summaryrefslogtreecommitdiff
path: root/arch/x86/lib/Makefile
AgeCommit message (Collapse)AuthorFilesLines
2025-03-25Merge tag 'crc-for-linus' of ↵Linus Torvalds1-1/+4
git://git.kernel.org/pub/scm/linux/kernel/git/ebiggers/linux Pull CRC updates from Eric Biggers: "Another set of improvements to the kernel's CRC (cyclic redundancy check) code: - Rework the CRC64 library functions to be directly optimized, like what I did last cycle for the CRC32 and CRC-T10DIF library functions - Rewrite the x86 PCLMULQDQ-optimized CRC code, and add VPCLMULQDQ support and acceleration for crc64_be and crc64_nvme - Rewrite the riscv Zbc-optimized CRC code, and add acceleration for crc_t10dif, crc64_be, and crc64_nvme - Remove crc_t10dif and crc64_rocksoft from the crypto API, since they are no longer needed there - Rename crc64_rocksoft to crc64_nvme, as the old name was incorrect - Add kunit test cases for crc64_nvme and crc7 - Eliminate redundant functions for calculating the Castagnoli CRC32, settling on just crc32c() - Remove unnecessary prompts from some of the CRC kconfig options - Further optimize the x86 crc32c code" * tag 'crc-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiggers/linux: (36 commits) x86/crc: drop the avx10_256 functions and rename avx10_512 to avx512 lib/crc: remove unnecessary prompt for CONFIG_CRC64 lib/crc: remove unnecessary prompt for CONFIG_LIBCRC32C lib/crc: remove unnecessary prompt for CONFIG_CRC8 lib/crc: remove unnecessary prompt for CONFIG_CRC7 lib/crc: remove unnecessary prompt for CONFIG_CRC4 lib/crc7: unexport crc7_be_syndrome_table lib/crc_kunit.c: update comment in crc_benchmark() lib/crc_kunit.c: add test and benchmark for crc7_be() x86/crc32: optimize tail handling for crc32c short inputs riscv/crc64: add Zbc optimized CRC64 functions riscv/crc-t10dif: add Zbc optimized CRC-T10DIF function riscv/crc32: reimplement the CRC32 functions using new template riscv/crc: add "template" for Zbc optimized CRC functions x86/crc: add ANNOTATE_NOENDBR to suppress objtool warnings x86/crc32: improve crc32c_arch() code generation with clang x86/crc64: implement crc64_be and crc64_nvme using new template x86/crc-t10dif: implement crc_t10dif using new template x86/crc32: implement crc32_le using new template x86/crc: add "template" for [V]PCLMULQDQ based CRC functions ...
2025-03-04Merge branch 'x86/asm' into x86/core, to pick up dependent commitsIngo Molnar1-1/+1
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-02-28x86/cpufeatures: Rename X86_CMPXCHG64 to X86_CX8H. Peter Anvin (Intel)1-1/+1
Replace X86_CMPXCHG64 with X86_CX8, as CX8 is the name of the CPUID flag, thus to make it consistent with X86_FEATURE_CX8 defined in <asm/cpufeatures.h>. No functional change intended. Signed-off-by: H. Peter Anvin (Intel) <hpa@zytor.com> Signed-off-by: Xin Li (Intel) <xin@zytor.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20250228082338.73859-2-xin@zytor.com
2025-02-26x86/bhi: Add BHI stubsPeter Zijlstra1-1/+2
Add an array of code thunks, to be called from the FineIBT preamble, clobbering the first 'n' argument registers for speculative execution. Notably the 0th entry will clobber no argument registers and will never be used, it exists so the array can be naturally indexed, while the 7th entry will clobber all the 6 argument registers and also RSP in order to mess up stack based arguments. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Kees Cook <kees@kernel.org> Link: https://lore.kernel.org/r/20250224124200.717378681@infradead.org
2025-02-10x86/crc64: implement crc64_be and crc64_nvme using new templateEric Biggers1-0/+3
Add x86_64 [V]PCLMULQDQ optimized implementations of crc64_be() and crc64_nvme() by wiring them up to crc-pclmul-template.S. crc64_be() is used by bcache and bcachefs, and crc64_nvme() is used by blk-integrity. Both features can CRC large amounts of data, and the developers of both features have expressed interest in having these CRCs be optimized. So this optimization should be worthwhile. (See https://lore.kernel.org/r/v36sousjd5ukqlkpdxslvpu7l37zbu7d7slgc2trjjqwty2bny@qgzew34feo2r and https://lore.kernel.org/r/20220222163144.1782447-11-kbusch@kernel.org) Benchmark results on AMD Ryzen 9 9950X (Zen 5) using crc_kunit: crc64_be: Length Before After ------ ------ ----- 1 633 MB/s 477 MB/s 16 717 MB/s 2517 MB/s 64 715 MB/s 7525 MB/s 127 714 MB/s 10002 MB/s 128 713 MB/s 13344 MB/s 200 715 MB/s 15752 MB/s 256 714 MB/s 22933 MB/s 511 715 MB/s 28025 MB/s 512 714 MB/s 49772 MB/s 1024 715 MB/s 65261 MB/s 3173 714 MB/s 78773 MB/s 4096 714 MB/s 83315 MB/s 16384 714 MB/s 89487 MB/s crc64_nvme: Length Before After ------ ------ ----- 1 716 MB/s 474 MB/s 16 717 MB/s 3303 MB/s 64 713 MB/s 7940 MB/s 127 715 MB/s 9867 MB/s 128 714 MB/s 13698 MB/s 200 715 MB/s 15995 MB/s 256 714 MB/s 23479 MB/s 511 714 MB/s 28013 MB/s 512 715 MB/s 51533 MB/s 1024 715 MB/s 66788 MB/s 3173 715 MB/s 79182 MB/s 4096 715 MB/s 83966 MB/s 16384 715 MB/s 89739 MB/s Acked-by: Keith Busch <kbusch@kernel.org> Reviewed-by: "Martin K. Petersen" <martin.petersen@oracle.com> Link: https://lore.kernel.org/r/20250210174540.161705-7-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2025-02-10x86/crc-t10dif: implement crc_t10dif using new templateEric Biggers1-1/+1
Instantiate crc-pclmul-template.S for crc_t10dif and delete the original PCLMULQDQ optimized implementation. This has the following advantages: - Less CRC-variant-specific code. - VPCLMULQDQ support, greatly improving performance on sufficiently long messages on newer CPUs. - A faster reduction from 128 bits to the final CRC. - Support for i386. Benchmark results on AMD Ryzen 9 9950X (Zen 5) using crc_kunit: Length Before After ------ ------ ----- 1 440 MB/s 386 MB/s 16 1865 MB/s 2008 MB/s 64 4343 MB/s 6917 MB/s 127 5440 MB/s 8909 MB/s 128 5533 MB/s 12150 MB/s 200 5908 MB/s 14423 MB/s 256 15870 MB/s 21288 MB/s 511 14219 MB/s 25840 MB/s 512 18361 MB/s 37797 MB/s 1024 19941 MB/s 61374 MB/s 3173 20461 MB/s 74909 MB/s 4096 21310 MB/s 78919 MB/s 16384 21663 MB/s 85012 MB/s Acked-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Keith Busch <kbusch@kernel.org> Reviewed-by: "Martin K. Petersen" <martin.petersen@oracle.com> Link: https://lore.kernel.org/r/20250210174540.161705-6-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2024-12-01x86/crc-t10dif: expose CRC-T10DIF function through libEric Biggers1-0/+3
Move the x86 CRC-T10DIF assembly code into the lib directory and wire it up to the library interface. This allows it to be used without going through the crypto API. It remains usable via the crypto API too via the shash algorithms that use the library interface. Thus all the arch-specific "shash" code becomes unnecessary and is removed. Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Link: https://lore.kernel.org/r/20241202012056.209768-5-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2024-12-01x86/crc32: expose CRC32 functions through libEric Biggers1-0/+4
Move the x86 CRC32 assembly code into the lib directory and wire it up to the library interface. This allows it to be used without going through the crypto API. It remains usable via the crypto API too via the shash algorithms that use the library interface. Thus all the arch-specific "shash" code becomes unnecessary and is removed. Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20241202010844.144356-14-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2024-04-22x86: Stop using weak symbols for __iowrite32_copy()Jason Gunthorpe1-1/+0
Start switching iomap_copy routines over to use #define and arch provided inline/macro functions instead of weak symbols. Inline functions allow more compiler optimization and this is often a driver hot path. x86 has the only weak implementation for __iowrite32_copy(), so replace it with a static inline containing the same single instruction inline assembly. The compiler will generate the "mov edx,ecx" in a more optimal way. Remove iomap_copy_64.S Link: https://lore.kernel.org/r/1-v3-1893cd8b9369+1925-mlx5_arm_wc_jgg@nvidia.com Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
2024-03-12Merge branch 'linus' into x86/boot, to resolve conflictIngo Molnar1-1/+1
There's a new conflict with Linus's upstream tree, because in the following merge conflict resolution in <asm/coco.h>: 38b334fc767e Merge tag 'x86_sev_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Linus has resolved the conflicting placement of 'cc_mask' better than the original commit: 1c811d403afd x86/sev: Fix position dependent variable references in startup code ... which was also done by an internal merge resolution: 2e5fc4786b7a Merge branch 'x86/sev' into x86/boot, to resolve conflicts and to pick up dependent tree But Linus is right in 38b334fc767e, the 'cc_mask' declaration is sufficient within the #ifdef CONFIG_ARCH_HAS_CC_PLATFORM block. So instead of forcing Linus to do the same resolution again, merge in Linus's tree and follow his conflict resolution. Conflicts: arch/x86/include/asm/coco.h Signed-off-by: Ingo Molnar <mingo@kernel.org>
2024-03-04x86/boot: Move mem_encrypt= parsing to the decompressorArd Biesheuvel1-13/+0
The early SME/SEV code parses the command line very early, in order to decide whether or not memory encryption should be enabled, which needs to occur even before the initial page tables are created. This is problematic for a number of reasons: - this early code runs from the 1:1 mapping provided by the decompressor or firmware, which uses a different translation than the one assumed by the linker, and so the code needs to be built in a special way; - parsing external input while the entire kernel image is still mapped writable is a bad idea in general, and really does not belong in security minded code; - the current code ignores the built-in command line entirely (although this appears to be the case for the entire decompressor) Given that the decompressor/EFI stub is an intrinsic part of the x86 bootable kernel image, move the command line parsing there and out of the core kernel. This removes the need to build lib/cmdline.o in a special way, or to use RIP-relative LEA instructions in inline asm blocks. This involves a new xloadflag in the setup header to indicate that mem_encrypt=on appeared on the kernel command line. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Tested-by: Tom Lendacky <thomas.lendacky@amd.com> Link: https://lore.kernel.org/r/20240227151907.387873-17-ardb+git@google.com
2024-01-10x86/bugs: Rename CONFIG_RETPOLINE => CONFIG_MITIGATION_RETPOLINEBreno Leitao1-1/+1
Step 5/10 of the namespace unification of CPU mitigations related Kconfig options. [ mingo: Converted a few more uses in comments/messages as well. ] Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Breno Leitao <leitao@debian.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ariel Miculas <amiculas@cisco.com> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20231121160740.1249350-6-leitao@debian.org
2023-06-05percpu: Wire up cmpxchg128Peter Zijlstra1-1/+2
In order to replace cmpxchg_double() with the newly minted cmpxchg128() family of functions, wire it up in this_cpu_cmpxchg(). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Tested-by: Mark Rutland <mark.rutland@arm.com> Link: https://lore.kernel.org/r/20230531132323.654945124@infradead.org
2023-04-20x86: rewrite '__copy_user_nocache' functionLinus Torvalds1-1/+1
I didn't really want to do this, but as part of all the other changes to the user copy loops, I've been looking at this horror. I tried to clean it up multiple times, but every time I just found more problems, and the way it's written, it's just too hard to fix them. For example, the code is written to do quad-word alignment, and will use regular byte accesses to get to that point. That's fairly simple, but it means that any initial 8-byte alignment will be done with cached copies. However, the code then is very careful to do any 4-byte _tail_ accesses using an uncached 4-byte write, and that was claimed to be relevant in commit a82eee742452 ("x86/uaccess/64: Handle the caching of 4-byte nocache copies properly in __copy_user_nocache()"). So if you do a 4-byte copy using that function, it carefully uses a 4-byte 'movnti' for the destination. But if you were to do a 12-byte copy that is 4-byte aligned, it would _not_ do a 4-byte 'movnti' followed by a 8-byte 'movnti' to keep it all uncached. Instead, it would align the destination to 8 bytes using a byte-at-a-time loop, and then do a 8-byte 'movnti' for the final 8 bytes. The main caller that cares is __copy_user_flushcache(), which knows about this insanity, and has odd cases for it all. But I just can't deal with looking at this kind of "it does one case right, and another related case entirely wrong". And the code really wasn't fixable without hard drugs, which I try to avoid. So instead, rewrite it in a form that hopefully not only gets this right, but is a bit more maintainable. Knock wood. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-11-01x86/mem: Move memmove to out of line assemblerNick Desaulniers1-0/+1
When building ARCH=i386 with CONFIG_LTO_CLANG_FULL=y, it's possible (depending on additional configs which I have not been able to isolate) to observe a failure during register allocation: error: inline assembly requires more registers than available when memmove is inlined into tcp_v4_fill_cb() or tcp_v6_fill_cb(). memmove is quite large and probably shouldn't be inlined due to size alone. A noinline function attribute would be the simplest fix, but there's a few things that stand out with the current definition: In addition to having complex constraints that can't always be resolved, the clobber list seems to be missing %bx. By using numbered operands rather than symbolic operands, the constraints are quite obnoxious to refactor. Having a large function be 99% inline asm is a code smell that this function should simply be written in stand-alone out-of-line assembler. Moving this to out of line assembler guarantees that the compiler cannot inline calls to memmove. This has been done previously for 64b: commit 9599ec0471de ("x86-64, mem: Convert memmove() to assembly file and fix return value bug") That gives the opportunity for other cleanups like fixing the inconsistent use of tabs vs spaces and instruction suffixes, and the label 3 appearing twice. Symbolic operands, local labels, and additional comments would provide this code with a fresh coat of paint. Finally, add a test that tickles the `rep movsl` implementation to test it for correctness, since it has implicit operands. Suggested-by: Ingo Molnar <mingo@kernel.org> Suggested-by: David Laight <David.Laight@aculab.com> Signed-off-by: Nick Desaulniers <ndesaulniers@google.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Link: https://lore.kernel.org/all/20221018172155.287409-1-ndesaulniers%40google.com
2022-10-03x86: kasan: kmsan: support CONFIG_GENERIC_CSUM on x86, enable it for KASAN/KMSANAlexander Potapenko1-0/+2
This is needed to allow memory tools like KASAN and KMSAN see the memory accesses from the checksum code. Without CONFIG_GENERIC_CSUM the tools can't see memory accesses originating from handwritten assembly code. For KASAN it's a question of detecting more bugs, for KMSAN using the C implementation also helps avoid false positives originating from seemingly uninitialized checksum values. Link: https://lkml.kernel.org/r/20220915150417.722975-38-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Christoph Hellwig <hch@lst.de> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Eric Biggers <ebiggers@google.com> Cc: Eric Biggers <ebiggers@kernel.org> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Ilya Leoshkevich <iii@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <keescook@chromium.org> Cc: Marco Elver <elver@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2021-12-11x86/mmx_32: Remove X86_USE_3DNOWPeter Zijlstra1-1/+0
This code puts an exception table entry on the PREFETCH instruction to overwrite it with a JMP.d8 when it triggers an exception. Except of course, our code is no longer writable, also SMP. Instead of fixing this broken mess, simply take it out. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/YZKQzUmeNuwyvZpk@hirez.programming.kicks-ass.net
2021-08-10x86: Add support for 0x22/0x23 port I/O configuration spaceMaciej W. Rozycki1-0/+1
Define macros and accessors for the configuration space addressed indirectly with an index register and a data register at the port I/O locations of 0x22 and 0x23 respectively. This space is defined by the Intel MultiProcessor Specification for the IMCR register used to switch between the PIC and the APIC mode[1], by Cyrix processors for their configuration[2][3], and also some chipsets. Given the lack of atomicity with the indirect addressing a spinlock is required to protect accesses, although for Cyrix processors it is enough if accesses are executed with interrupts locally disabled, because the registers are local to the accessing CPU, and IMCR is only ever poked at by the BSP and early enough for interrupts not to have been configured yet. Therefore existing code does not have to change or use the new spinlock and neither it does. Put the spinlock in a library file then, so that it does not get pulled unnecessarily for configurations that do not refer it. Convert Cyrix accessors to wrappers so as to retain the brevity and clarity of the `getCx86' and `setCx86' calls. References: [1] "MultiProcessor Specification", Version 1.4, Intel Corporation, Order Number: 242016-006, May 1997, Section 3.6.2.1 "PIC Mode", pp. 3-7, 3-8 [2] "5x86 Microprocessor", Cyrix Corporation, Order Number: 94192-00, July 1995, Section 2.3.2.4 "Configuration Registers", p. 2-23 [3] "6x86 Processor", Cyrix Corporation, Order Number: 94175-01, March 1996, Section 2.4.4 "6x86 Configuration Registers", p. 2-23 Signed-off-by: Maciej W. Rozycki <macro@orcam.me.uk> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/alpine.DEB.2.21.2107182353140.9461@angie.orcam.me.uk
2020-10-12Merge tag 'ras_updates_for_v5.10' of ↵Linus Torvalds1-0/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull RAS updates from Borislav Petkov: - Extend the recovery from MCE in kernel space also to processes which encounter an MCE in kernel space but while copying from user memory by sending them a SIGBUS on return to user space and umapping the faulty memory, by Tony Luck and Youquan Song. - memcpy_mcsafe() rework by splitting the functionality into copy_mc_to_user() and copy_mc_to_kernel(). This, as a result, enables support for new hardware which can recover from a machine check encountered during a fast string copy and makes that the default and lets the older hardware which does not support that advance recovery, opt in to use the old, fragile, slow variant, by Dan Williams. - New AMD hw enablement, by Yazen Ghannam and Akshay Gupta. - Do not use MSR-tracing accessors in #MC context and flag any fault while accessing MCA architectural MSRs as an architectural violation with the hope that such hw/fw misdesigns are caught early during the hw eval phase and they don't make it into production. - Misc fixes, improvements and cleanups, as always. * tag 'ras_updates_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mce: Allow for copy_mc_fragile symbol checksum to be generated x86/mce: Decode a kernel instruction to determine if it is copying from user x86/mce: Recover from poison found while copying from user space x86/mce: Avoid tail copy when machine check terminated a copy from user x86/mce: Add _ASM_EXTABLE_CPY for copy user access x86/mce: Provide method to find out the type of an exception handler x86/mce: Pass pointer to saved pt_regs to severity calculation routines x86/copy_mc: Introduce copy_mc_enhanced_fast_string() x86, powerpc: Rename memcpy_mcsafe() to copy_mc_to_{user, kernel}() x86/mce: Drop AMD-specific "DEFERRED" case from Intel severity rule list x86/mce: Add Skylake quirk for patrol scrub reported errors RAS/CEC: Convert to DEFINE_SHOW_ATTRIBUTE() x86/mce: Annotate mce_rd/wrmsrl() with noinstr x86/mce/dev-mcelog: Do not update kflags on AMD systems x86/mce: Stop mce_reign() from re-computing severity for every CPU x86/mce: Make mce_rdmsrl() panic on an inaccessible MSR x86/mce: Increase maximum number of banks to 64 x86/mce: Delay clearing IA32_MCG_STATUS to the end of do_machine_check() x86/MCE/AMD, EDAC/mce_amd: Remove struct smca_hwid.xec_bitmap RAS/CEC: Fix cec_init() prototype
2020-10-06x86, powerpc: Rename memcpy_mcsafe() to copy_mc_to_{user, kernel}()Dan Williams1-0/+1
In reaction to a proposal to introduce a memcpy_mcsafe_fast() implementation Linus points out that memcpy_mcsafe() is poorly named relative to communicating the scope of the interface. Specifically what addresses are valid to pass as source, destination, and what faults / exceptions are handled. Of particular concern is that even though x86 might be able to handle the semantics of copy_mc_to_user() with its common copy_user_generic() implementation other archs likely need / want an explicit path for this case: On Fri, May 1, 2020 at 11:28 AM Linus Torvalds <torvalds@linux-foundation.org> wrote: > > On Thu, Apr 30, 2020 at 6:21 PM Dan Williams <dan.j.williams@intel.com> wrote: > > > > However now I see that copy_user_generic() works for the wrong reason. > > It works because the exception on the source address due to poison > > looks no different than a write fault on the user address to the > > caller, it's still just a short copy. So it makes copy_to_user() work > > for the wrong reason relative to the name. > > Right. > > And it won't work that way on other architectures. On x86, we have a > generic function that can take faults on either side, and we use it > for both cases (and for the "in_user" case too), but that's an > artifact of the architecture oddity. > > In fact, it's probably wrong even on x86 - because it can hide bugs - > but writing those things is painful enough that everybody prefers > having just one function. Replace a single top-level memcpy_mcsafe() with either copy_mc_to_user(), or copy_mc_to_kernel(). Introduce an x86 copy_mc_fragile() name as the rename for the low-level x86 implementation formerly named memcpy_mcsafe(). It is used as the slow / careful backend that is supplanted by a fast copy_mc_generic() in a follow-on patch. One side-effect of this reorganization is that separating copy_mc_64.S to its own file means that perf no longer needs to track dependencies for its memcpy_64.S benchmarks. [ bp: Massage a bit. ] Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Tony Luck <tony.luck@intel.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Cc: <stable@vger.kernel.org> Link: http://lore.kernel.org/r/CAHk-=wjSqtXAqfUJxFtWNwmguFASTgB0dz1dT3V-78Quiezqbg@mail.gmail.com Link: https://lkml.kernel.org/r/160195561680.2163339.11574962055305783722.stgit@dwillia2-desk3.amr.corp.intel.com
2020-09-03x86/cmdline: Disable jump tables for cmdline.cArvind Sankar1-1/+1
When CONFIG_RETPOLINE is disabled, Clang uses a jump table for the switch statement in cmdline_find_option (jump tables are disabled when CONFIG_RETPOLINE is enabled). This function is called very early in boot from sme_enable() if CONFIG_AMD_MEM_ENCRYPT is enabled. At this time, the kernel is still executing out of the identity mapping, but the jump table will contain virtual addresses. Fix this by disabling jump tables for cmdline.c when AMD_MEM_ENCRYPT is enabled. Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20200903023056.3914690-1-nivedita@alum.mit.edu
2020-07-07kbuild: remove cc-option test of -fno-stack-protectorMasahiro Yamada1-1/+1
Some Makefiles already pass -fno-stack-protector unconditionally. For example, arch/arm64/kernel/vdso/Makefile, arch/x86/xen/Makefile. No problem report so far about hard-coding this option. So, we can assume all supported compilers know -fno-stack-protector. GCC 4.8 and Clang support this option (https://godbolt.org/z/_HDGzN) Get rid of cc-option from -fno-stack-protector. Remove CONFIG_CC_HAS_STACKPROTECTOR_NONE, which is always 'y'. Note: arch/mips/vdso/Makefile adds -fno-stack-protector twice, first unconditionally, and second conditionally. I removed the second one. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
2020-03-21kcsan, trace: Make KCSAN compatible with tracingMarco Elver1-0/+5
Previously the system would lock up if ftrace was enabled together with KCSAN. This is due to recursion on reporting if the tracer code is instrumented with KCSAN. To avoid this for all types of tracing, disable KCSAN instrumentation for all of kernel/trace. Furthermore, since KCSAN relies on udelay() to introduce delay, we have to disable ftrace for udelay() (currently done for x86) in case KCSAN is used together with lockdep and ftrace. The reason is that it may corrupt lockdep IRQ flags tracing state due to a peculiar case of recursion (details in Makefile comment). Reported-by: Qian Cai <cai@lca.pw> Tested-by: Qian Cai <cai@lca.pw> Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-16x86, kcsan: Enable KCSAN for x86Marco Elver1-0/+4
This patch enables KCSAN for x86, with updates to build rules to not use KCSAN for several incompatible compilation units. Signed-off-by: Marco Elver <elver@google.com> Acked-by: Paul E. McKenney <paulmck@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2019-05-06Merge branch 'locking-core-for-linus' of ↵Linus Torvalds1-1/+0
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull locking updates from Ingo Molnar: "Here are the locking changes in this cycle: - rwsem unification and simpler micro-optimizations to prepare for more intrusive (and more lucrative) scalability improvements in v5.3 (Waiman Long) - Lockdep irq state tracking flag usage cleanups (Frederic Weisbecker) - static key improvements (Jakub Kicinski, Peter Zijlstra) - misc updates, cleanups and smaller fixes" * 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (26 commits) locking/lockdep: Remove unnecessary unlikely() locking/static_key: Don't take sleeping locks in __static_key_slow_dec_deferred() locking/static_key: Factor out the fast path of static_key_slow_dec() locking/static_key: Add support for deferred static branches locking/lockdep: Test all incompatible scenarios at once in check_irq_usage() locking/lockdep: Avoid bogus Clang warning locking/lockdep: Generate LOCKF_ bit composites locking/lockdep: Use expanded masks on find_usage_*() functions locking/lockdep: Map remaining magic numbers to lock usage mask names locking/lockdep: Move valid_state() inside CONFIG_TRACE_IRQFLAGS && CONFIG_PROVE_LOCKING locking/rwsem: Prevent unneeded warning during locking selftest locking/rwsem: Optimize rwsem structure for uncontended lock acquisition locking/rwsem: Enable lock event counting locking/lock_events: Don't show pvqspinlock events on bare metal locking/lock_events: Make lock_events available for all archs & other locks locking/qspinlock_stat: Introduce generic lockevent_*() counting APIs locking/rwsem: Enhance DEBUG_RWSEMS_WARN_ON() macro locking/rwsem: Add debug check for __down_read*() locking/rwsem: Micro-optimize rwsem_try_read_lock_unqueued() locking/rwsem: Move rwsem internal function declarations to rwsem-xadd.h ...
2019-04-30x86/mm/mem_encrypt: Disable all instrumentation for early SME setupGary Hook1-0/+12
Enablement of AMD's Secure Memory Encryption feature is determined very early after start_kernel() is entered. Part of this procedure involves scanning the command line for the parameter 'mem_encrypt'. To determine intended state, the function sme_enable() uses library functions cmdline_find_option() and strncmp(). Their use occurs early enough such that it cannot be assumed that any instrumentation subsystem is initialized. For example, making calls to a KASAN-instrumented function before KASAN is set up will result in the use of uninitialized memory and a boot failure. When AMD's SME support is enabled, conditionally disable instrumentation of these dependent functions in lib/string.c and arch/x86/lib/cmdline.c. [ bp: Get rid of intermediary nostackp var and cleanup whitespace. ] Fixes: aca20d546214 ("x86/mm: Add support to make use of Secure Memory Encryption") Reported-by: Li RongQing <lirongqing@baidu.com> Signed-off-by: Gary R Hook <gary.hook@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Boris Brezillon <bbrezillon@kernel.org> Cc: Coly Li <colyli@suse.de> Cc: "dave.hansen@linux.intel.com" <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Kent Overstreet <kent.overstreet@gmail.com> Cc: "luto@kernel.org" <luto@kernel.org> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: "mingo@redhat.com" <mingo@redhat.com> Cc: "peterz@infradead.org" <peterz@infradead.org> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/155657657552.7116.18363762932464011367.stgit@sosrh3.amd.com
2019-04-03locking/rwsem: Remove arch specific rwsem filesWaiman Long1-1/+0
As the generic rwsem-xadd code is using the appropriate acquire and release versions of the atomic operations, the arch specific rwsem.h files will not be that much faster than the generic code as long as the atomic functions are properly implemented. So we can remove those arch specific rwsem.h and stop building asm/rwsem.h to reduce maintenance effort. Currently, only x86, alpha and ia64 have implemented architecture specific fast paths. I don't have access to alpha and ia64 systems for testing, but they are legacy systems that are not likely to be updated to the latest kernel anyway. By using a rwsem microbenchmark, the total locking rates on a 4-socket 56-core 112-thread x86-64 system before and after the patch were as follows (mixed means equal # of read and write locks): Before Patch After Patch # of Threads wlock rlock mixed wlock rlock mixed ------------ ----- ----- ----- ----- ----- ----- 1 29,201 30,143 29,458 28,615 30,172 29,201 2 6,807 13,299 1,171 7,725 15,025 1,804 4 6,504 12,755 1,520 7,127 14,286 1,345 8 6,762 13,412 764 6,826 13,652 726 16 6,693 15,408 662 6,599 15,938 626 32 6,145 15,286 496 5,549 15,487 511 64 5,812 15,495 60 5,858 15,572 60 There were some run-to-run variations for the multi-thread tests. For x86-64, using the generic C code fast path seems to be a little bit faster than the assembly version with low lock contention. Looking at the assembly version of the fast paths, there are assembly to/from C code wrappers that save and restore all the callee-clobbered registers (7 registers on x86-64). The assembly generated from the generic C code doesn't need to do that. That may explain the slight performance gain here. The generic asm rwsem.h can also be merged into kernel/locking/rwsem.h with no code change as no other code other than those under kernel/locking needs to access the internal rwsem macros and functions. Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-c6x-dev@linux-c6x.org Cc: linux-m68k@lists.linux-m68k.org Cc: linux-riscv@lists.infradead.org Cc: linux-um@lists.infradead.org Cc: linux-xtensa@linux-xtensa.org Cc: linuxppc-dev@lists.ozlabs.org Cc: nios2-dev@lists.rocketboards.org Cc: openrisc@lists.librecores.org Cc: uclinux-h8-devel@lists.sourceforge.jp Link: https://lkml.kernel.org/r/20190322143008.21313-2-longman@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-01-06kbuild: remove redundant target cleaning on failureMasahiro Yamada1-1/+1
Since commit 9c2af1c7377a ("kbuild: add .DELETE_ON_ERROR special target"), the target file is automatically deleted on failure. The boilerplate code ... || { rm -f $@; false; } is unneeded. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2019-01-04x86: re-introduce non-generic memcpy_{to,from}ioLinus Torvalds1-0/+1
This has been broken forever, and nobody ever really noticed because it's purely a performance issue. Long long ago, in commit 6175ddf06b61 ("x86: Clean up mem*io functions") Brian Gerst simplified the memory copies to and from iomem, since on x86, the instructions to access iomem are exactly the same as the regular instructions. That is technically true, and things worked, and nobody said anything. Besides, back then the regular memcpy was pretty simple and worked fine. Nobody noticed except for David Laight, that is. David has a testing a TLP monitor he was writing for an FPGA, and has been occasionally complaining about how memcpy_toio() writes things one byte at a time. Which is completely unacceptable from a performance standpoint, even if it happens to technically work. The reason it's writing one byte at a time is because while it's technically true that accesses to iomem are the same as accesses to regular memory on x86, the _granularity_ (and ordering) of accesses matter to iomem in ways that they don't matter to regular cached memory. In particular, when ERMS is set, we default to using "rep movsb" for larger memory copies. That is indeed perfectly fine for real memory, since the whole point is that the CPU is going to do cacheline optimizations and executes the memory copy efficiently for cached memory. With iomem? Not so much. With iomem, "rep movsb" will indeed work, but it will copy things one byte at a time. Slowly and ponderously. Now, originally, back in 2010 when commit 6175ddf06b61 was done, we didn't use ERMS, and this was much less noticeable. Our normal memcpy() was simpler in other ways too. Because in fact, it's not just about using the string instructions. Our memcpy() these days does things like "read and write overlapping values" to handle the last bytes of the copy. Again, for normal memory, overlapping accesses isn't an issue. For iomem? It can be. So this re-introduces the specialized memcpy_toio(), memcpy_fromio() and memset_io() functions. It doesn't particularly optimize them, but it tries to at least not be horrid, or do overlapping accesses. In fact, this uses the existing __inline_memcpy() function that we still had lying around that uses our very traditional "rep movsl" loop followed by movsw/movsb for the final bytes. Somebody may decide to try to improve on it, but if we've gone almost a decade with only one person really ever noticing and complaining, maybe it's not worth worrying about further, once it's not _completely_ broken? Reported-by: David Laight <David.Laight@aculab.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-20Revert "x86/retpoline: Simplify vmexit_fill_RSB()"David Woodhouse1-1/+0
This reverts commit 1dde7415e99933bb7293d6b2843752cbdb43ec11. By putting the RSB filling out of line and calling it, we waste one RSB slot for returning from the function itself, which means one fewer actual function call we can make if we're doing the Skylake abomination of call-depth counting. It also changed the number of RSB stuffings we do on vmexit from 32, which was correct, to 16. Let's just stop with the bikeshedding; it didn't actually *fix* anything anyway. Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Acked-by: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: arjan.van.de.ven@intel.com Cc: bp@alien8.de Cc: dave.hansen@intel.com Cc: jmattson@google.com Cc: karahmed@amazon.de Cc: kvm@vger.kernel.org Cc: pbonzini@redhat.com Cc: rkrcmar@redhat.com Link: http://lkml.kernel.org/r/1519037457-7643-4-git-send-email-dwmw@amazon.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-31Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-nextLinus Torvalds1-0/+1
Pull networking updates from David Miller: 1) Significantly shrink the core networking routing structures. Result of http://vger.kernel.org/~davem/seoul2017_netdev_keynote.pdf 2) Add netdevsim driver for testing various offloads, from Jakub Kicinski. 3) Support cross-chip FDB operations in DSA, from Vivien Didelot. 4) Add a 2nd listener hash table for TCP, similar to what was done for UDP. From Martin KaFai Lau. 5) Add eBPF based queue selection to tun, from Jason Wang. 6) Lockless qdisc support, from John Fastabend. 7) SCTP stream interleave support, from Xin Long. 8) Smoother TCP receive autotuning, from Eric Dumazet. 9) Lots of erspan tunneling enhancements, from William Tu. 10) Add true function call support to BPF, from Alexei Starovoitov. 11) Add explicit support for GRO HW offloading, from Michael Chan. 12) Support extack generation in more netlink subsystems. From Alexander Aring, Quentin Monnet, and Jakub Kicinski. 13) Add 1000BaseX, flow control, and EEE support to mvneta driver. From Russell King. 14) Add flow table abstraction to netfilter, from Pablo Neira Ayuso. 15) Many improvements and simplifications to the NFP driver bpf JIT, from Jakub Kicinski. 16) Support for ipv6 non-equal cost multipath routing, from Ido Schimmel. 17) Add resource abstration to devlink, from Arkadi Sharshevsky. 18) Packet scheduler classifier shared filter block support, from Jiri Pirko. 19) Avoid locking in act_csum, from Davide Caratti. 20) devinet_ioctl() simplifications from Al viro. 21) More TCP bpf improvements from Lawrence Brakmo. 22) Add support for onlink ipv6 route flag, similar to ipv4, from David Ahern. * git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1925 commits) tls: Add support for encryption using async offload accelerator ip6mr: fix stale iterator net/sched: kconfig: Remove blank help texts openvswitch: meter: Use 64-bit arithmetic instead of 32-bit tcp_nv: fix potential integer overflow in tcpnv_acked r8169: fix RTL8168EP take too long to complete driver initialization. qmi_wwan: Add support for Quectel EP06 rtnetlink: enable IFLA_IF_NETNSID for RTM_NEWLINK ipmr: Fix ptrdiff_t print formatting ibmvnic: Wait for device response when changing MAC qlcnic: fix deadlock bug tcp: release sk_frag.page in tcp_disconnect ipv4: Get the address of interface correctly. net_sched: gen_estimator: fix lockdep splat net: macb: Handle HRESP error net/mlx5e: IPoIB, Fix copy-paste bug in flow steering refactoring ipv6: addrconf: break critical section in addrconf_verify_rtnl() ipv6: change route cache aging logic i40e/i40evf: Update DESC_NEEDED value to reflect larger value bnxt_en: cleanup DIM work on device shutdown ...
2018-01-29Merge branch 'x86-pti-for-linus' of ↵Linus Torvalds1-0/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86/pti updates from Thomas Gleixner: "Another set of melted spectrum related changes: - Code simplifications and cleanups for RSB and retpolines. - Make the indirect calls in KVM speculation safe. - Whitelist CPUs which are known not to speculate from Meltdown and prepare for the new CPUID flag which tells the kernel that a CPU is not affected. - A less rigorous variant of the module retpoline check which merily warns when a non-retpoline protected module is loaded and reflects that fact in the sysfs file. - Prepare for Indirect Branch Prediction Barrier support. - Prepare for exposure of the Speculation Control MSRs to guests, so guest OSes which depend on those "features" can use them. Includes a blacklist of the broken microcodes. The actual exposure of the MSRs through KVM is still being worked on" * 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/speculation: Simplify indirect_branch_prediction_barrier() x86/retpoline: Simplify vmexit_fill_RSB() x86/cpufeatures: Clean up Spectre v2 related CPUID flags x86/cpu/bugs: Make retpoline module warning conditional x86/bugs: Drop one "mitigation" from dmesg x86/nospec: Fix header guards names x86/alternative: Print unadorned pointers x86/speculation: Add basic IBPB (Indirect Branch Prediction Barrier) support x86/cpufeature: Blacklist SPEC_CTRL/PRED_CMD on early Spectre v2 microcodes x86/pti: Do not enable PTI on CPUs which are not vulnerable to Meltdown x86/msr: Add definitions for new speculation control MSRs x86/cpufeatures: Add AMD feature bits for Speculation Control x86/cpufeatures: Add Intel feature bits for Speculation Control x86/cpufeatures: Add CPUID_7_EDX CPUID leaf module/retpoline: Warn about missing retpoline in module KVM: VMX: Make indirect call speculation safe KVM: x86: Make indirect calls in emulator speculation safe
2018-01-27x86/retpoline: Simplify vmexit_fill_RSB()Borislav Petkov1-0/+1
Simplify it to call an asm-function instead of pasting 41 insn bytes at every call site. Also, add alignment to the macro as suggested here: https://support.google.com/faqs/answer/7625886 [dwmw2: Clean up comments, let it clobber %ebx and just tell the compiler] Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: David Woodhouse <dwmw@amazon.co.uk> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: ak@linux.intel.com Cc: dave.hansen@intel.com Cc: karahmed@amazon.de Cc: arjan@linux.intel.com Cc: torvalds@linux-foundation.org Cc: peterz@infradead.org Cc: bp@alien8.de Cc: pbonzini@redhat.com Cc: tim.c.chen@linux.intel.com Cc: gregkh@linux-foundation.org Link: https://lkml.kernel.org/r/1517070274-12128-3-git-send-email-dwmw@amazon.co.uk
2018-01-17Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller1-0/+1
Overlapping changes all over. The mini-qdisc bits were a little bit tricky, however. Signed-off-by: David S. Miller <davem@davemloft.net>
2018-01-14Merge branch 'x86-pti-for-linus' of ↵Linus Torvalds1-0/+1
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 pti updates from Thomas Gleixner: "This contains: - a PTI bugfix to avoid setting reserved CR3 bits when PCID is disabled. This seems to cause issues on a virtual machine at least and is incorrect according to the AMD manual. - a PTI bugfix which disables the perf BTS facility if PTI is enabled. The BTS AUX buffer is not globally visible and causes the CPU to fault when