Age | Commit message (Collapse) | Author | Files | Lines |
|
[ Upstream commit 7424fc6b86c8980a87169e005f5cd4438d18efe6 ]
Currently ARM64 extracts which specific sanitizer has caused a trap via
encoded data in the trap instruction. Clang on x86 currently encodes the
same data in the UD1 instruction but x86 handle_bug() and
is_valid_bugaddr() currently only look at UD2.
Bring x86 to parity with ARM64, similar to commit 25b84002afb9 ("arm64:
Support Clang UBSAN trap codes for better reporting"). See the llvm
links for information about the code generation.
Enable the reporting of UBSAN sanitizer details on x86 compiled with clang
when CONFIG_UBSAN_TRAP=y by analysing UD1 and retrieving the type immediate
which is encoded by the compiler after the UD1.
[ tglx: Simplified it by moving the printk() into handle_bug() ]
Signed-off-by: Gatlin Newhouse <gatlin.newhouse@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20240724000206.451425-1-gatlin.newhouse@gmail.com
Link: https://github.com/llvm/llvm-project/commit/c5978f42ec8e9#diff-bb68d7cd885f41cfc35843998b0f9f534adb60b415f647109e597ce448e92d9f
Link: https://github.com/llvm/llvm-project/blob/main/llvm/lib/Target/X86/X86InstrSystem.td#L27
Stable-dep-of: 1db272864ff2 ("x86/traps: move kmsan check after instrumentation_begin")
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 86e6b1547b3d013bc392adf775b89318441403c2 upstream.
It turns out that AMD has a "Meltdown Lite(tm)" issue with non-canonical
accesses in kernel space. And so using just the high bit to decide
whether an access is in user space or kernel space ends up with the good
old "leak speculative data" if you have the right gadget using the
result:
CVE-2020-12965 “Transient Execution of Non-Canonical Accesses“
Now, the kernel surrounds the access with a STAC/CLAC pair, and those
instructions end up serializing execution on older Zen architectures,
which closes the speculation window.
But that was true only up until Zen 5, which renames the AC bit [1].
That improves performance of STAC/CLAC a lot, but also means that the
speculation window is now open.
Note that this affects not just the new address masking, but also the
regular valid_user_address() check used by access_ok(), and the asm
version of the sign bit check in the get_user() helpers.
It does not affect put_user() or clear_user() variants, since there's no
speculative result to be used in a gadget for those operations.
Reported-by: Andrew Cooper <andrew.cooper3@citrix.com>
Link: https://lore.kernel.org/all/80d94591-1297-4afb-b510-c665efd37f10@citrix.com/
Link: https://lore.kernel.org/all/20241023094448.GAZxjFkEOOF_DM83TQ@fat_crate.local/ [1]
Link: https://www.amd.com/en/resources/product-security/bulletin/amd-sb-1010.html
Link: https://arxiv.org/pdf/2108.10771
Cc: Josh Poimboeuf <jpoimboe@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Tested-by: Maciej Wieczor-Retman <maciej.wieczor-retman@intel.com> # LAM case
Fixes: 2865baf54077 ("x86: support user address masking instead of non-speculative conditional")
Fixes: 6014bc27561f ("x86-64: make access_ok() independent of LAM")
Fixes: b19b74bc99b1 ("x86/mm: Rework address range check in get_user() and put_user()")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4dc1f31ec3f13a065c7ae2ccdec562b0123e21bb upstream.
The x86 user pointer validation changes made me look at compiler output
a lot, and the wrong indentation for the ".popsection" in the generated
assembler triggered me.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2865baf54077aa98fcdb478cefe6a42c417b9374 upstream.
The Spectre-v1 mitigations made "access_ok()" much more expensive, since
it has to serialize execution with the test for a valid user address.
All the normal user copy routines avoid this by just masking the user
address with a data-dependent mask instead, but the fast
"unsafe_user_read()" kind of patterms that were supposed to be a fast
case got slowed down.
This introduces a notion of using
src = masked_user_access_begin(src);
to do the user address sanity using a data-dependent mask instead of the
more traditional conditional
if (user_read_access_begin(src, len)) {
model.
This model only works for dense accesses that start at 'src' and on
architectures that have a guard region that is guaranteed to fault in
between the user space and the kernel space area.
With this, the user access doesn't need to be manually checked, because
a bad address is guaranteed to fault (by some architecture masking
trick: on x86-64 this involves just turning an invalid user address into
all ones, since we don't map the top of address space).
This only converts a couple of examples for now. Example x86-64 code
generation for loading two words from user space:
stac
mov %rax,%rcx
sar $0x3f,%rcx
or %rax,%rcx
mov (%rcx),%r13
mov 0x8(%rcx),%r14
clac
where all the error handling and -EFAULT is now purely handled out of
line by the exception path.
Of course, if the micro-architecture does badly at 'clac' and 'stac',
the above is still pitifully slow. But at least we did as well as we
could.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e4d2102018542e3ae5e297bc6e229303abff8a0f upstream.
Robert Gill reported below #GP in 32-bit mode when dosemu software was
executing vm86() system call:
general protection fault: 0000 [#1] PREEMPT SMP
CPU: 4 PID: 4610 Comm: dosemu.bin Not tainted 6.6.21-gentoo-x86 #1
Hardware name: Dell Inc. PowerEdge 1950/0H723K, BIOS 2.7.0 10/30/2010
EIP: restore_all_switch_stack+0xbe/0xcf
EAX: 00000000 EBX: 00000000 ECX: 00000000 EDX: 00000000
ESI: 00000000 EDI: 00000000 EBP: 00000000 ESP: ff8affdc
DS: 0000 ES: 0000 FS: 0000 GS: 0033 SS: 0068 EFLAGS: 00010046
CR0: 80050033 CR2: 00c2101c CR3: 04b6d000 CR4: 000406d0
Call Trace:
show_regs+0x70/0x78
die_addr+0x29/0x70
exc_general_protection+0x13c/0x348
exc_bounds+0x98/0x98
handle_exception+0x14d/0x14d
exc_bounds+0x98/0x98
restore_all_switch_stack+0xbe/0xcf
exc_bounds+0x98/0x98
restore_all_switch_stack+0xbe/0xcf
This only happens in 32-bit mode when VERW based mitigations like MDS/RFDS
are enabled. This is because segment registers with an arbitrary user value
can result in #GP when executing VERW. Intel SDM vol. 2C documents the
following behavior for VERW instruction:
#GP(0) - If a memory operand effective address is outside the CS, DS, ES,
FS, or GS segment limit.
CLEAR_CPU_BUFFERS macro executes VERW instruction before returning to user
space. Use %cs selector to reference VERW operand. This ensures VERW will
not #GP for an arbitrary user %ds.
[ mingo: Fixed the SOB chain. ]
Fixes: a0e2dab44d22 ("x86/entry_32: Add VERW just before userspace transition")
Reported-by: Robert Gill <rtgill82@gmail.com>
Reviewed-by: Andrew Cooper <andrew.cooper3@citrix.com
Cc: stable@vger.kernel.org # 5.10+
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=218707
Closes: https://lore.kernel.org/all/8c77ccfd-d561-45a1-8ed5-6b75212c7a58@leemhuis.info/
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Suggested-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3ea87dfa31a7b0bb0ff1675e67b9e54883013074 upstream.
Set this flag if the CPU has an IBPB implementation that does not
invalidate return target predictions. Zen generations < 4 do not flush
the RSB when executing an IBPB and this bug flag denotes that.
[ bp: Massage. ]
Signed-off-by: Johannes Wikner <kwikner@ethz.ch>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ff898623af2ed564300752bba83a680a1e4fec8d upstream.
AMD's initial implementation of IBPB did not clear the return address
predictor. Beginning with Zen4, AMD's IBPB *does* clear the return address
predictor. This behavior is enumerated by CPUID.80000008H:EBX.IBPB_RET[30].
Define X86_FEATURE_AMD_IBPB_RET for use in KVM_GET_SUPPORTED_CPUID,
when determining cross-vendor capabilities.
Suggested-by: Venkatesh Srinivas <venkateshs@chromium.org>
Signed-off-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit d19d638b1e6cf746263ef60b7d0dee0204d8216a ]
Modern (fortified) memcpy() prefers to avoid writing (or reading) beyond
the end of the addressed destination (or source) struct member:
In function ‘fortify_memcpy_chk’,
inlined from ‘syscall_get_arguments’ at ./arch/x86/include/asm/syscall.h:85:2,
inlined from ‘populate_seccomp_data’ at kernel/seccomp.c:258:2,
inlined from ‘__seccomp_filter’ at kernel/seccomp.c:1231:3:
./include/linux/fortify-string.h:580:25: error: call to ‘__read_overflow2_field’ declared with attribute warning: detected read beyond size of field (2nd parameter); maybe use struct_group()? [-Werror=attribute-warning]
580 | __read_overflow2_field(q_size_field, size);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As already done for x86_64 and compat mode, do not use memcpy() to
extract syscall arguments from struct pt_regs but rather just perform
direct assignments. Binary output differences are negligible, and actually
ends up using less stack space:
- sub $0x84,%esp
+ sub $0x6c,%esp
and less text size:
text data bss dec hex filename
10794 252 0 11046 2b26 gcc-32b/kernel/seccomp.o.stock
10714 252 0 10966 2ad6 gcc-32b/kernel/seccomp.o.after
Closes: https://lore.kernel.org/lkml/9b69fb14-df89-4677-9c82-056ea9e706f5@gmail.com/
Reported-by: Mirsad Todorovac <mtodorovac69@gmail.com>
Signed-off-by: Kees Cook <kees@kernel.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Mirsad Todorovac <mtodorovac69@gmail.com>
Link: https://lore.kernel.org/all/20240708202202.work.477-kees%40kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 24cf2bc982ffe02aeffb4a3885c71751a2c7023b ]
Assume there's a multithreaded application that runs untrusted user
code. Each thread has its stack/code protected by a non-zero PKEY, and the
PKRU register is set up such that only that particular non-zero PKEY is
enabled. Each thread also sets up an alternate signal stack to handle
signals, which is protected by PKEY zero. The PKEYs man page documents that
the PKRU will be reset to init_pkru when the signal handler is invoked,
which means that PKEY zero access will be enabled. But this reset happens
after the kernel attempts to push fpu state to the alternate stack, which
is not (yet) accessible by the kernel, which leads to a new SIGSEGV being
sent to the application, terminating it.
Enabling both the non-zero PKEY (for the thread) and PKEY zero in
userspace will not work for this use case. It cannot have the alt stack
writeable by all - the rationale here is that the code running in that
thread (using a non-zero PKEY) is untrusted and should not have access
to the alternate signal stack (that uses PKEY zero), to prevent the
return address of a function from being changed. The expectation is that
kernel should be able to set up the alternate signal stack and deliver
the signal to the application even if PKEY zero is explicitly disabled
by the application. The signal handler accessibility should not be
dictated by whatever PKRU value the thread sets up.
The PKRU register is managed by XSAVE, which means the sigframe contents
must match the register contents - which is not the case here. It's
required that the signal frame contains the user-defined PKRU value (so
that it is restored correctly from sigcontext) but the actual register must
be reset to init_pkru so that the alt stack is accessible and the signal
can be delivered to the application. It seems that the proper fix here
would be to remove PKRU from the XSAVE framework and manage it separately,
which is quite complicated. As a workaround, do this:
orig_pkru = rdpkru();
wrpkru(orig_pkru & init_pkru_value);
xsave_to_user_sigframe();
put_user(pkru_sigframe_addr, orig_pkru)
In preparation for writing PKRU to sigframe, pass PKRU as an additional
parameter down the call chain from get_sigframe().
No functional change.
Signed-off-by: Aruna Ramakrishna <aruna.ramakrishna@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20240802061318.2140081-2-aruna.ramakrishna@oracle.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 838ba7733e4e3a94a928e8d0a058de1811a58621 ]
Logical destination mode of the local APIC is used for systems with up to
8 CPUs. It has an advantage over physical destination mode as it allows to
target multiple CPUs at once with IPIs.
That advantage was definitely worth it when systems with up to 8 CPUs
were state of the art for servers and workstations, but that's history.
Aside of that there are systems which fail to work with logical destination
mode as the ACPI/DMI quirks show and there are AMD Zen1 systems out there
which fail when interrupt remapping is enabled as reported by Rob and
Christian. The latter problem can be cured by firmware updates, but not all
OEMs distribute the required changes.
Physical destination mode is guaranteed to work because it is the only way
to get a CPU up and running via the INIT/INIT/STARTUP sequence.
As the number of CPUs keeps increasing, logical destination mode becomes a
less used code path so there is no real good reason to keep it around.
Therefore remove logical destination mode support for 64-bit and default to
physical destination mode.
Reported-by: Rob Newcater <rob@durendal.co.uk>
Reported-by: Christian Heusel <christian@heusel.eu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Rob Newcater <rob@durendal.co.uk>
Link: https://lore.kernel.org/all/877cd5u671.ffs@tglx
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 2b9ac0b84c2cae91bbaceab62df4de6d503421ec ]
Currently, struct snp_guest_msg includes a message header (96 bytes) and
a payload (4000 bytes). There is an implicit assumption here that the
SNP message header will always be 96 bytes, and with that assumption the
payload array size has been set to 4000 bytes - a magic number. If any
new member is added to the SNP message header, the SNP guest message
will span more than a page.
Instead of using a magic number for the payload, declare struct
snp_guest_msg in a way that payload plus the message header do not
exceed a page.
[ bp: Massage. ]
Suggested-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Nikunj A Dadhania <nikunj@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240731150811.156771-5-nikunj@amd.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 477d81a1c47a1b79b9c08fc92b5dea3c5143800b upstream.
common_interrupt() and related variants call kvm_set_cpu_l1tf_flush_l1d(),
which is neither marked noinstr nor __always_inline.
So compiler puts it out of line and adds instrumentation to it. Since the
call is inside of instrumentation_begin/end(), objtool does not warn about
it.
The manifestation is that KCOV produces spurious coverage in
kvm_set_cpu_l1tf_flush_l1d() in random places because the call happens when
preempt count is not yet updated to say that the kernel is in an interrupt.
Mark kvm_set_cpu_l1tf_flush_l1d() as __always_inline and move it out of the
instrumentation_begin/end() section. It only calls __this_cpu_write()
which is already safe to call in noinstr contexts.
Fixes: 6368558c3710 ("x86/entry: Provide IDTENTRY_SYSVEC")
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexander Potapenko <glider@google.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/3f9a1de9e415fcb53d07dc9e19fa8481bb021b1b.1718092070.git.dvyukov@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 73b42dc69be8564d4951a14d00f827929fe5ef79 upstream.
Re-introduce the "split" x2APIC ICR storage that KVM used prior to Intel's
IPI virtualization support, but only for AMD. While not stated anywhere
in the APM, despite stating the ICR is a single 64-bit register, AMD CPUs
store the 64-bit ICR as two separate 32-bit values in ICR and ICR2. When
IPI virtualization (IPIv on Intel, all AVIC flavors on AMD) is enabled,
KVM needs to match CPU behavior as some ICR ICR writes will be handled by
the CPU, not by KVM.
Add a kvm_x86_ops knob to control the underlying format used by the CPU to
store the x2APIC ICR, and tune it to AMD vs. Intel regardless of whether
or not x2AVIC is enabled. If KVM is handling all ICR writes, the storage
format for x2APIC mode doesn't matter, and having the behavior follow AMD
versus Intel will provide better test coverage and ease debugging.
Fixes: 4d1d7942e36a ("KVM: SVM: Introduce logic to (de)activate x2AVIC mode")
Cc: stable@vger.kernel.org
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Link: https://lore.kernel.org/r/20240719235107.3023592-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 9221222c717dbddac1e3c49906525475d87a3a44 upstream.
When running as a Xen PV dom0 the system needs to map ACPI data of the
host using host physical addresses, while those addresses can conflict
with the guest physical addresses of the loaded linux kernel. The same
problem might apply in case a PV guest is configured to use the host
memory map.
This conflict can be solved by mapping the ACPI data to a different
guest physical address, but mapping the data via acpi_os_ioremap()
must still be possible using the host physical address, as this
address might be generated by AML when referencing some of the ACPI
data.
When configured to support running as a Xen PV domain, have an
implementation of acpi_os_ioremap() being aware of the possibility to
need above mentioned translation of a host physical address to the
guest physical address.
This modification requires to #include linux/acpi.h in some sources
which need to include asm/acpi.h directly.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux
Pull hyperv fixes from Wei Liu:
- Add a documentation overview of Confidential Computing VM support
(Michael Kelley)
- Use lapic timer in a TDX VM without paravisor (Dexuan Cui)
- Set X86_FEATURE_TSC_KNOWN_FREQ when Hyper-V provides frequency
(Michael Kelley)
- Fix a kexec crash due to VP assist page corruption (Anirudh
Rayabharam)
- Python3 compatibility fix for lsvmbus (Anthony Nandaa)
- Misc fixes (Rachel Menge, Roman Kisel, zhang jiao, Hongbo Li)
* tag 'hyperv-fixes-signed-20240908' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux:
hv: vmbus: Constify struct kobj_type and struct attribute_group
tools: hv: rm .*.cmd when make clean
x86/hyperv: fix kexec crash due to VP assist page corruption
Drivers: hv: vmbus: Fix the misplaced function description
tools: hv: lsvmbus: change shebang to use python3
x86/hyperv: Set X86_FEATURE_TSC_KNOWN_FREQ when Hyper-V provides frequency
Documentation: hyperv: Add overview of Confidential Computing VM support
clocksource: hyper-v: Use lapic timer in a TDX VM without paravisor
Drivers: hv: Remove deprecated hv_fcopy declarations
|
|
commit 9636be85cc5b ("x86/hyperv: Fix hyperv_pcpu_input_arg handling when
CPUs go online/offline") introduces a new cpuhp state for hyperv
initialization.
cpuhp_setup_state() returns the state number if state is
CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN and 0 for all other states.
For the hyperv case, since a new cpuhp state was introduced it would
return 0. However, in hv_machine_shutdown(), the cpuhp_remove_state() call
is conditioned upon "hyperv_init_cpuhp > 0". This will never be true and
so hv_cpu_die() won't be called on all CPUs. This means the VP assist page
won't be reset. When the kexec kernel tries to setup the VP assist page
again, the hypervisor corrupts the memory region of the old VP assist page
causing a panic in case the kexec kernel is using that memory elsewhere.
This was originally fixed in commit dfe94d4086e4 ("x86/hyperv: Fix kexec
panic/hang issues").
Get rid of hyperv_init_cpuhp entirely since we are no longer using a
dynamic cpuhp state and use CPUHP_AP_HYPERV_ONLINE directly with
cpuhp_remove_state().
Cc: stable@vger.kernel.org
Fixes: 9636be85cc5b ("x86/hyperv: Fix hyperv_pcpu_input_arg handling when CPUs go online/offline")
Signed-off-by: Anirudh Rayabharam (Microsoft) <anirudh@anirudhrb.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Michael Kelley <mhklinux@outlook.com>
Link: https://lore.kernel.org/r/20240828112158.3538342-1-anirudh@anirudhrb.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Message-ID: <20240828112158.3538342-1-anirudh@anirudhrb.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
- x2apic_disable() clears x2apic_state and x2apic_mode unconditionally,
even when the state is X2APIC_ON_LOCKED, which prevents the kernel to
disable it thereby creating inconsistent state.
Reorder the logic so it actually works correctly
- The XSTATE logic for handling LBR is incorrect as it assumes that
XSAVES supports LBR when the CPU supports LBR. In fact both
conditions need to be true. Otherwise the enablement of LBR in the
IA32_XSS MSR fails and subsequently the machine crashes on the next
XRSTORS operation because IA32_XSS is not initialized.
Cache the XSTATE support bit during init and make the related
functions use this cached information and the LBR CPU feature bit to
cure this.
- Cure a long standing bug in KASLR
KASLR uses the full address space between PAGE_OFFSET and vaddr_end
to randomize the starting points of the direct map, vmalloc and
vmemmap regions. It thereby limits the size of the direct map by
using the installed memory size plus an extra configurable margin for
hot-plug memory. This limitation is done to gain more randomization
space because otherwise only the holes between the direct map,
vmalloc, vmemmap and vaddr_end would be usable for randomizing.
The limited direct map size is not exposed to the rest of the kernel,
so the memory hot-plug and resource management related code paths
still operate under the assumption that the available address space
can be determined with MAX_PHYSMEM_BITS.
request_free_mem_region() allocates from (1 << MAX_PHYSMEM_BITS) - 1
downwards. That means the first allocation happens past the end of
the direct map and if unlucky this address is in the vmalloc space,
which causes high_memory to become greater than VMALLOC_START and
consequently causes iounmap() to fail for valid ioremap addresses.
Cure this by exposing the end of the direct map via PHYSMEM_END and
use that for the memory hot-plug and resource management related
places instead of relying on MAX_PHYSMEM_BITS. In the KASLR case
PHYSMEM_END maps to a variable which is initialized by the KASLR
initialization and otherwise it is based on MAX_PHYSMEM_BITS as
before.
- Prevent a data leak in mmio_read(). The TDVMCALL exposes the value of
an initialized variabled on the stack to the VMM. The variable is
only required as output value, so it does not have to exposed to the
VMM in the first place.
- Prevent an array overrun in the resource control code on systems with
Sub-NUMA Clustering enabled because the code failed to adjust the
index by the number of SNC nodes per L3 cache.
* tag 'x86-urgent-2024-09-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/resctrl: Fix arch_mbm_* array overrun on SNC
x86/tdx: Fix data leak in mmio_read()
x86/kaslr: Expose and use the end of the physical memory address space
x86/fpu: Avoid writing LBR bit to IA32_XSS unless supported
x86/apic: Make x2apic_disable() work correctly
|
|
When using resctrl on systems with Sub-NUMA Clustering enabled, monitoring
groups may be allocated RMID values which would overrun the
arch_mbm_{local,total} arrays.
This is due to inconsistencies in whether the SNC-adjusted num_rmid value or
the unadjusted value in resctrl_arch_system_num_rmid_idx() is used. The
num_rmid value for the L3 resource is currently:
resctrl_arch_system_num_rmid_idx() / snc_nodes_per_l3_cache
As a simple fix, make resctrl_arch_system_num_rmid_idx() return the
SNC-adjusted, L3 num_rmid value on x86.
Fixes: e13db55b5a0d ("x86/resctrl: Introduce snc_nodes_per_l3_cache")
Signed-off-by: Peter Newman <peternewman@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20240822190212.1848788-1-peternewman@google.com
|
|
iounmap() on x86 occasionally fails to unmap because the provided valid
ioremap address is not below high_memory. It turned out that this
happens due to KASLR.
KASLR uses the full address space between PAGE_OFFSET and vaddr_end to
randomize the starting points of the direct map, vmalloc and vmemmap
regions. It thereby limits the size of the direct map by using the
installed memory size plus an extra configurable margin for hot-plug
memory. This limitation is done to gain more randomization space
because otherwise only the holes between the direct map, vmalloc,
vmemmap and vaddr_end would be usable for randomizing.
The limited direct map size is not exposed to the rest of the kernel, so
the memory hot-plug and resource management related code paths still
operate under the assumption that the available address space can be
determined with MAX_PHYSMEM_BITS.
request_free_mem_region() allocates from (1 << MAX_PHYSMEM_BITS) - 1
downwards. That means the first allocation happens past the end of the
direct map and if unlucky this address is in the vmalloc space, which
causes high_memory to become greater than VMALLOC_START and consequently
causes iounmap() to fail for valid ioremap addresses.
MAX_PHYSMEM_BITS cannot be changed for that because the randomization
does not align with address bit boundaries and there are other places
which actually require to know the maximum number of address bits. All
remaining usage sites of MAX_PHYSMEM_BITS have been analyzed and found
to be correct.
Cure this by exposing the end of the direct map via PHYSMEM_END and use
that for the memory hot-plug and resource management related places
instead of relying on MAX_PHYSMEM_BITS. In the KASLR case PHYSMEM_END
maps to a variable which is initialized by the KASLR initialization and
otherwise it is based on MAX_PHYSMEM_BITS as before.
To prevent future hickups add a check into add_pages() to catch callers
trying to add memory above PHYSMEM_END.
Fixes: 0483e1fa6e09 ("x86/mm: Implement ASLR for kernel memory regions")
Reported-by: Max Ramanouski <max8rr8@gmail.com>
Reported-by: Alistair Popple <apopple@nvidia.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-By: Max Ramanouski <max8rr8@gmail.com>
Tested-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Kees Cook <kees@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/87ed6soy3z.ffs@tglx
|
|
There are two distinct CPU features related to the use of XSAVES and LBR:
whether LBR is itself supported and whether XSAVES supports LBR. The LBR
subsystem correctly checks both in intel_pmu_arch_lbr_init(), but the
XSTATE subsystem does not.
The LBR bit is only removed from xfeatures_mask_independent when LBR is not
supported by the CPU, but there is no validation of XSTATE support.
If XSAVES does not support LBR the write to IA32_XSS causes a #GP fault,
leaving the state of IA32_XSS unchanged, i.e. zero. The fault is handled
with a warning and the boot continues.
Consequently the next XRSTORS which tries to restore supervisor state fails
with #GP because the RFBM has zero for all supervisor features, which does
not match the XCOMP_BV field.
As XFEATURE_MASK_FPSTATE includes supervisor features setting up the FPU
causes a #GP, which ends up in fpu_reset_from_exception_fixup(). That fails
due to the same problem resulting in recursive #GPs until the kernel runs
out of stack space and double faults.
Prevent this by storing the supported independent features in
fpu_kernel_cfg during XSTATE initialization and use that cached value for
retrieving the independent feature bits to be written into IA32_XSS.
[ tglx: Massaged change log ]
Fixes: f0dccc9da4c0 ("x86/fpu/xstate: Support dynamic supervisor feature for LBR")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Mitchell Levy <levymitchell0@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20240812-xsave-lbr-fix-v3-1-95bac1bf62f4@gmail.com
|
|
Disallow read-only memslots for SEV-{ES,SNP} VM types, as KVM can't
directly emulate instructions for ES/SNP, and instead the guest must
explicitly request emulation. Unless the guest explicitly requests
emulation without accessing memory, ES/SNP relies on KVM creating an MMIO
SPTE, with the subsequent #NPF being reflected into the guest as a #VC.
But for read-only memslots, KVM deliberately doesn't create MMIO SPTEs,
because except for ES/SNP, doing so requires setting reserved bits in the
SPTE, i.e. the SPTE can't be readable while also generating a #VC on
writes. Because KVM never creates MMIO SPTEs and jumps directly to
emulation, the guest never gets a #VC. And since KVM simply resumes the
guest if ES/SNP guests trigger emulation, KVM effectively puts the vCPU
into an infinite #NPF loop if the vCPU attempts to write read-only memory.
Disallow read-only memory for all VMs with protected state, i.e. for
upcoming TDX VMs as well as ES/SNP VMs. For TDX, it's actually possible
to support read-only memory, as TDX uses EPT Violation #VE to reflect the
fault into the guest, e.g. KVM could configure read-only SPTEs with RX
protections and SUPPRESS_VE=0. But there is no strong use case for
supporting read-only memslots on TDX, e.g. the main historical usage is
to emulate option ROMs, but TDX disallows executing from shared memory.
And if someone comes along with a legitimate, strong use case, the
restriction can always be lifted for TDX.
Don't bother trying to retroactively apply the restriction to SEV-ES
VMs that are created as type KVM_X86_DEFAULT_VM. Read-only memslots can't
possibly work for SEV-ES, i.e. disallowing such memslots is really just
means reporting an error to userspace instead of silently hanging vCPUs.
Trying to deal with the ordering between KVM_SEV_INIT and memslot creation
isn't worth the marginal benefit it would provide userspace.
Fixes: 26c44aa9e076 ("KVM: SEV: define VM types for SEV and SEV-ES")
Fixes: 1dfe571c12cf ("KVM: SEV: Add initial SEV-SNP support")
Cc: Peter Gonda <pgonda@google.com>
Cc: Michael Roth <michael.roth@amd.com>
Cc: Vishal Annapurve <vannapurve@google.com>
Cc: Ackerly Tng <ackerleytng@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240809190319.1710470-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The kernel can change spinlock behavior when running as a guest. But this
guest-friendly behavior causes performance problems on bare metal.
The kernel uses a static key to switch between the two modes.
In theory, the static key is enabled by default (run in guest mode) and
should be disabled for bare metal (and in some guests that want native
behavior or paravirt spinlock).
A performance drop is reported when running encode/decode workload and
BenchSEE cache sub-workload.
Bisect points to commit ce0a1b608bfc ("x86/paravirt: Silence unused
native_pv_lock_init() function warning"). When CONFIG_PARAVIRT_SPINLOCKS is
disabled the virt_spin_lock_key is incorrectly set to true on bare
metal. The qspinlock degenerates to test-and-set spinlock, which decreases
the performance on bare metal.
Set the default value of virt_spin_lock_key to false. If booting in a VM,
enable this key. Later during the VM initialization, if other
high-efficient spinlock is preferred (e.g. paravirt-spinlock), or the user
wants the native qspinlock (via nopvspin boot commandline), the
virt_spin_lock_key is disabled accordingly.
This results in the following decision matrix:
X86_FEATURE_HYPERVISOR Y Y Y N
CONFIG_PARAVIRT_SPINLOCKS Y Y N Y/N
PV spinlock Y N N Y/N
virt_spin_lock_key N Y/N Y N
Fixes: ce0a1b608bfc ("x86/paravirt: Silence unused native_pv_lock_init() function warning")
Reported-by: Prem Nath Dey <prem.nath.dey@intel.com>
Reported-by: Xiaoping Zhou <xiaoping.zhou@intel.com>
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Suggested-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Suggested-by: Nikolay Borisov <nik.borisov@suse.com>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20240806112207.29792-1-yu.c.chen@intel.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
- Prevent a deadlock on cpu_hotplug_lock in the aperf/mperf driver.
A recent change in the ACPI code which consolidated code pathes moved
the invocation of init_freq_invariance_cppc() to be moved to a CPU
hotplug handler. The first invocation on AMD CPUs ends up enabling a
static branch which dead locks because the static branch enable tries
to acquire cpu_hotplug_lock but that lock is already held write by
the hotplug machinery.
Use static_branch_enable_cpuslocked() instead and take the hotplug
lock read for the Intel code path which is invoked from the
architecture code outside of the CPU hotplug operations.
- Fix the number of reserved bits in the sev_config structure bit field
so that the bitfield does not exceed 64 bit.
- Add missing Zen5 model numbers
- Fix the alignment assumptions of pti_clone_pgtable() and
clone_entry_text() on 32-bit:
The code assumes PMD aligned code sections, but on 32-bit the kernel
entry text is not PMD aligned. So depending on the code size and
location, which is configuration and compiler dependent, entry text
can cross a PMD boundary. As the start is not PMD aligned adding PMD
size to the start address is larger than the end address which
results in partially mapped entry code for user space. That causes
endless recursion on the first entry from userspace (usually #PF).
Cure this by aligning the start address in the addition so it ends up
at the next PMD start address.
clone_entry_text() enforces PMD mapping, but on 32-bit the tail might
eventually be PTE mapped, which causes a map fail because the PMD for
the tail is not a large page mapping. Use PTI_LEVEL_KERNEL_IMAGE for
the clone() invocation which resolves to PTE on 32-bit and PMD on
64-bit.
- Zero the 8-byte case for get_user() on range check failure on 32-bit
The recend consolidation of the 8-byte get_user() case broke the
zeroing in the failure case again. Establish it by clearing ECX
before the range check and not afterwards as that obvioulsy can't be
reached when the range check fails
* tag 'x86-urgent-2024-08-04' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/uaccess: Zero the 8-byte get_range case on failure on 32-bit
x86/mm: Fix pti_clone_entry_text() for i386
x86/mm: Fix pti_clone_pgtable() alignment assumption
x86/setup: Parse the builtin command line before merging
x86/CPU/AMD: Add models 0x60-0x6f to the Zen5 range
x86/sev: Fix __reserved field in sev_config
x86/aperfmperf: Fix deadlock on cpu_hotplug_lock
|
|
* fix latent bug in how usage of large pages is determined for
confidential VMs
* fix "underline too short" in docs
* eliminate log spam from limited APIC timer periods
* disallow pre-faulting of memory before SEV-SNP VMs are initialized
* delay clearing and encrypting private memory until it is added to
guest page tables
* this change also enables another small cleanup: the checks in
SNP_LAUNCH_UPDATE that limit it to non-populated, private pages
can now be moved in the common kvm_gmem_populate() function
|
|
Commit in Fixes was added as a catch-all for cases where the cmdline is
parsed before being merged with the builtin one.
And promptly one issue appeared, see Link below. The microcode loader
really needs to parse it that early, but the merging happens later.
Reshuffling the early boot nightmare^W code to handle that properly would
be a painful exercise for another day so do the chicken thing and parse the
builtin cmdline too before it has been merged.
Fixes: 0c40b1c7a897 ("x86/setup: Warn when option parsing is done too early")
Reported-by: Mike Lothian <mike@fireburn.co.uk>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20240730152108.GAZqkE5Dfi9AuKllRw@fat_crate.local
Link: https://lore.kernel.org/r/20240722152330.GCZp55ck8E_FT4kPnC@fat_crate.local
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen fixes from Juergen Gross:
"Two fixes for issues introduced in this merge window:
- fix enhanced debugging in the Xen multicall handling
- two patches fixing a boot failure when running as dom0 in PVH mode"
* tag 'for-linus-6.11-rc1a-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
x86/xen: fix memblock_reserve() usage on PVH
x86/xen: move xen_reserve_extra_memory()
xen: fix multicall debug data referencing
|
|
KVM_PRE_FAULT_MEMORY for an SNP guest can race with
sev_gmem_post_populate() in bad ways. The following sequence for
instance can potentially trigger an RMP fault:
thread A, sev_gmem_post_populate: called
thread B, sev_gmem_prepare: places below 'pfn' in a private state in RMP
thread A, sev_gmem_post_populate: *vaddr = kmap_local_pfn(pfn + i);
thread A, sev_gmem_post_populate: copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE);
RMP #PF
Fix this by only allowing KVM_PRE_FAULT_MEMORY to run after a guest's
initial private memory contents have been finalized via
KVM_SEV_SNP_LAUNCH_FINISH.
Beyond fixing this issue, it just sort of makes sense to enforce this,
since the KVM_PRE_FAULT_MEMORY documentation states:
"KVM maps memory as if the vCPU generated a stage-2 read page fault"
which sort of implies we should be acting on the same guest state that a
vCPU would see post-launch after the initial guest memory is all set up.
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The current usage of memblock_reserve() in init_pvh_bootparams() is done before
the .bss is zeroed, and that used to be fine when
memblock_reserved_init_regions implicitly ended up in the .meminit.data
section. However after commit 73db3abdca58c memblock_reserved_init_regions
ends up in the .bss section, thus breaking it's usage before the .bss is
cleared.
Move and rename the call to xen_reserve_extra_memory() so it's done in the
x86_init.oem.arch_setup hook, which gets executed after the .bss has been
zeroed, but before calling e820__memory_setup().
Fixes: 73db3abdca58c ("init/modpost: conditionally check section mismatch to __meminit*")
Signed-off-by: Roger Pau Monné <roger.pau@citrix.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Message-ID: <20240725073116.14626-3-roger.pau@citrix.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/crng/random
Pull random number generator updates from Jason Donenfeld:
"This adds getrandom() support to the vDSO.
First, it adds a new kind of mapping to mmap(2), MAP_DROPPABLE, which
lets the kernel zero out pages anytime under memory pressure, which
enables allocating memory that never gets swapped to disk but also
doesn't count as being mlocked.
Then, the vDSO implementation of getrandom() is introduced in a
generic manner and hooked into random.c.
Next, this is implemented on x86. (Also, though it's not ready for
this pull, somebody has begun an arm64 implementation already)
Finally, two vDSO selftests are added.
There are also two housekeeping cleanup commits"
* tag 'random-6.11-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random:
MAINTAINERS: add random.h headers to RNG subsection
random: note that RNDGETPOOL was removed in 2.6.9-rc2
selftests/vDSO: add tests for vgetrandom
x86: vdso: Wire up getrandom() vDSO implementation
random: introduce generic vDSO getrandom() implementation
mm: add MAP_DROPPABLE for designating always lazily freeable mappings
|
|
Pull kvm updates from Paolo Bonzini:
"ARM:
- Initial infrastructure for shadow stage-2 MMUs, as part of nested
virtualization enablement
- Support for userspace changes to the guest CTR_EL0 value, enabling
(in part) migration of VMs between heterogenous hardware
- Fixes + improvements to pKVM's FF-A proxy, adding support for v1.1
of the protocol
- FPSIMD/SVE support for nested, including merged trap configuration
and exception routing
- New command-line parameter to control the WFx trap behavior under
KVM
- Introduce kCFI hardening in the EL2 hypervisor
- Fixes + cleanups for handling presence/absence of FEAT_TCRX
- Miscellaneous fixes + documentation updates
LoongArch:
- Add paravirt steal time support
- Add support for KVM_DIRTY_LOG_INITIALLY_SET
- Add perf kvm-stat support for loongarch
RISC-V:
- Redirect AMO load/store access fault traps to guest
- perf kvm stat support
- Use guest files for IMSIC virtualization, when available
s390:
- Assortment of tiny fixes which are not time critical
x86:
- Fixes for Xen emulation
- Add a global struct to consolidate tracking of host values, e.g.
EFER
- Add KVM_CAP_X86_APIC_BUS_CYCLES_NS to allow configuring the
effective APIC bus frequency, because TDX
- Print the name of the APICv/AVIC inhibits in the relevant
tracepoint
- Clean up KVM's handling of vendor specific emulation to
consistently act on "compatible with Intel/AMD", versus checking
for a specific vendor
- Drop MTRR virtualization, and instead always honor guest PAT on
CPUs that support self-snoop
- Update to the newfangled Intel CPU FMS infrastructure
- Don't advertise IA32_PERF_GLOBAL_OVF_CTRL as an MSR-to-be-saved, as
it reads '0' and writes from userspace are ignored
- Misc cleanups
x86 - MMU:
- Small cleanups, renames and refactoring extracted from the upcoming
Intel TDX support
- Don't allocate kvm_mmu_page.shadowed_translation for shadow pages
that can't hold leafs SPTEs
- Unconditionally drop mmu_lock when allocating TDP MMU page tables
for eager page splitting, to avoid stalling vCPUs when splitting
huge pages
- Bug the VM instead of simply warning if KVM tries to split a SPTE
that is non-present or not-huge. KVM is guaranteed to end up in a
broken state because the callers fully expect a valid SPTE, it's
all but dangerous to let more MMU changes happen afterwards
x86 - AMD:
- Make per-CPU save_area allocations NUMA-aware
- Force sev_es_host_save_area() to be inlined to avoid calling into
an instrumentable function from noinstr code
- Base support for running SEV-SNP guests. API-wise, this includes a
new KVM_X86_SNP_VM type, encrypting/measure the initial image into
guest memory, and finalizing it before launching it. Internally,
there are some gmem/mmu hooks needed to prepare gmem-allocated
pages before mapping them into guest private memory ranges
This includes basic support for attestation guest requests, enough
to say that KVM supports the GHCB 2.0 specification
There is no support yet for loading into the firmware those signing
keys to be used for attestation requests, and therefore no need yet
for the host to provide certificate data for those keys.
To support fetching certificate data from userspace, a new KVM exit
type will be needed to handle fetching the certificate from
userspace.
An attempt to define a new KVM_EXIT_COCO / KVM_EXIT_COCO_REQ_CERTS
exit type to handle this was introduced in v1 of this patchset, but
is still being discussed by community, so for now this patchset
only implements a stub version of SNP Extended Guest Requests that
does not provide certificate data
x86 - Intel:
- Remove an unnecessary EPT TLB flush when enabling hardware
- Fix a series of bugs that cause KVM to fail to detect nested
pending posted interrupts as valid wake eents for a vCPU executing
HLT in L2 (with HLT-exiting disable by L1)
- KVM: x86: Suppress MMIO that is triggered during task switch
emulation
Explicitly suppress userspace emulated MMIO exits that are
triggered when emul |