summaryrefslogtreecommitdiff
path: root/arch/x86/kernel
AgeCommit message (Collapse)AuthorFilesLines
2021-12-08x86/tsc: Disable clocksource watchdog for TSC on qualified platormsFeng Tang1-4/+24
commit b50db7095fe002fa3e16605546cba66bf1b68a3e upstream. There are cases that the TSC clocksource is wrongly judged as unstable by the clocksource watchdog mechanism which tries to validate the TSC against HPET, PM_TIMER or jiffies. While there is hardly a general reliable way to check the validity of a watchdog, Thomas Gleixner proposed [1]: "I'm inclined to lift that requirement when the CPU has: 1) X86_FEATURE_CONSTANT_TSC 2) X86_FEATURE_NONSTOP_TSC 3) X86_FEATURE_NONSTOP_TSC_S3 4) X86_FEATURE_TSC_ADJUST 5) At max. 4 sockets After two decades of horrors we're finally at a point where TSC seems to be halfway reliable and less abused by BIOS tinkerers. TSC_ADJUST was really key as we can now detect even small modifications reliably and the important point is that we can cure them as well (not pretty but better than all other options)." As feature #3 X86_FEATURE_NONSTOP_TSC_S3 only exists on several generations of Atom processorz, and is always coupled with X86_FEATURE_CONSTANT_TSC and X86_FEATURE_NONSTOP_TSC, skip checking it, and also be more defensive to use maximal 2 sockets. The check is done inside tsc_init() before registering 'tsc-early' and 'tsc' clocksources, as there were cases that both of them had been wrongly judged as unreliable. For more background of tsc/watchdog, there is a good summary in [2] [tglx} Update vs. jiffies: On systems where the only remaining clocksource aside of TSC is jiffies there is no way to make this work because that creates a circular dependency. Jiffies accuracy depends on not missing a periodic timer interrupt, which is not guaranteed. That could be detected by TSC, but as TSC is not trusted this cannot be compensated. The consequence is a circulus vitiosus which results in shutting down TSC and falling back to the jiffies clocksource which is even more unreliable. [1]. https://lore.kernel.org/lkml/87eekfk8bd.fsf@nanos.tec.linutronix.de/ [2]. https://lore.kernel.org/lkml/87a6pimt1f.ffs@nanos.tec.linutronix.de/ [ tglx: Refine comment and amend changelog ] Fixes: 6e3cd95234dc ("x86/hpet: Use another crystalball to evaluate HPET usability") Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Feng Tang <feng.tang@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20211117023751.24190-2-feng.tang@intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-08x86/tsc: Add a timer to make sure TSC_adjust is always checkedFeng Tang1-0/+41
commit c7719e79347803b8e3b6b50da8c6db410a3012b5 upstream. The TSC_ADJUST register is checked every time a CPU enters idle state, but Thomas Gleixner mentioned there is still a caveat that a system won't enter idle [1], either because it's too busy or configured purposely to not enter idle. Setup a periodic timer (every 10 minutes) to make sure the check is happening on a regular base. [1] https://lore.kernel.org/lkml/875z286xtk.fsf@nanos.tec.linutronix.de/ Fixes: 6e3cd95234dc ("x86/hpet: Use another crystalball to evaluate HPET usability") Requested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Feng Tang <feng.tang@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20211117023751.24190-1-feng.tang@intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-08x86/pv: Switch SWAPGS to ALTERNATIVEJuergen Gross3-5/+0
[ Upstream commit 53c9d9240944088274aadbbbafc6138ca462db4f ] SWAPGS is used only for interrupts coming from user mode or for returning to user mode. So there is no reason to use the PARAVIRT framework, as it can easily be replaced by an ALTERNATIVE depending on X86_FEATURE_XENPV. There are several instances using the PV-aware SWAPGS macro in paths which are never executed in a Xen PV guest. Replace those with the plain swapgs instruction. For SWAPGS_UNSAFE_STACK the same applies. Signed-off-by: Juergen Gross <jgross@suse.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Andy Lutomirski <luto@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210120135555.32594-5-jgross@suse.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-12-08x86/sev: Fix SEV-ES INS/OUTS instructions for word, dword, and qwordMichael Sterritt1-18/+39
[ Upstream commit 1d5379d0475419085d3575bd9155f2e558e96390 ] Properly type the operands being passed to __put_user()/__get_user(). Otherwise, these routines truncate data for dependent instructions (e.g., INSW) and only read/write one byte. This has been tested by sending a string with REP OUTSW to a port and then reading it back in with REP INSW on the same port. Previous behavior was to only send and receive the first char of the size. For example, word operations for "abcd" would only read/write "ac". With change, the full string is now written and read back. Fixes: f980f9c31a923 (x86/sev-es: Compile early handler code into kernel image) Signed-off-by: Michael Sterritt <sterritt@google.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Marc Orr <marcorr@google.com> Reviewed-by: Peter Gonda <pgonda@google.com> Reviewed-by: Joerg Roedel <jroedel@suse.de> Link: https://lkml.kernel.org/r/20211119232757.176201-1-sterritt@google.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-21x86/iopl: Fake iopl(3) CLI/STI usagePeter Zijlstra2-0/+35
commit b968e84b509da593c50dc3db679e1d33de701f78 upstream. Since commit c8137ace5638 ("x86/iopl: Restrict iopl() permission scope") it's possible to emulate iopl(3) using ioperm(), except for the CLI/STI usage. Userspace CLI/STI usage is very dubious (read broken), since any exception taken during that window can lead to rescheduling anyway (or worse). The IOPL(2) manpage even states that usage of CLI/STI is highly discouraged and might even crash the system. Of course, that won't stop people and HP has the dubious honour of being the first vendor to be found using this in their hp-health package. In order to enable this 'software' to still 'work', have the #GP treat the CLI/STI instructions as NOPs when iopl(3). Warn the user that their program is doing dubious things. Fixes: a24ca9976843 ("x86/iopl: Remove legacy IOPL option") Reported-by: Ondrej Zary <linux@zary.sk> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@kernel.org # v5.5+ Link: https://lkml.kernel.org/r/20210918090641.GD5106@worktop.programming.kicks-ass.net Signed-off-by: Ondrej Zary <linux@zary.sk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-18x86/sev: Make the #VC exception stacks part of the default stacks storageBorislav Petkov1-32/+0
commit 541ac97186d9ea88491961a46284de3603c914fd upstream. The size of the exception stacks was increased by the commit in Fixes, resulting in stack sizes greater than a page in size. The #VC exception handling was only mapping the first (bottom) page, resulting in an SEV-ES guest failing to boot. Make the #VC exception stacks part of the default exception stacks storage and allocate them with a CONFIG_AMD_MEM_ENCRYPT=y .config. Map them only when a SEV-ES guest has been detected. Rip out the custom VC stacks mapping and storage code. [ bp: Steal and adapt Tom's commit message. ] Fixes: 7fae4c24a2b8 ("x86: Increase exception stack sizes") Signed-off-by: Borislav Petkov <bp@suse.de> Tested-by: Tom Lendacky <thomas.lendacky@amd.com> Tested-by: Brijesh Singh <brijesh.singh@amd.com> Link: https://lkml.kernel.org/r/YVt1IMjIs7pIZTRR@zn.tnic Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-18x86/sev: Add an x86 version of cc_platform_has()Tom Lendacky2-0/+75
commit aa5a461171f98fde0df78c4f6b5018a1e967cf81 upstream. Introduce an x86 version of the cc_platform_has() function. This will be used to replace vendor specific calls like sme_active(), sev_active(), etc. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20210928191009.32551-4-bp@alien8.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-18x86/mce: Add errata workaround for Skylake SKX37Dave Jones1-2/+3
commit e629fc1407a63dbb748f828f9814463ffc2a0af0 upstream. Errata SKX37 is word-for-word identical to the other errata listed in this workaround. I happened to notice this after investigating a CMCI storm on a Skylake host. While I can't confirm this was the root cause, spurious corrected errors does sound like a likely suspect. Fixes: 2976908e4198 ("x86/mce: Do not log spurious corrected mce errors") Signed-off-by: Dave Jones <davej@codemonkey.org.uk> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Tony Luck <tony.luck@intel.com> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20211029205759.GA7385@codemonkey.org.uk Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-18x86/sev: Fix stack type check in vc_switch_off_ist()Joerg Roedel1-1/+1
[ Upstream commit 5681981fb788281b09a4ea14d310d30b2bd89132 ] The value of STACK_TYPE_EXCEPTION_LAST points to the last _valid_ exception stack. Reflect that in the check done in the vc_switch_off_ist() function. Fixes: a13644f3a53de ("x86/entry/64: Add entry code for #VC handler") Reported-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Joerg Roedel <jroedel@suse.de> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20211021080833.30875-2-joro@8bytes.org Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-18x86/irq: Ensure PI wakeup handler is unregistered before module unloadSean Christopherson1-1/+3
commit 6ff53f6a438f72998f56e82e76694a1df9d1ea2c upstream. Add a synchronize_rcu() after clearing the posted interrupt wakeup handler to ensure all readers, i.e. in-flight IRQ handlers, see the new handler before returning to the caller. If the caller is an exiting module and is unregistering its handler, failure to wait could result in the IRQ handler jumping into an unloaded module. The registration path doesn't require synchronization, as it's the caller's responsibility to not generate interrupts it cares about until after its handler is registered. Fixes: f6b3c72c2366 ("x86/irq: Define a global vector for VT-d Posted-Interrupts") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <seanjc@google.com> Message-Id: <20211009001107.3936588-2-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-18x86/cpu: Fix migration safety with X86_BUG_NULL_SELJane Malalane4-7/+42
commit 415de44076640483648d6c0f6d645a9ee61328ad upstream. Currently, Linux probes for X86_BUG_NULL_SEL unconditionally which makes it unsafe to migrate in a virtualised environment as the properties across the migration pool might differ. To be specific, the case which goes wrong is: 1. Zen1 (or earlier) and Zen2 (or later) in a migration pool 2. Linux boots on Zen2, probes and finds the absence of X86_BUG_NULL_SEL 3. Linux is then migrated to Zen1 Linux is now running on a X86_BUG_NULL_SEL-impacted CPU while believing that the bug is fixed. The only way to address the problem is to fully trust the "no longer affected" CPUID bit when virtualised, because in the above case it would be clear deliberately to indicate the fact "you might migrate to somewhere which has this behaviour". Zen3 adds the NullSelectorClearsBase CPUID bit to indicate that loading a NULL segment selector zeroes the base and limit fields, as well as just attributes. Zen2 also has this behaviour but doesn't have the NSCB bit. [ bp: Minor touchups. ] Signed-off-by: Jane Malalane <jane.malalane@citrix.com> Signed-off-by: Borislav Petkov <bp@suse.de> CC: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20211021104744.24126-1-jane.malalane@citrix.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-20x86/resctrl: Free the ctrlval arrays when domain_setup_mon_state() failsJames Morse1-0/+2
commit 64e87d4bd3201bf8a4685083ee4daf5c0d001452 upstream. domain_add_cpu() is called whenever a CPU is brought online. The earlier call to domain_setup_ctrlval() allocates the control value arrays. If domain_setup_mon_state() fails, the control value arrays are not freed. Add the missing kfree() calls. Fixes: 1bd2a63b4f0de ("x86/intel_rdt/mba_sc: Add initialization support") Fixes: edf6fa1c4a951 ("x86/intel_rdt/cqm: Add RMID (Resource monitoring ID) management") Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Reinette Chatre <reinette.chatre@intel.com> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20210917165958.28313-1-james.morse@arm.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-13x86/hpet: Use another crystalball to evaluate HPET usabilityThomas Gleixner2-6/+81
commit 6e3cd95234dc1eda488f4f487c281bac8fef4d9b upstream. On recent Intel systems the HPET stops working when the system reaches PC10 idle state. The approach of adding PCI ids to the early quirks to disable HPET on these systems is a whack a mole game which makes no sense. Check for PC10 instead and force disable HPET if supported. The check is overbroad as it does not take ACPI, intel_idle enablement and command line parameters into account. That's fine as long as there is at least PMTIMER available to calibrate the TSC frequency. The decision can be overruled by adding "hpet=force" on the kernel command line. Remove the related early PCI quirks for affected Ice Cake and Coffin Lake systems as they are not longer required. That should also cover all other systems, i.e. Tiger Rag and newer generations, which are most likely affected by this as well. Fixes: Yet another hardware trainwreck Reported-by: Jakub Kicinski <kuba@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jakub Kicinski <kuba@kernel.org> Reviewed-by: Rafael J. Wysocki <rafael@kernel.org> Cc: stable@vger.kernel.org Cc: Kai-Heng Feng <kai.heng.feng@canonical.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-13x86/entry: Clear X86_FEATURE_SMAP when CONFIG_X86_SMAP=nVegard Nossum1-0/+1
commit 3958b9c34c2729597e182cc606cc43942fd19f7c upstream. Commit 3c73b81a9164 ("x86/entry, selftests: Further improve user entry sanity checks") added a warning if AC is set when in the kernel. Commit 662a0221893a3d ("x86/entry: Fix AC assertion") changed the warning to only fire if the CPU supports SMAP. However, the warning can still trigger on a machine that supports SMAP but where it's disabled in the kernel config and when running the syscall_nt selftest, for example: ------------[ cut here ]------------ WARNING: CPU: 0 PID: 49 at irqentry_enter_from_user_mode CPU: 0 PID: 49 Comm: init Tainted: G T 5.15.0-rc4+ #98 e6202628ee053b4f310759978284bd8bb0ce6905 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014 RIP: 0010:irqentry_enter_from_user_mode ... Call Trace: ? irqentry_enter ? exc_general_protection ? asm_exc_general_protection ? asm_exc_general_protectio IS_ENABLED(CONFIG_X86_SMAP) could be added to the warning condition, but even this would not be enough in case SMAP is disabled at boot time with the "nosmap" parameter. To be consistent with "nosmap" behaviour, clear X86_FEATURE_SMAP when !CONFIG_X86_SMAP. Found using entry-fuzz + satrandconfig. [ bp: Massage commit message. ] Fixes: 3c73b81a9164 ("x86/entry, selftests: Further improve user entry sanity checks") Fixes: 662a0221893a ("x86/entry: Fix AC assertion") Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20211003223423.8666-1-vegard.nossum@oracle.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-13x86/sev: Return an error on a returned non-zero SW_EXITINFO1[31:0]Tom Lendacky1-0/+2
commit 06f2ac3d4219bbbfd93d79e01966a42053084f11 upstream. After returning from a VMGEXIT NAE event, SW_EXITINFO1[31:0] is checked for a value of 1, which indicates an error and that SW_EXITINFO2 contains exception information. However, future versions of the GHCB specification may define new values for SW_EXITINFO1[31:0], so really any non-zero value should be treated as an error. Fixes: 597cfe48212a ("x86/boot/compressed/64: Setup a GHCB-based VC Exception handler") Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> # 5.10+ Link: https://lkml.kernel.org/r/efc772af831e9e7f517f0439b13b41f56bad8784.1633063321.git.thomas.lendacky@amd.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-06x86/kvmclock: Move this_cpu_pvti into kvmclock.hZelin Deng1-11/+2
commit ad9af930680bb396c87582edc172b3a7cf2a3fbf upstream. There're other modules might use hv_clock_per_cpu variable like ptp_kvm, so move it into kvmclock.h and export the symbol to make it visiable to other modules. Signed-off-by: Zelin Deng <zelin.deng@linux.alibaba.com> Cc: <stable@vger.kernel.org> Message-Id: <1632892429-101194-2-git-send-email-zelin.deng@linux.alibaba.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-26drivers: base: cacheinfo: Get rid of DEFINE_SMP_CALL_CACHE_FUNCTION()Thomas Gleixner1-5/+2
[ Upstream commit 4b92d4add5f6dcf21275185c997d6ecb800054cd ] DEFINE_SMP_CALL_CACHE_FUNCTION() was usefel before the CPU hotplug rework to ensure that the cache related functions are called on the upcoming CPU because the notifier itself could run on any online CPU. The hotplug state machine guarantees that the callbacks are invoked on the upcoming CPU. So there is no need to have this SMP function call obfuscation. That indirection was missed when the hotplug notifiers were converted. This also solves the problem of ARM64 init_cache_level() invoking ACPI functions which take a semaphore in that context. That's invalid as SMP function calls run with interrupts disabled. Running it just from the callback in context of the CPU hotplug thread solves this. Fixes: 8571890e1513 ("arm64: Add support for ACPI based firmware tables") Reported-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Guenter Roeck <linux@roeck-us.net> Acked-by: Will Deacon <will@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/871r69ersb.ffs@tglx Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-09-22x86/mce: Avoid infinite loop for copy from user recoveryTony Luck1-11/+32
commit 81065b35e2486c024c7aa86caed452e1f01a59d4 upstream. There are two cases for machine check recovery: 1) The machine check was triggered by ring3 (application) code. This is the simpler case. The machine check handler simply queues work to be executed on return to user. That code unmaps the page from all users and arranges to send a SIGBUS to the task that triggered the poison. 2) The machine check was triggered in kernel code that is covered by an exception table entry. In this case the machine check handler still queues a work entry to unmap the page, etc. but this will not be called right away because the #MC handler returns to the fix up code address in the exception table entry. Problems occur if the kernel triggers another machine check before the return to user processes the first queued work item. Specifically, the work is queued using the ->mce_kill_me callback structure in the task struct for the current thread. Attempting to queue a second work item using this same callback results in a loop in the linked list of work functions to call. So when the kernel does return to user, it enters an infinite loop processing the same entry for ever. There are some legitimate scenarios where the kernel may take a second machine check before returning to the user. 1) Some code (e.g. futex) first tries a get_user() with page faults disabled. If this fails, the code retries with page faults enabled expecting that this will resolve the page fault. 2) Copy from user code retries a copy in byte-at-time mode to check whether any additional bytes can be copied. On the other side of the fence are some bad drivers that do not check the return value from individual get_user() calls and may access multiple user addresses without noticing that some/all calls have failed. Fix by adding a counter (current->mce_count) to keep track of repeated machine checks before task_work() is called. First machine check saves the address information and calls task_work_add(). Subsequent machine checks before that task_work call back is executed check that the address is in the same page as the first machine check (since the callback will offline exactly one page). Expected worst case is four machine checks before moving on (e.g. one user access with page faults disabled, then a repeat to the same address with page faults enabled ... repeat in copy tail bytes). Just in case there is some code that loops forever enforce a limit of 10. [ bp: Massage commit message, drop noinstr, fix typo, extend panic messages. ] Fixes: 5567d11c21a1 ("x86/mce: Send #MC singal from task work") Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/YT/IJ9ziLqmtqEPu@agluck-desk2.amr.corp.intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-18x86/hyperv: fix for unwanted manipulation of sched_clock when TSC marked ↵Ani Sinha1-2/+7
unstable [ Upstream commit c445535c3efbfb8cb42d098e624d46ab149664b7 ] Marking TSC as unstable has a side effect of marking sched_clock as unstable when TSC is still being used as the sched_clock. This is not desirable. Hyper-V ultimately uses a paravirtualized clock source that provides a stable scheduler clock even on systems without TscInvariant CPU capability. Hence, mark_tsc_unstable() call should be called _after_ scheduler clock has been changed to the paravirtualized clocksource. This will prevent any unwanted manipulation of the sched_clock. Only TSC will be correctly marked as unstable. Signed-off-by: Ani Sinha <ani@anisinha.ca> Reviewed-by: Michael Kelley <mikelley@microsoft.com> Tested-by: Michael Kelley <mikelley@microsoft.com> Link: https://lore.kernel.org/r/20210713030522.1714803-1-ani@anisinha.ca Signed-off-by: Wei Liu <wei.liu@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-09-15x86/resctrl: Fix a maybe-uninitialized build warning treated as errorBabu Moger1-0/+6
commit 527f721478bce3f49b513a733bacd19d6f34b08c upstream. The recent commit 064855a69003 ("x86/resctrl: Fix default monitoring groups reporting") caused a RHEL build failure with an uninitialized variable warning treated as an error because it removed the default case snippet. The RHEL Makefile uses '-Werror=maybe-uninitialized' to force possibly uninitialized variable warnings to be treated as errors. This is also reported by smatch via the 0day robot. The error from the RHEL build is: arch/x86/kernel/cpu/resctrl/monitor.c: In function ‘__mon_event_count’: arch/x86/kernel/cpu/resctrl/monitor.c:261:12: error: ‘m’ may be used uninitialized in this function [-Werror=maybe-uninitialized] m->chunks += chunks; ^~ The upstream Makefile does not build using '-Werror=maybe-uninitialized'. So, the problem is not seen there. Fix the problem by putting back the default case snippet. [ bp: note that there's nothing wrong with the code and other compilers do not trigger this warning - this is being done just so the RHEL compiler is happy. ] Fixes: 064855a69003 ("x86/resctrl: Fix default monitoring groups reporting") Reported-by: Terry Bowman <Terry.Bowman@amd.com> Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Babu Moger <babu.moger@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Reinette Chatre <reinette.chatre@intel.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/162949631908.23903.17090272726012848523.stgit@bmoger-ubuntu Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-15x86/mce: Defer processing of early errorsBorislav Petkov1-3/+8
[ Upstream commit 3bff147b187d5dfccfca1ee231b0761a89f1eff5 ] When a fatal machine check results in a system reset, Linux does not clear the error(s) from machine check bank(s) - hardware preserves the machine check banks across a warm reset. During initialization of the kernel after the reboot, Linux reads, logs, and clears all machine check banks. But there is a problem. In: 5de97c9f6d85 ("x86/mce: Factor out and deprecate the /dev/mcelog driver") the call to mce_register_decode_chain() moved later in the boot sequence. This means that /dev/mcelog doesn't see those early error logs. This was partially fixed by: cd9c57cad3fe ("x86/MCE: Dump MCE to dmesg if no consumers") which made sure that the logs were not lost completely by printing to the console. But parsing console logs is error prone. Users of /dev/mcelog should expect to find any early errors logged to standard places. Add a new flag MCP_QUEUE_LOG to machine_check_poll() to be used in early machine check initialization to indicate that any errors found should just be queued to genpool. When mcheck_late_init() is called it will call mce_schedule_work() to actually log and flush any errors queued in the genpool. [ Based on an original patch, commit message by and completely productized by Tony Luck. ] Fixes: 5de97c9f6d85 ("x86/mce: Factor out and deprecate the /dev/mcelog driver") Reported-by: Sumanth Kamatala <skamatala@juniper.net> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20210824003129.GA1642753@agluck-desk2.amr.corp.intel.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-09-12x86/reboot: Limit Dell Optiplex 990 quirk to early BIOS versionsPaul Gortmaker1-1/+2
commit a729691b541f6e63043beae72e635635abe5dc09 upstream. When this platform was relatively new in November 2011, with early BIOS revisions, a reboot quirk was added in commit 6be30bb7d750 ("x86/reboot: Blacklist Dell OptiPlex 990 known to require PCI reboot") However, this quirk (and several others) are open-ended to all BIOS versions and left no automatic expiry if/when the system BIOS fixed the issue, meaning that nobody is likely to come along and re-test. What is really problematic with using PCI reboot as this quirk does, is that it causes this platform to do a full power down, wait one second, and then power back on. This is less than ideal if one is using it for boot testing and/or bisecting kernels when legacy rotating hard disks are installed. It was only by chance that the quirk was noticed in dmesg - and when disabled it turned out that it wasn't required anymore (BIOS A24), and a default reboot would work fine without the "harshness" of power cycling the machine (and disks) down and up like the PCI reboot does. Doing a bit more research, it seems that the "newest" BIOS for which the issue was reported[1] was version A06, however Dell[2] seemed to suggest only up to and including version A05, with the A06 having a large number of fixes[3] listed. As is typical with a new platform, the initial BIOS updates come frequently and then taper off (and in this case, with a revival for CPU CVEs); a search for O990-A<ver>.exe reveals the following dates: A02 16 Mar 2011 A03 11 May 2011 A06 14 Sep 2011 A07 24 Oct 2011 A10 08 Dec 2011 A14 06 Sep 2012 A16 15 Oct 2012 A18 30 Sep 2013 A19 23 Sep 2015 A20 02 Jun 2017 A23 07 Mar 2018 A24 21 Aug 2018 While it's overkill to flash and test each of the above, it would seem likely that the issue was contained within A0x BIOS versions, given the dates above and the dates of issue reports[4] from distros. So rather than just throw out the quirk entirely, limit the scope to just those early BIOS versions, in case people are still running systems from 2011 with the original as-shipped early A0x BIOS versions. [1] https://lore.kernel.org/lkml/1320373471-3942-1-git-send-email-trenn@suse.de/ [2] https://www.dell.com/support/kbdoc/en-ca/000131908/linux-based-operating-systems-stall-upon-reboot-on-optiplex-390-790-990-systems [3] https://www.dell.com/support/home/en-ca/drivers/driversdetails?driverid=85j10 [4] https://bugs.launchpad.net/ubuntu/+source/linux/+bug/768039 Fixes: 6be30bb7d750 ("x86/reboot: Blacklist Dell OptiPlex 990 known to require PCI reboot") Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20210530162447.996461-4-paul.gortmaker@windriver.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-18x86/resctrl: Fix default monitoring groups reportingBabu Moger1-14/+13
commit 064855a69003c24bd6b473b367d364e418c57625 upstream. Creating a new sub monitoring group in the root /sys/fs/resctrl leads to getting the "Unavailable" value for mbm_total_bytes and mbm_local_bytes on the entire filesystem. Steps to reproduce: 1. mount -t resctrl resctrl /sys/fs/resctrl/ 2. cd /sys/fs/resctrl/ 3. cat mon_data/mon_L3_00/mbm_total_bytes 23189832 4. Create sub monitor group: mkdir mon_groups/test1 5. cat mon_data/mon_L3_00/mbm_total_bytes Unavailable When a new monitoring group is created, a new RMID is assigned to the new group. But the RMID is not active yet. When the events are read on the new RMID, it is expected to report the status as "Unavailable". When the user reads the events on the default monitoring group with multiple subgroups, the events on all subgroups are consolidated together. Currently, if any of the RMID reads report as "Unavailable", then everything will be reported as "Unavailable". Fix the issue by discarding the "Unavailable" reads and reporting all the successful RMID reads. This is not a problem on Intel systems as Intel reports 0 on Inactive RMIDs. Fixes: d89b7379015f ("x86/intel_rdt/cqm: Add mon_data") Reported-by: Paweł Szulik <pawel.szulik@intel.com> Signed-off-by: Babu Moger <Babu.Moger@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Reinette Chatre <reinette.chatre@intel.com> Cc: stable@vger.kernel.org Link: https://bugzilla.kernel.org/show_bug.cgi?id=213311 Link: https://lkml.kernel.org/r/162793309296.9224.15871659871696482080.stgit@bmoger-ubuntu Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-18x86/ioapic: Force affinity setup before startupThomas Gleixner1-2/+4
commit 0c0e37dc11671384e53ba6ede53a4d91162a2cc5 upstream. The IO/APIC cannot handle interrupt affinity changes safely after startup other than from an interrupt handler. The startup sequence in the generic interrupt code violates that assumption. Mark the irq chip with the new IRQCHIP_AFFINITY_PRE_STARTUP flag so that the default interrupt setting happens before the interrupt is started up for the first time. Fixes: 18404756765c ("genirq: Expose default irq affinity mask (take 3)") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Marc Zyngier <maz@kernel.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20210729222542.832143400@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-18x86/msi: Force affinity setup before startupThomas Gleixner1-4/+9
commit ff363f480e5997051dd1de949121ffda3b753741 upstream. The X86 MSI mechanism cannot handle interrupt affinity changes safely after startup other than from an interrupt handler, unless interrupt remapping is enabled. The startup sequence in the generic interrupt code violates that assumption. Mark the irq chips with the new IRQCHIP_AFFINITY_PRE_STARTUP flag so that the default interrupt setting happens before the interrupt is started up for the first time. While the interrupt remapping MSI chip does not require this, there is no point in treating it differently as this might spare an interrupt to a CPU which is not in the default affinity mask. For the non-remapping case go to the direct write path when the interrupt is not yet started similar to the not yet activated case. Fixes: 18404756765c ("genirq: Expose default irq affinity mask (take 3)") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Marc Zyngier <maz@kernel.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20210729222542.886722080@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-20x86/fpu: Limit xstate copy size in xstateregs_set()Thomas Gleixner1-1/+1
[ Upstream commit 07d6688b22e09be465652cf2da0da6bf86154df6 ] If the count argument is larger than the xstate size, this will happily copy beyond the end of xstate. Fixes: 91c3dba7dbc1 ("x86/fpu/xstate: Fix PTRACE frames for XSAVES") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Andy Lutomirski <luto@kernel.org> Reviewed-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20210623121452.120741557@linutronix.de Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-20x86/fpu: Fix copy_xstate_to_kernel() gap handlingThomas Gleixner1-44/+61
[ Upstream commit 9625895011d130033d1bc7aac0d77a9bf68ff8a6 ] The gap handling in copy_xstate_to_kernel() is wrong when XSAVES is in use. Using init_fpstate for copying the init state of features which are not set in the xstate header is only correct for the legacy area, but not for the extended features area because when XSAVES is in use then init_fpstate is in compacted form which means the xstate offsets which are used to copy from init_fpstate are not valid. Fortunately, this is not a real problem today because all extended features in use have an all-zeros init state, but it is wrong nevertheless and with a potentially dynamically sized init_fpstate this would result in an access outside of the init_fpstate. Fix this by keeping track of the last copied state in the target buffer and explicitly zero it when there is a feature or alignment gap. Use the compacted offset when accessing the extended feature space in init_fpstate. As this is not a functional issue on older kernels this is intentionally not tagged for stable. Fixes: b8be15d58806 ("x86/fpu/xstate: Re-enable XSAVES") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20210623121451.294282032@linutronix.de Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-20x86/signal: Detect and prevent an alternate signal stack overflowChang S. Bae1-4/+20
[ Upstream commit 2beb4a53fc3f1081cedc1c1a198c7f56cc4fc60c ] The kernel pushes context on to the userspace stack to prepare for the user's signal handler. When the user has supplied an alternate signal stack, via sigaltstack(2), it is easy for the kernel to verify that the stack size is sufficient for the current hardware context. Check if writing the hardware context to the alternate stack will exceed it's size. If yes, then instead of corrupting user-data and proceeding with the original signal handler, an immediate SIGSEGV signal is delivered. Refactor the stack pointer check code from on_sig_stack() and use the new helper. While the kernel allows new source code to discover and use a sufficient alternate signal stack size, this check is still necessary to protect binaries with insufficient alternate signal stack size from data corruption. Fixes: c2bc11f10a39 ("x86, AVX-512: Enable AVX-512 States Context Switch") Reported-by: Florian Weimer <fweimer@redhat.com> Suggested-by: Jann Horn <jannh@google.com> Suggested-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Len Brown <len.brown@intel.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20210518200320.17239-6-chang.seok.bae@intel.com Link: https://bugzilla.kernel.org/show_bug.cgi?id=153531 Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-14x86/sev: Split up runtime #VC handler for correct state trackingJoerg Roedel1-69/+79
[ Upstream commit be1a5408868af341f61f93c191b5e346ee88c82a ] Split up the #VC handler code into a from-user and a from-kernel part. This allows clean and correct state tracking, as the #VC handler needs to enter NMI-state when raised from kernel mode and plain IRQ state when raised from user-mode. Fixes: 62441a1fb532 ("x86/sev-es: Correctly track IRQ states in runtime #VC handler") Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Joerg Roedel <jroedel@suse.de> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210618115409.22735-3-joro@8bytes.org Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-14x86/sev: Make sure IRQs are disabled while GHCB is activeJoerg Roedel1-12/+22
[ Upstream commit d187f217335dba2b49fc9002aab2004e04acddee ] The #VC handler only cares about IRQs being disabled while the GHCB is active, as it must not be interrupted by something which could cause another #VC while it holds the GHCB (NMI is the exception for which the backup GHCB exits). Make sure nothing interrupts the code path while the GHCB is active by making sure that callers of __sev_{get,put}_ghcb() have disabled interrupts upfront. [ bp: Massage commit message. ] Signed-off-by: Joerg Roedel <jroedel@suse.de> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20210618115409.22735-2-joro@8bytes.org Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-14clocksource: Check per-CPU clock synchronization when marked unstablePaul E. McKenney1-1/+2
[ Upstream commit 7560c02bdffb7c52d1457fa551b9e745d4b9e754 ] Some sorts of per-CPU clock sources have a history of going out of synchronization with each other. However, this problem has purportedy been solved in the past ten years. Except that it is all too possible that the problem has instead simply been made less likely, which might mean that some of the occasional "Marking clocksource 'tsc' as unstable" messages might be due to desynchronization. How would anyone know? Therefore apply CPU-to-CPU synchronization checking to newly unstable clocksource that are marked with the new CLOCK_SOURCE_VERIFY_PERCPU flag. Lists of desynchronized CPUs are printed, with the caveat that if it is the reporting CPU that is itself desynchronized, it will appear that all the other clocks are wrong. Just like in real life. Reported-by: Chris Mason <clm@fb.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210527190124.440372-2-paulmck@kernel.org Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-14sched/core: Initialize the idle task with preemption disabledValentin Schneider1-1/+0
[ Upstream commit f1a0a376ca0c4ef1fc3d24e3e502acbb5b795674 ] As pointed out by commit de9b8f5dcbd9 ("sched: Fix crash trying to dequeue/enqueue the idle thread") init_idle() can and will be invoked more than once on the same idle task. At boot time, it is invoked for the boot CPU thread by sched_init(). Then smp_init() creates the threads for all the secondary CPUs and invokes init_idle() on them. As the hotplug machinery brings the secondaries to life, it will issue calls to idle_thread_get(), which itself invokes init_idle() yet again. In this case it's invoked twice more per secondary: at _cpu_up(), and at bringup_cpu(). Given smp_init() already initializes the idle tasks for all *possible* CPUs, no further initialization should be required. Now, removing init_idle() from idle_thread_get() exposes some interesting expectations with regards to the idle task's preempt_count: the secondary startup always issues a preempt_disable(), requiring some reset of the preempt count to 0 between hot-unplug and hotplug, which is currently served by idle_thread_get() -> idle_init(). Given the idle task is supposed to have preemption disabled once and never see it re-enabled, it seems that what we actually want is to initialize its preempt_count to PREEMPT_DISABLED and leave it there. Do that, and remove init_idle() from idle_thread_get(). Secondary startups were patched via coccinelle: @begone@ @@ -preempt_disable(); ... cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20210512094636.2958515-1-valentin.schneider@arm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-06-30x86/fpu: Make init_fpstate correct with optimized XSAVEThomas Gleixner1-3/+38
commit f9dfb5e390fab2df9f7944bb91e7705aba14cd26 upstream. The XSAVE init code initializes all enabled and supported components with XRSTOR(S) to init state. Then it XSAVEs the state of the components back into init_fpstate which is used in several places to fill in the init state of components. This works correctly with XSAVE, but not with XSAVEOPT and XSAVES because those use the init optimization and skip writing state of components which are in init state. So init_fpstate.xsave still contains all zeroes after this operation. There are two ways to solve that: 1) Use XSAVE unconditionally, but that requires to reshuffle the buffer when XSAVES is enabled because XSAVES uses compacted format. 2) Save the components which are known to have a non-zero init state by other means. Looking deeper, #2 is the right thing to do because all components the kernel supports have all-zeroes init state except the legacy features (FP, SSE). Those cannot be hard coded because the states are not identical on all CPUs, but they can be saved with FXSAVE which avoids all conditionals. Use FXSAVE to save the legacy FP/SSE components in init_fpstate along with a BUILD_BUG_ON() which reminds developers to validate that a newly added component has all zeroes init state. As a bonus remove the now unused copy_xregs_to_kernel_booting() crutch. The XSAVE and reshuffle method can still be implemented in the unlikely case that components are added which have a non-zero init state and no other means to save them. For now, FXSAVE is just simple and good enough. [ bp: Fix a typo or two in the text. ] Fixes: 6bad06b76892 ("x86, xsave: Use xsaveopt in context-switch path when supported") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20210618143444.587311343@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-30x86/fpu: Preserve supervisor states in sanitize_restored_user_xstate()Thomas Gleixner1-18/+8
commit 9301982c424a003c0095bf157154a85bf5322bd0 upstream. sanitize_restored_user_xstate() preserves the supervisor states only when the fx_only argument is zero, which allows unprivileged user space to put supervisor states back into init state. Preserve them unconditionally. [ bp: Fix a typo or two in the text. ] Fixes: 5d6b6a6f9b5c ("x86/fpu/xstate: Update sanitize_restored_xstate() for supervisor xstates") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20210618143444.438635017@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-23x86/fpu: Reset state for all signal restore failuresThomas Gleixner1-11/+15
commit efa165504943f2128d50f63de0c02faf6dcceb0d upstream. If access_ok() or fpregs_soft_set() fails in __fpu__restore_sig() then the function just returns but does not clear the FPU state as it does for all other fatal failures. Clear the FPU state for these failures as well. Fixes: 72a671ced66d ("x86, fpu: Unify signal handling code paths for x86 and x86_64 kernels") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/87mtryyhhz.ffs@nanos.tec.linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-23x86/fpu: Invalidate FPU state after a failed XRSTOR from a user bufferAndy Lutomirski1-0/+19
commit d8778e393afa421f1f117471144f8ce6deb6953a upstream. Both Intel and AMD consider it to be architecturally valid for XRSTOR to fail with #PF but nonetheless change the register state. The actual conditions under which this might occur are unclear [1], but it seems plausible that this might be triggered if one sibling thread unmaps a page and invalidates the shared TLB while another sibling thread is executing XRSTOR on the page in question. __fpu__restore_sig() can execute XRSTOR while the hardware registers are preserved on behalf of a different victim task (using the fpu_fpregs_owner_ctx mechanism), and, in theory, XRSTOR could fail but modify the registers. If this happens, then there is a window in which __fpu__restore_sig() could schedule out and the victim task could schedule back in without reloading its own FPU registers. This would result in part of the FPU state that __fpu__restore_si