Age | Commit message (Collapse) | Author | Files | Lines |
|
Make them conforming to the TIP coding style guide.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Tested-by: Breno Leitao <leitao@debian.org>
Link: https://lore.kernel.org/all/20240802155440.402005874@linutronix.de
|
|
Only invoked from check_timer() which is __init too. Cleanup the variable
declaration while at it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Tested-by: Breno Leitao <leitao@debian.org>
Reviewed-by: Breno Leitao <leitao@debian.org>
Link: https://lore.kernel.org/all/20240802155440.339321108@linutronix.de
|
|
Breno observed panics when using failslab under certain conditions during
runtime:
can not alloc irq_pin_list (-1,0,20)
Kernel panic - not syncing: IO-APIC: failed to add irq-pin. Can not proceed
panic+0x4e9/0x590
mp_irqdomain_alloc+0x9ab/0xa80
irq_domain_alloc_irqs_locked+0x25d/0x8d0
__irq_domain_alloc_irqs+0x80/0x110
mp_map_pin_to_irq+0x645/0x890
acpi_register_gsi_ioapic+0xe6/0x150
hpet_open+0x313/0x480
That's a pointless panic which is a leftover of the historic IO/APIC code
which panic'ed during early boot when the interrupt allocation failed.
The only place which might justify panic is the PIT/HPET timer_check() code
which tries to figure out whether the timer interrupt is delivered through
the IO/APIC. But that code does not require to handle interrupt allocation
failures. If the interrupt cannot be allocated then timer delivery fails
and it either panics due to that or falls back to legacy mode.
Cure this by removing the panic wrapper around __add_pin_to_irq_node() and
making mp_irqdomain_alloc() aware of the failure condition and handle it as
any other failure in this function gracefully.
Reported-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Breno Leitao <leitao@debian.org>
Tested-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Link: https://lore.kernel.org/all/ZqfJmUF8sXIyuSHN@gmail.com
Link: https://lore.kernel.org/all/20240802155440.275200843@linutronix.de
|
|
Currently ARM64 extracts which specific sanitizer has caused a trap via
encoded data in the trap instruction. Clang on x86 currently encodes the
same data in the UD1 instruction but x86 handle_bug() and
is_valid_bugaddr() currently only look at UD2.
Bring x86 to parity with ARM64, similar to commit 25b84002afb9 ("arm64:
Support Clang UBSAN trap codes for better reporting"). See the llvm
links for information about the code generation.
Enable the reporting of UBSAN sanitizer details on x86 compiled with clang
when CONFIG_UBSAN_TRAP=y by analysing UD1 and retrieving the type immediate
which is encoded by the compiler after the UD1.
[ tglx: Simplified it by moving the printk() into handle_bug() ]
Signed-off-by: Gatlin Newhouse <gatlin.newhouse@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20240724000206.451425-1-gatlin.newhouse@gmail.com
Link: https://github.com/llvm/llvm-project/commit/c5978f42ec8e9#diff-bb68d7cd885f41cfc35843998b0f9f534adb60b415f647109e597ce448e92d9f
Link: https://github.com/llvm/llvm-project/blob/main/llvm/lib/Target/X86/X86InstrSystem.td#L27
|
|
A kexec kernel boot failure is sometimes observed on AMD CPUs due to an
unmapped EFI config table array. This can be seen when "nogbpages" is on
the kernel command line, and has been observed as a full BIOS reboot rather
than a successful kexec.
This was also the cause of reported regressions attributed to Commit
7143c5f4cf20 ("x86/mm/ident_map: Use gbpages only where full GB page should
be mapped.") which was subsequently reverted.
To avoid this page fault, explicitly include the EFI config table array in
the kexec identity map.
Further explanation:
The following 2 commits caused the EFI config table array to be
accessed when enabling sev at kernel startup.
commit ec1c66af3a30 ("x86/compressed/64: Detect/setup SEV/SME features
earlier during boot")
commit c01fce9cef84 ("x86/compressed: Add SEV-SNP feature
detection/setup")
This is in the code that examines whether SEV should be enabled or not, so
it can even affect systems that are not SEV capable.
This may result in a page fault if the EFI config table array's address is
unmapped. Since the page fault occurs before the new kernel establishes its
own identity map and page fault routines, it is unrecoverable and kexec
fails.
Most often, this problem is not seen because the EFI config table array
gets included in the map by the luck of being placed at a memory address
close enough to other memory areas that *are* included in the map created
by kexec.
Both the "nogbpages" command line option and the "use gpbages only where
full GB page should be mapped" change greatly reduce the chance of being
included in the map by luck, which is why the problem appears.
Signed-off-by: Tao Liu <ltao@redhat.com>
Signed-off-by: Steve Wahl <steve.wahl@hpe.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Pavin Joseph <me@pavinjoseph.com>
Tested-by: Sarah Brofeldt <srhb@dbc.dk>
Tested-by: Eric Hagberg <ehagberg@gmail.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/all/20240717213121.3064030-2-steve.wahl@hpe.com
|
|
A Linux guest on Hyper-V gets the TSC frequency from a synthetic MSR, if
available. In this case, set X86_FEATURE_TSC_KNOWN_FREQ so that Linux
doesn't unnecessarily do refined TSC calibration when setting up the TSC
clocksource.
With this change, a message such as this is no longer output during boot
when the TSC is used as the clocksource:
[ 1.115141] tsc: Refined TSC clocksource calibration: 2918.408 MHz
Furthermore, the guest and host will have exactly the same view of the
TSC frequency, which is important for features such as the TSC deadline
timer that are emulated by the Hyper-V host.
Signed-off-by: Michael Kelley <mhklinux@outlook.com>
Reviewed-by: Roman Kisel <romank@linux.microsoft.com>
Link: https://lore.kernel.org/r/20240606025559.1631-1-mhklinux@outlook.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Message-ID: <20240606025559.1631-1-mhklinux@outlook.com>
|
|
The unsynchronized_tsc() eventually checks num_possible_cpus(), and if the
system is non-Intel and the number of possible CPUs is greater than one,
assumes that TSCs are unsynchronized. This despite the comment saying
"assume multi socket systems are not synchronized", that is, socket rather
than CPU. This behavior was preserved by commit 8fbbc4b45ce3 ("x86: merge
tsc_init and clocksource code") and by the previous relevant commit
7e69f2b1ead2 ("clocksource: Remove the update callback").
The clocksource drivers were added by commit 5d0cf410e94b ("Time: i386
Clocksource Drivers") back in 2006, and the comment still said "socket"
rather than "CPU".
Therefore, bravely (and perhaps foolishly) make the code match the
comment.
Note that it is possible to bypass both code and comment by booting
with tsc=reliable, but this also disables the clocksource watchdog,
which is undesirable when trust in the TSC is strictly limited.
Reported-by: Zhengxu Chen <zhxchen17@meta.com>
Reported-by: Danielle Costantino <dcostantino@meta.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20240802154618.4149953-5-paulmck@kernel.org
|
|
According to the data sheet, writing the MODE register should stop the
counter (and thus the interrupts). This appears to work on real hardware,
at least modern Intel and AMD systems. It should also work on Hyper-V.
However, on some buggy virtual machines the mode change doesn't have any
effect until the counter is subsequently loaded (or perhaps when the IRQ
next fires).
So, set MODE 0 and then load the counter, to ensure that those buggy VMs
do the right thing and the interrupts stop. And then write MODE 0 *again*
to stop the counter on compliant implementations too.
Apparently, Hyper-V keeps firing the IRQ *repeatedly* even in mode zero
when it should only happen once, but the second MODE write stops that too.
Userspace test program (mostly written by tglx):
=====
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdint.h>
#include <sys/io.h>
static __always_inline void __out##bwl(type value, uint16_t port) \
{ \
asm volatile("out" #bwl " %" #bw "0, %w1" \
: : "a"(value), "Nd"(port)); \
} \
\
static __always_inline type __in##bwl(uint16_t port) \
{ \
type value; \
asm volatile("in" #bwl " %w1, %" #bw "0" \
: "=a"(value) : "Nd"(port)); \
return value; \
}
BUILDIO(b, b, uint8_t)
#define inb __inb
#define outb __outb
#define PIT_MODE 0x43
#define PIT_CH0 0x40
#define PIT_CH2 0x42
static int is8254;
static void dump_pit(void)
{
if (is8254) {
// Latch and output counter and status
outb(0xC2, PIT_MODE);
printf("%02x %02x %02x\n", inb(PIT_CH0), inb(PIT_CH0), inb(PIT_CH0));
} else {
// Latch and output counter
outb(0x0, PIT_MODE);
printf("%02x %02x\n", inb(PIT_CH0), inb(PIT_CH0));
}
}
int main(int argc, char* argv[])
{
int nr_counts = 2;
if (argc > 1)
nr_counts = atoi(argv[1]);
if (argc > 2)
is8254 = 1;
if (ioperm(0x40, 4, 1) != 0)
return 1;
dump_pit();
printf("Set oneshot\n");
outb(0x38, PIT_MODE);
outb(0x00, PIT_CH0);
outb(0x0F, PIT_CH0);
dump_pit();
usleep(1000);
dump_pit();
printf("Set periodic\n");
outb(0x34, PIT_MODE);
outb(0x00, PIT_CH0);
outb(0x0F, PIT_CH0);
dump_pit();
usleep(1000);
dump_pit();
dump_pit();
usleep(100000);
dump_pit();
usleep(100000);
dump_pit();
printf("Set stop (%d counter writes)\n", nr_counts);
outb(0x30, PIT_MODE);
while (nr_counts--)
outb(0xFF, PIT_CH0);
dump_pit();
usleep(100000);
dump_pit();
usleep(100000);
dump_pit();
printf("Set MODE 0\n");
outb(0x30, PIT_MODE);
dump_pit();
usleep(100000);
dump_pit();
usleep(100000);
dump_pit();
return 0;
}
=====
Suggested-by: Sean Christopherson <seanjc@google.com>
Co-developed-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhkelley@outlook.com>
Link: https://lore.kernel.org/all/20240802135555.564941-2-dwmw2@infradead.org
|
|
Leaving the PIT interrupt running can cause noticeable steal time for
virtual guests. The VMM generally has a timer which toggles the IRQ input
to the PIC and I/O APIC, which takes CPU time away from the guest. Even
on real hardware, running the counter may use power needlessly (albeit
not much).
Make sure it's turned off if it isn't going to be used.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhkelley@outlook.com>
Link: https://lore.kernel.org/all/20240802135555.564941-1-dwmw2@infradead.org
|
|
A process can disable access to the alternate signal stack by not
enabling the altstack's PKEY in the PKRU register.
Nevertheless, the kernel updates the PKRU temporarily for signal
handling. However, in sigreturn(), restore_sigcontext() will restore the
PKRU to the user-defined PKRU value.
This will cause restore_altstack() to fail with a SIGSEGV as it needs read
access to the altstack which is prohibited by the user-defined PKRU value.
Fix this by restoring altstack before restoring PKRU.
Signed-off-by: Aruna Ramakrishna <aruna.ramakrishna@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20240802061318.2140081-5-aruna.ramakrishna@oracle.com
|
|
If the alternate signal stack is protected by a different PKEY than the
current execution stack, copying XSAVE data to the sigaltstack will fail
if its PKEY is not enabled in the PKRU register.
It's unknown which pkey was used by the application for the altstack, so
enable all PKEYS before XSAVE.
But this updated PKRU value is also pushed onto the sigframe, which
means the register value restored from sigcontext will be different from
the user-defined one, which is incorrect.
Fix that by overwriting the PKRU value on the sigframe with the original,
user-defined PKRU.
Signed-off-by: Aruna Ramakrishna <aruna.ramakrishna@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20240802061318.2140081-4-aruna.ramakrishna@oracle.com
|
|
In the case where a user thread sets up an alternate signal stack protected
by the default PKEY (i.e. PKEY 0), while the thread's stack is protected by
a non-zero PKEY, both these PKEYS have to be enabled in the PKRU register
for the signal to be delivered to the application correctly. However, the
PKRU value restored after handling the signal must not enable this extra
PKEY (i.e. PKEY 0) - i.e., the PKRU value in the sigframe has to be
overwritten with the user-defined value.
Add helper functions that will update PKRU value in the sigframe after
XSAVE.
Note that sig_prepare_pkru() makes no assumption about which PKEY could
be used to protect the altstack (i.e. it may not be part of init_pkru),
and so enables all PKEYS.
No functional change.
Signed-off-by: Aruna Ramakrishna <aruna.ramakrishna@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20240802061318.2140081-3-aruna.ramakrishna@oracle.com
|
|
Assume there's a multithreaded application that runs untrusted user
code. Each thread has its stack/code protected by a non-zero PKEY, and the
PKRU register is set up such that only that particular non-zero PKEY is
enabled. Each thread also sets up an alternate signal stack to handle
signals, which is protected by PKEY zero. The PKEYs man page documents that
the PKRU will be reset to init_pkru when the signal handler is invoked,
which means that PKEY zero access will be enabled. But this reset happens
after the kernel attempts to push fpu state to the alternate stack, which
is not (yet) accessible by the kernel, which leads to a new SIGSEGV being
sent to the application, terminating it.
Enabling both the non-zero PKEY (for the thread) and PKEY zero in
userspace will not work for this use case. It cannot have the alt stack
writeable by all - the rationale here is that the code running in that
thread (using a non-zero PKEY) is untrusted and should not have access
to the alternate signal stack (that uses PKEY zero), to prevent the
return address of a function from being changed. The expectation is that
kernel should be able to set up the alternate signal stack and deliver
the signal to the application even if PKEY zero is explicitly disabled
by the application. The signal handler accessibility should not be
dictated by whatever PKRU value the thread sets up.
The PKRU register is managed by XSAVE, which means the sigframe contents
must match the register contents - which is not the case here. It's
required that the signal frame contains the user-defined PKRU value (so
that it is restored correctly from sigcontext) but the actual register must
be reset to init_pkru so that the alt stack is accessible and the signal
can be delivered to the application. It seems that the proper fix here
would be to remove PKRU from the XSAVE framework and manage it separately,
which is quite complicated. As a workaround, do this:
orig_pkru = rdpkru();
wrpkru(orig_pkru & init_pkru_value);
xsave_to_user_sigframe();
put_user(pkru_sigframe_addr, orig_pkru)
In preparation for writing PKRU to sigframe, pass PKRU as an additional
parameter down the call chain from get_sigframe().
No functional change.
Signed-off-by: Aruna Ramakrishna <aruna.ramakrishna@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20240802061318.2140081-2-aruna.ramakrishna@oracle.com
|
|
Bring x86 and selftests up to date
|
|
Current AMD systems can report MCA errors using the ACPI Boot Error
Record Table (BERT). The BERT entries for MCA errors will be an x86
Common Platform Error Record (CPER) with an MSR register context that
matches the MCAX/SMCA register space.
However, the BERT will not necessarily be processed on the CPU that
reported the MCA errors. Therefore, the correct CPU number needs to be
determined and the information saved in struct mce.
Use the newly defined mce_prep_record_*() helpers to get the correct
data.
Also, add an explicit check to verify that a valid CPU number was found
from the APIC ID search.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Link: https://lore.kernel.org/r/20240730182958.4117158-4-yazen.ghannam@amd.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
Generally, MCA information for an error is gathered on the CPU that
reported the error. In this case, CPU-specific information from the
running CPU will be correct.
However, this will be incorrect if the MCA information is gathered while
running on a CPU that didn't report the error. One example is creating
an MCA record using mce_prep_record() for errors reported from ACPI.
Split mce_prep_record() so that there is a helper function to gather
common, i.e. not CPU-specific, information and another helper for
CPU-specific information.
Leave mce_prep_record() defined as-is for the common case when running
on the reporting CPU.
Get MCG_CAP in the global helper even though the register is per-CPU.
This value is not already cached per-CPU like other values. And it does
not assist with any per-CPU decoding or handling.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Link: https://lore.kernel.org/r/20240730182958.4117158-3-yazen.ghannam@amd.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
There is no MCE "setup" done in mce_setup(). Rather, this function initializes
and prepares an MCE record.
Rename the function to highlight what it does.
No functional change is intended.
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Link: https://lore.kernel.org/r/20240730182958.4117158-2-yazen.ghannam@amd.com
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
Commit in Fixes was added as a catch-all for cases where the cmdline is
parsed before being merged with the builtin one.
And promptly one issue appeared, see Link below. The microcode loader
really needs to parse it that early, but the merging happens later.
Reshuffling the early boot nightmare^W code to handle that properly would
be a painful exercise for another day so do the chicken thing and parse the
builtin cmdline too before it has been merged.
Fixes: 0c40b1c7a897 ("x86/setup: Warn when option parsing is done too early")
Reported-by: Mike Lothian <mike@fireburn.co.uk>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20240730152108.GAZqkE5Dfi9AuKllRw@fat_crate.local
Link: https://lore.kernel.org/r/20240722152330.GCZp55ck8E_FT4kPnC@fat_crate.local
|
|
Commit b50db7095fe0 ("x86/tsc: Disable clocksource watchdog for TSC on
qualified platorms") was introduced to solve problem that sometimes TSC
clocksource is wrongly judged as unstable by watchdog like 'jiffies', HPET,
etc.
In it, the hardware package number is a key factor for judging whether to
disable the watchdog for TSC, and 'nr_online_nodes' was chosen due to, at
that time (kernel v5.1x), it is available in early boot phase before
registering 'tsc-early' clocksource, where all non-boot CPUs are not
brought up yet.
Dave and Rui pointed out there are many cases in which 'nr_online_nodes'
is cheated and not accurate, like:
* SNC (sub-numa cluster) mode enabled
* numa emulation (numa=fake=8 etc.)
* numa=off
* platforms with CPU-less HBM nodes, CPU-less Optane memory nodes.
* 'maxcpus=' cmdline setup, where chopped CPUs could be onlined later
* 'nr_cpus=', 'possible_cpus=' cmdline setup, where chopped CPUs can
not be onlined after boot
The SNC case is the most user-visible case, as many CSP (Cloud Service
Provider) enable this feature in their server fleets. When SNC3 enabled, a
2 socket machine will appear to have 6 NUMA nodes, and get impacted by the
issue in reality.
Thomas' recent patchset of refactoring x86 topology code improves
topology_max_packages() greatly, by making it more accurate and available
in early boot phase, which works well in most of the above cases.
The only exceptions are 'nr_cpus=' and 'possible_cpus=' setup, which may
under-estimate the package number. As during topology setup, the boot CPU
iterates through all enumerated APIC IDs and either accepts or rejects the
APIC ID. For accepted IDs, it figures out which bits of the ID map to the
package number. It tracks which package numbers have been seen in a
bitmap. topology_max_packages() just returns the number of bits set in
that bitmap.
'nr_cpus=' and 'possible_cpus=' can cause more APIC IDs to be rejected and
can artificially lower the number of bits in the package bitmap and thus
topology_max_packages(). This means that, for example, a system with 8
physical packages might reject all the CPUs on 6 of those packages and be
left with only 2 packages and 2 bits set in the package bitmap. It needs
the TSC watchdog, but would disable it anyway. This isn't ideal, but it
only happens for debug-oriented options. This is fixable by tracking the
package numbers for rejected CPUs. But it's not worth the trouble for
debugging.
So use topology_max_packages() to replace nr_online_nodes().
Reported-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Waiman Long <longman@redhat.com>
Link: https://lore.kernel.org/all/20240729021202.180955-1-feng.tang@intel.com
Closes: https://lore.kernel.org/lkml/a4860054-0f16-6513-f121-501048431086@intel.com/
|
|
Add some new Zen5 models for the 0x1A family.
[ bp: Merge the 0x60 and 0x70 ranges. ]
Signed-off-by: Perry Yuan <perry.yuan@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240729064626.24297-1-bp@kernel.org
|
|
Currently, the CONFIG_SPECULATION_MITIGATIONS is halfway populated, where some
mitigations have entries in Kconfig, and they could be modified, while others
mitigations do not have Kconfig entries, and could not be controlled at build
time.
Create a new kernel config that allows GDS to be completely disabled,
similarly to the "gather_data_sampling=off" or "mitigations=off" kernel
command-line.
Now, there are two options for GDS mitigation:
* CONFIG_MITIGATION_GDS=n -> Mitigation disabled (New)
* CONFIG_MITIGATION_GDS=y -> Mitigation enabled (GDS_MITIGATION_FULL)
Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20240729164105.554296-12-leitao@debian.org
|
|
Remove the MITIGATION_GDS_FORCE Kconfig option, which aggressively disables
AVX as a mitigation for Gather Data Sampling (GDS) vulnerabilities. This
option is not widely used by distros.
While removing the Kconfig option, retain the runtime configuration ability
through the `gather_data_sampling=force` kernel parameter. This allows users
to still enable this aggressive mitigation if needed, without baking it into
the kernel configuration.
Simplify the kernel configuration while maintaining flexibility for runtime
mitigation choices.
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Link: https://lore.kernel.org/r/20240729164105.554296-11-leitao@debian.org
|
|
Currently, the CONFIG_SPECULATION_MITIGATIONS is halfway populated,
where some mitigations have entries in Kconfig, and they could be
modified, while others mitigations do not have Kconfig entries, and
could not be controlled at build time.
Create an entry for the SSB CPU mitigation under
CONFIG_SPECULATION_MITIGATIONS. This allow users to enable or disable
it at compilation time.
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20240729164105.554296-10-leitao@debian.org
|
|
Currently, the CONFIG_SPECULATION_MITIGATIONS is halfway populated,
where some mitigations have entries in Kconfig, and they could be
modified, while others mitigations do not have Kconfig entries, and
could not be controlled at build time.
Create an entry for the Spectre V2 CPU mitigation under
CONFIG_SPECULATION_MITIGATIONS. This allow users to enable or disable
it at compilation time.
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20240729164105.554296-9-leitao@debian.org
|
|
Currently, the CONFIG_SPECULATION_MITIGATIONS is halfway populated,
where some mitigations have entries in Kconfig, and they could be
modified, while others mitigations do not have Kconfig entries, and
could not be controlled at build time.
Create an entry for the SRBDS CPU mitigation under
CONFIG_SPECULATION_MITIGATIONS. This allow users to enable or disable
it at compilation time.
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20240729164105.554296-8-leitao@debian.org
|
|
Currently, the CONFIG_SPECULATION_MITIGATIONS is halfway populated,
where some mitigations have entries in Kconfig, and they could be
modified, while others mitigations do not have Kconfig entries, and
could not be controlled at build time.
Create an entry for the Spectre v1 CPU mitigation under
CONFIG_SPECULATION_MITIGATIONS. This allow users to enable or disable
it at compilation time.
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20240729164105.554296-7-leitao@debian.org
|
|
Currently, the CONFIG_SPECULATION_MITIGATIONS is halfway populated,
where some mitigations have entries in Kconfig, and they could be
modified, while others mitigations do not have Kconfig entries, and
could not be controlled at build time.
Create an entry for the RETBLEED CPU mitigation under
CONFIG_SPECULATION_MITIGATIONS. This allow users to enable or disable
it at compilation time.
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20240729164105.554296-6-leitao@debian.org
|
|
Currently, the CONFIG_SPECULATION_MITIGATIONS is halfway populated,
where some mitigations have entries in Kconfig, and they could be
modified, while others mitigations do not have Kconfig entries, and
could not be controlled at build time.
Create an entry for the L1TF CPU mitigation under
CONFIG_SPECULATION_MITIGATIONS. This allow users to enable or disable
it at compilation time.
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20240729164105.554296-5-leitao@debian.org
|
|
Currently, the CONFIG_SPECULATION_MITIGATIONS is halfway populated,
where some mitigations have entries in Kconfig, and they could be
modified, while others mitigations do not have Kconfig entries, and
could not be controlled at build time.
Create an entry for the MMIO Stale data CPU mitigation under
CONFIG_SPECULATION_MITIGATIONS. This allow users to enable or disable
it at compilation time.
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20240729164105.554296-4-leitao@debian.org
|
|
Currently, the CONFIG_SPECULATION_MITIGATIONS is halfway populated,
where some mitigations have entries in Kconfig, and they could be
modified, while others mitigations do not have Kconfig entries, and
could not be controlled at build time.
Create an entry for the TAA CPU mitigation under
CONFIG_SPECULATION_MITIGATIONS. This allow users to enable or disable
it at compilation time.
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20240729164105.554296-3-leitao@debian.org
|
|
Currently, the CONFIG_SPECULATION_MITIGATIONS is halfway populated,
where some mitigations have entries in Kconfig, and they could be
modified, while others mitigations do not have Kconfig entries, and
could not be controlled at build time.
Create an entry for the MDS CPU mitigation under
CONFIG_SPECULATION_MITIGATIONS. This allow users to enable or disable
it at compilation time.
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20240729164105.554296-2-leitao@debian.org
|
|
Initialize equiv_id in order to shut up:
arch/x86/kernel/cpu/microcode/amd.c:714:6: warning: variable 'equiv_id' is \
used uninitialized whenever 'if' condition is false [-Wsometimes-uninitialized]
if (x86_family(bsp_cpuid_1_eax) < 0x17) {
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
because clang doesn't do interprocedural analysis for warnings to see
that this variable won't be used uninitialized.
Fixes: 94838d230a6c ("x86/microcode/AMD: Use the family,model,stepping encoded in the patch ID")
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202407291815.gJBST0P3-lkp@intel.com/
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|
The broken patch results in a call to init_freq_invariance_cppc() in a CPU
hotplug handler in both the path for initially present CPUs and those
hotplugged later. That function includes a one time call to
amd_set_max_freq_ratio() which in turn calls freq_invariance_enable() that has
a static_branch_enable() which takes the cpu_hotlug_lock which is already
held.
Avoid the deadlock by using static_branch_enable_cpuslocked() as the lock will
always be already held. The equivalent path on Intel does not already hold
this lock, so take it around the call to freq_invariance_enable(), which
results in it being held over the call to register_syscall_ops, which looks to
be safe to do.
Fixes: c1385c1f0ba3 ("ACPI: processor: Simplify initial onlining to use same path for cold and hotplug")
Closes: https://lore.kernel.org/all/CABXGCsPvqBfL5hQDOARwfqasLRJ_eNPBbCngZ257HOe=xbWDkA@mail.gmail.com/
Reported-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Tested-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240729105504.2170-1-Jonathan.Cameron@huawei.com
|
|
Add a new .note section containing type, size, offset and flags of every
xfeature that is present.
This information will be used by debuggers to understand the XSAVE layout of
the machine where the core file has been dumped, and to read XSAVE registers,
especially during cross-platform debugging.
The XSAVE layouts of modern AMD and Intel CPUs differ, especially since
Memory Protection Keys and the AVX-512 features have been inculcated into
the AMD CPUs.
Since AMD never adopted (and hence never left room in the XSAVE layout for)
the Intel MPX feature, tools like GDB had assumed a fixed XSAVE layout
matching that of Intel (based on the XCR0 mask).
Hence, core dumps from AMD CPUs didn't match the known size for the XCR0 mask.
This resulted in GDB and other tools not being able to access the values of
the AVX-512 and PKRU registers on AMD CPUs.
To solve this, an interim solution has been accepted into GDB, and is already
a part of GDB 14, see
https://sourceware.org/pipermail/gdb-patches/2023-March/198081.html.
But it depends on heuristics based on the total XSAVE register set size
and the XCR0 mask to infer the layouts of the various register blocks
for core dumps, and hence, is not a foolproof mechanism to determine the
layout of the XSAVE area.
Therefore, add a new core dump note in order to allow GDB/LLDB and other
relevant tools to determine the layout of the XSAVE area of the machine where
the corefile was dumped.
The new core dump note (which is being proposed as a per-process .note
section), NT_X86_XSAVE_LAYOUT (0x205) contains an array of structures.
Each structure describes an individual extended feature containing
offset, size and flags in this format:
struct x86_xfeat_component {
u32 type;
u32 size;
u32 offset;
u32 flags;
};
and in an independent manner, allowing for future extensions without depending
on hw arch specifics like CPUID etc.
[ bp: Massage commit message, zap trailing whitespace. ]
Co-developed-by: Jini Susan George <jinisusan.george@amd.com>
Signed-off-by: Jini Susan George <jinisusan.george@amd.com>
Co-developed-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Vignesh Balasubramanian <vigbalas@amd.com>
Link: https://lore.kernel.org/r/20240725161017.112111-2-vigbalas@amd.com
|
|
On Zen and newer, the family, model and stepping is part of the
microcode patch ID so that the equivalence table the driver has been
using, is not needed anymore.
So switch the driver to use that from now on.
The equivalence table in the microcode blob should still remain in case
there's need to pass some additional information to the kernel loader.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240725112037.GBZqI1BbUk1KMlOJ_D@fat_crate.local
|
|
Add new PCI device IDs into the root IDs and miscellaneous IDs lists to
provide support for the latest generation of AMD 1Ah family 60h processor
models.
Signed-off-by: Shyam Sundar S K <Shyam-sundar.S-k@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Yazen Ghannam <yazen.ghannam@amd.com>
Link: https://lore.kernel.org/r/20240722092801.3480266-1-Shyam-sundar.S-k@amd.com
|
|
const qualify the struct ctl_table argument in the proc_handler function
signatures. This is a prerequisite to moving the static ctl_table
structs into .rodata data which will ensure that proc_handler function
pointers cannot be modified.
This patch has been generated by the following coccinelle script:
```
virtual patch
@r1@
identifier ctl, write, buffer, lenp, ppos;
identifier func !~ "appldata_(timer|interval)_handler|sched_(rt|rr)_handler|rds_tcp_skbuf_handler|proc_sctp_do_(hmac_alg|rto_min|rto_max|udp_port|alpha_beta|auth|probe_interval)";
@@
int func(
- struct ctl_table *ctl
+ const struct ctl_table *ctl
,int write, void *buffer, size_t *lenp, loff_t *ppos);
@r2@
identifier func, ctl, write, buffer, lenp, ppos;
@@
int func(
- struct ctl_table *ctl
+ const struct ctl_table *ctl
,int write, void *buffer, size_t *lenp, loff_t *ppos)
{ ... }
@r3@
identifier func;
@@
int func(
- struct ctl_table *
+ const struct ctl_table *
,int , void *, size_t *, loff_t *);
@r4@
identifier func, ctl;
@@
int func(
- struct ctl_table *ctl
+ const struct ctl_table *ctl
,int , void *, size_t *, loff_t *);
@r5@
identifier func, write, buffer, lenp, ppos;
@@
int func(
- struct ctl_table *
+ const struct ctl_table *
,int write, void *buffer, size_t *lenp, loff_t *ppos);
```
* Code formatting was adjusted in xfs_sysctl.c to comply with code
conventions. The xfs_stats_clear_proc_handler,
xfs_panic_mask_proc_handler and xfs_deprecated_dointvec_minmax where
adjusted.
* The ctl_table argument in proc_watchdog_common was const qualified.
This is called from a proc_handler itself and is calling back into
another proc_handler, making it necessary to change it as part of the
proc_handler migration.
Co-developed-by: Thomas Weißschuh <linux@weissschuh.net>
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Co-developed-by: Joel Granados <j.granados@samsung.com>
Signed-off-by: Joel Granados <j.granados@samsung.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull probes updates from Masami Hiramatsu:
"Uprobes:
- x86/shstk: Make return uprobe work with shadow stack
- Add uretprobe syscall which speeds up the uretprobe 10-30% faster.
This syscall is automatically used from user-space trampolines
which are generated by the uretprobe. If this syscall is used by
normal user program, it will cause SIGILL. Note that this is
currently only implemented on x86_64.
(This also has two fixes for adjusting the syscall number to avoid
conflict with new *attrat syscalls.)
- uprobes/perf: fix user stack traces in the presence of pending
uretprobe. This corrects the uretprobe's trampoline address in the
stacktrace with correct return address
- selftests/x86: Add a return uprobe with shadow stack test
- selftests/bpf: Add uretprobe syscall related tests.
- test case for register integrity check
- test case with register changing case
- test case for uretprobe syscall without uprobes (expected to fail)
- test case for uretprobe with shadow stack
- selftests/bpf: add test validating uprobe/uretprobe stack traces
- MAINTAINERS: Add uprobes entry. This does not specify the tree but
to clarify who maintains and reviews the uprobes
Kprobes:
- tracing/kprobes: Test case cleanups.
Replace redundant WARN_ON_ONCE() + pr_warn() with WARN_ONCE() and
remove unnecessary code from selftest
- tracing/kprobes: Add symbol counting check when module loads.
This checks the uniqueness of the probed symbol on modules. The
same check has already done for kernel symbols
(This also has a fix for build error with CONFIG_MODULES=n)
Cleanup:
- Add MODULE_DESCRIPTION() macros for fprobe and kprobe examples"
* tag 'probes-v6.11' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
MAINTAINERS: Add uprobes entry
selftests/bpf: Change uretprobe syscall number in uprobe_syscall test
uprobe: Change uretprobe syscall scope and number
tracing/kprobes: Fix build error when find_module() is not available
tracing/kprobes: Add symbol counting check when module loads
selftests/bpf: add test validating uprobe/uretprobe stack traces
perf,uprobes: fix user stack traces in the presence of pending uretprobes
tracing/kprobe: Remove cleanup code unrelated to selftest
tracing/kprobe: Integrate test warnings into WARN_ONCE
selftests/bpf: Add uretprobe shadow stack test
selftests/bpf: Add uretprobe syscall call from user space test
selftests/bpf: Add uretprobe syscall test for regs changes
selftests/bpf: Add uretprobe syscall test for regs integrity
selftests/x86: Add return uprobe shadow stack test
uprobe: Add uretprobe syscall to speed up return probe
uprobe: Wire up uretprobe system call
x86/shstk: Make return uprobe work with shadow stack
samples: kprobes: add missing MODULE_DESCRIPTION() macros
fprobe: add missing MODULE_DESCRIPTION() macro
|
|
Pull drm updates from Dave Airlie:
"There's a lot of stuff in here, amd, i915 and xe have new platform
work, lots of core rework around EDID handling, some new COMPILE_TEST
options, maintainer changes and a lots of other stuff. Summary:
core:
- deprecate DRM data and return 0 date
- connector: Create a set of helpers to help with HDMI support
- Remove driver owner assignments
- Allow more drivers to compile with COMPILE_TEST
- Conversions to drm_edid
- Sprinkle MODULE_DESCRIPTIONS everywhere they are missing
- Remove drm_mm_replace_node
- print: Add a drm prefix to warn level messages too, remove
___drm_dbg, consolidate prefix handling
- New monochrome TV mode variant
ttm:
- improve number of page faults on some platforms
- fix test builds under PREEMPT_RT
- more test coverage
ci:
- Require a more recent version of mesa
- improve farm setup and test generation
dma-buf:
- warn if reserving 0 fence slots
- internal API heap enhancements
fbdev:
- Create memory manager optimized fbdev emulation
panic:
- Allow to select fonts
- improve drm_fb_dma_get_scanout_buffer
- Allow to dump kmsg to the screen
bridge:
- Remove redundant checks on bridge->encoder
- Remove drm_bridge_chain_mode_fixup
- bridge-connector: Plumb in the new HDMI helper
- analogix_dp: Various improvements, handle AUX transfers timeout
- samsung-dsim: Fix timings calculation
- tc358767: Plenty of small fixes, fix no connector attach, fix
clocks
- sii902x: state validation improvements
panels:
- Switch panels from register table initialization to proper code
- Now that the panel code tracks the panel state, remove every ad-hoc
implementation in the panel drivers
- More cleanup of prepare / enable state tracking in drivers
- edp: Drop legacy panel compatibles
- simple-bridge: Switch to devm_drm_bridge_add
- New panels: Lincoln Tech Sol LCD185-101CT, Microtips Technology
13-101HIEBCAF0-C, Microtips Technology MF-103HIEB0GA0,
BOE nv110wum-l60, IVO t109nw41, WL-355608-A8, PrimeView
PM070WL4, Lincoln Technologies LCD197, Ortustech
COM35H3P70ULC, AUO G104STN01, K&d kd101ne3-40ti
amdgpu:
- DCN 4.0.x support
- GC 12.0 support
- GMC 12.0 support
- SDMA 7.0 support
- MES12 support
- MMHUB 4.1 support
- GFX12 modifier and DCC support
- lots of IP fixes/updates
amdkfd:
- Contiguous VRAM allocations
- GC 12.0 support
- SDMA 7.0 support
- SR-IOV fixes
- KFD GFX ALU exceptions
i915:
- Battlemage Xe2 HPD display enablement
- Panel Replay enabling
- DP AUX-less ALPM/LOBF
- Enable link training failure fallback |