect that order-0 request with __GFP_REPEAT will not loop for ever. This is not implemented right now though. I would like to move on with __GFP_REPEAT and define a better semantic for it. $ git grep __GFP_REPEAT origin/master | wc -l 111 $ git grep __GFP_REPEAT | wc -l 36 So we are down to the third after this patch series. The remaining places really seem to be relying on __GFP_REPEAT due to large allocation requests. This still needs some double checking which I will do later after all the simple ones are sorted out. I am touching a lot of arch specific code here and I hope I got it right but as a matter of fact I even didn't compile test for some archs as I do not have cross compiler for them. Patches should be quite trivial to review for stupid compile mistakes though. The tricky parts are usually hidden by macro definitions and thats where I would appreciate help from arch maintainers. [1] http://lkml.kernel.org/r/1461849846-27209-1-git-send-email-mhocko@kernel.org This patch (of 19): __GFP_REPEAT has a rather weak semantic but since it has been introduced around 2.6.12 it has been ignored for low order allocations. Yet we have the full kernel tree with its usage for apparently order-0 allocations. This is really confusing because __GFP_REPEAT is explicitly documented to allow allocation failures which is a weaker semantic than the current order-0 has (basically nofail). Let's simply drop __GFP_REPEAT from those places. This would allow to identify place which really need allocator to retry harder and formulate a more specific semantic for what the flag is supposed to do actually. Link: http://lkml.kernel.org/r/1464599699-30131-2-git-send-email-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andy Lutomirski <luto@kernel.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chen Liqin <liqin.linux@gmail.com> Cc: Chris Metcalf <cmetcalf@mellanox.com> [for tile] Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jan Kara <jack@suse.cz> Cc: John Crispin <blogic@openwrt.org> Cc: Lennox Wu <lennox.wu@gmail.com> Cc: Ley Foon Tan <lftan@altera.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-25sparc64: Take ctx_alloc_lock properly in hugetlb_setup().David S. Miller1-3/+7
On cheetahplus chips we take the ctx_alloc_lock in order to modify the TLB lookup parameters for the indexed TLBs, which are stored in the context register. This is called with interrupts disabled, however ctx_alloc_lock is an IRQ safe lock, therefore we must take acquire/release it properly with spin_{lock,unlock}_irq(). Reported-by: Meelis Roos <mroos@linux.ee> Tested-by: Meelis Roos <mroos@linux.ee> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-20sparc64: Reduce TLB flushes during hugepte changesNitin Gupta4-39/+63
During hugepage map/unmap, TSB and TLB flushes are currently issued at every PAGE_SIZE'd boundary which is unnecessary. We now issue the flush at REAL_HPAGE_SIZE boundaries only. Without this patch workloads which unmap a large hugepage backed VMA region get CPU lockups due to excessive TLB flush calls. Orabug: 22365539, 22643230, 22995196 Signed-off-by: Nitin Gupta <nitin.m.gupta@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-20sparc32: drop superfluous cast in calls to __nocache_pa()Sam Ravnborg1-2/+2
Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-05-20sparc32: fix build with STRICT_MM_TYPECHECKSSam Ravnborg2-7/+12
Based on recent thread on linux-arch (some weeks ago) I decided to check how much work was required to build sparc32 with STRICT_MM_TYPECHECKS enabled. The resulting binary (checked srmmu.o) was to my suprise smaller with STRICT_MM_TYPECHECKS defined, than without. As I have no working gear to test sparc32 bits at for the moment, I did not enable STRICT_MM_TYPECHECKS - but was tempeted to do so. Signed-off-by: Sam Ravnborg <sam@ravnborg.org> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-04-21sparc64: recognize and support Sonoma CPU typeKhalid Aziz1-0/+3
Add code to recognize SPARC-Sonoma cpu correctly and update cpu hardware caps and cpu distribution map. SPARC-Sonoma is based upon SPARC-M7 core along with additional PCI functions added on and is reported by firmware as "SPARC-SN". Signed-off-by: Khalid Aziz <khalid.aziz@oracle.com> Acked-by: Allen Pais <allen.pais@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-28Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparcLinus Torvalds1-4/+4
Pull sparc fixes from David Miller: "Minor typing cleanup from Joe Perches, and some comment typo fixes from Adam Buchbinder" * git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc: sparc: Convert naked unsigned uses to unsigned int sparc: Fix misspellings in comments.
2016-03-20sparc: Convert naked unsigned uses to unsigned intJoe Perches1-4/+4
Use the more normal kernel definition/declaration style. Done via: $ git ls-files arch/sparc | \ xargs ./scripts/checkpatch.pl -f --fix-inplace --types=unspecified_int Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-03-20Merge branch 'mm-pkeys-for-linus' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 protection key support from Ingo Molnar: "This tree adds support for a new memory protection hardware feature that is available in upcoming Intel CPUs: 'protection keys' (pkeys). There's a background article at LWN.net: https://lwn.net/Articles/643797/ The gist is that protection keys allow the encoding of user-controllable permission masks in the pte. So instead of having a fixed protection mask in the pte (which needs a system call to change and works on a per page basis), the user can map a (handful of) protection mask variants and can change the masks runtime relatively cheaply, without having to change every single page in the affected virtual memory range. This allows the dynamic switching of the protection bits of large amounts of virtual memory, via user-space instructions. It also allows more precise control of MMU permission bits: for example the executable bit is separate from the read bit (see more about that below). This tree adds the MM infrastructure and low level x86 glue needed for that, plus it adds a high level API to make use of protection keys - if a user-space application calls: mmap(..., PROT_EXEC); or mprotect(ptr, sz, PROT_EXEC); (note PROT_EXEC-only, without PROT_READ/WRITE), the kernel will notice this special case, and will set a special protection key on this memory range. It also sets the appropriate bits in the Protection Keys User Rights (PKRU) register so that the memory becomes unreadable and unwritable. So using protection keys the kernel is able to implement 'true' PROT_EXEC on x86 CPUs: without protection keys PROT_EXEC implies PROT_READ as well. Unreadable executable mappings have security advantages: they cannot be read via information leaks to figure out ASLR details, nor can they be scanned for ROP gadgets - and they cannot be used by exploits for data purposes either. We know about no user-space code that relies on pure PROT_EXEC mappings today, but binary loaders could start making use of this new feature to map binaries and libraries in a more secure fashion. There is other pending pkeys work that offers more high level system call APIs to manage protection keys - but those are not part of this pull request. Right now there's a Kconfig that controls this feature (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) that is default enabled (like most x86 CPU feature enablement code that has no runtime overhead), but it's not user-configurable at the moment. If there's any serious problem with this then we can make it configurable and/or flip the default" * 'mm-pkeys-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits) x86/mm/pkeys: Fix mismerge of protection keys CPUID bits mm/pkeys: Fix siginfo ABI breakage caused by new u64 field x86/mm/pkeys: Fix access_error() denial of writes to write-only VMA mm/core, x86/mm/pkeys: Add execute-only protection keys support x86/mm/pkeys: Create an x86 arch_calc_vm_prot_bits() for VMA flags x86/mm/pkeys: Allow kernel to modify user pkey rights register x86/fpu: Allow setting of XSAVE state x86/mm: Factor out LDT init from context init mm/core, x86/mm/pkeys: Add arch_validate_pkey() mm/core, arch, powerpc: Pass a protection key in to calc_vm_flag_bits() x86/mm/pkeys: Actually enable Memory Protection Keys in the CPU x86/mm/pkeys: Add Kconfig prompt to existing config option x86/mm/pkeys: Dump pkey from VMA in /proc/pid/smaps x86/mm/pkeys: Dump PKRU with other kernel registers mm/core, x86/mm/pkeys: Differentiate instruction fetches x86/mm/pkeys: Optimize fault handling in access_error() mm/core: Do not enforce PKEY permissions on remote mm access um, pkeys: Add UML arch_*_access_permitted() methods mm/gup, x86/mm/pkeys: Check VMAs and PTEs for protection keys x86/mm/gup: Simplify get_user_pages() PTE bit handling ...
2016-03-17mm: cleanup *pte_alloc* interfacesKirill A. Shutemov1-1/+1
There are few things about *pte_alloc*() helpers worth cleaning up: - 'vma' argument is unused, let's drop it; - most __pte_alloc() callers do speculative check for pmd_none(), before taking ptl: let's introduce pte_alloc() macro which does the check. The only direct user of __pte_alloc left is userfaultfd, which has different expectation about atomicity wrt pmd. - pte_alloc_map() and pte_alloc_map_lock() are redefined using pte_alloc(). [sudeep.holla@arm.com: fix build for arm64 hugetlbpage] [sfr@canb.auug.org.au: fix arch/arm/mm/mmu.c some more] Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-16mm/gup: Switch all callers of get_user_pages() to not pass tsk/mmDave Hansen1-1/+1
We will soon modify the vanilla get_user_pages() so it can no longer be used on mm/tasks other than 'current/current->mm', which is by far the most common way it is called. For now, we allow the old-style calls, but warn when they are used. (implemented in previous patch) This patch switches all callers of: get_user_pages() get_user_pages_unlocked() get_user_pages_locked() to stop passing tsk/mm so they will no longer see the warnings. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave@sr71.net> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: jack@suse.cz Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20160212210156.113E9407@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-01-30arch: Set IORESOURCE_SYSTEM_RAM flag for System RAMToshi Kani1-4/+4
Set IORESOURCE_SYSTEM_RAM in flags of resource ranges with "System RAM", "Kernel code", "Kernel data", and "Kernel bss". Note that: - IORESOURCE_SYSRAM (i.e. modifier bit) is set in flags when IORESOURCE_MEM is already set. IORESOURCE_SYSTEM_RAM is defined as (IORESOURCE_MEM|IORESOURCE_SYSRAM). - Some archs do not set 'flags' for children nodes, such as "Kernel code". This patch does not change 'flags' in this case. Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Luis R. Rodriguez <mcgrof@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Toshi Kani <toshi.kani@hp.com> Cc: linux-arch@vger.kernel.org Cc: linux-arm-kernel@lists.infradead.org Cc: linux-mips@linux-mips.org Cc: linux-mm <linux-mm@kvack.org> Cc: linux-parisc@vger.kernel.org Cc: linux-s390@vger.kernel.org Cc: linux-sh@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Cc: sparclinux@vger.kernel.org Link: http://lkml.kernel.org/r/1453841853-11383-7-git-send-email-bp@alien8.de Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-01-15sparc, thp: remove infrastructure for handling splitting PMDsKirill A. Shutemov2-4/+1
With new refcounting we don't need to mark PMDs splitting. Let's drop code to handle this. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Steve Capper <steve.capper@linaro.org> Cc: