Age | Commit message (Collapse) | Author | Files | Lines |
|
The fourth PCIe controller is connected to the PCIe North ANoC.
Fix the corresponding interconnect property so that the OS manages the
right path.
Fixes: 5eb83fc10289 ("arm64: dts: qcom: x1e80100: Add PCIe nodes")
Cc: stable@vger.kernel.org # 6.9
Cc: Abel Vesa <abel.vesa@linaro.org>
Cc: Sibi Sankar <quic_sibis@quicinc.com>
Cc: Rajendra Nayak <quic_rjendra@quicinc.com>
Signed-off-by: Johan Hovold <johan+linaro@kernel.org>
Reviewed-by: Konrad Dybcio <konrad.dybcio@oss.qualcomm.com>
Link: https://lore.kernel.org/r/20241024131101.13587-2-johan+linaro@kernel.org
Signed-off-by: Bjorn Andersson <andersson@kernel.org>
|
|
The 32-bit BAR spaces are reaching outside their assigned register
regions. Shrink them to match their actual sizes.
This resolves an issue where the regions overlap and one of the
controllers won't come up, which can be seen in the log as:
qcom-pcie 1c08000.pci: resource collision: [mem 0x7c300000-0x7fffffff] conflicts with 1c00000.pci dbi [mem 0x7e000000-0x7e000f1c]
While at it, unify the style.
Fixes: 5eb83fc10289 ("arm64: dts: qcom: x1e80100: Add PCIe nodes")
Cc: stable@vger.kernel.org
Signed-off-by: Konrad Dybcio <konrad.dybcio@linaro.org>
Reviewed-by: Abel Vesa <abel.vesa@linaro.org>
Tested-by: Abel Vesa <abel.vesa@linaro.org>
Link: https://lore.kernel.org/r/20240710-topic-barman-v1-1-5f63fca8d0fc@linaro.org
[bjorn: Added note about overlapping resource regions]
Signed-off-by: Bjorn Andersson <andersson@kernel.org>
|
|
The NVMe regulator has been left enabled by the boot firmware. Mark it
as such to avoid disabling the regulator temporarily during boot.
Fixes: eb57cbe730d1 ("arm64: dts: qcom: x1e80100: Describe the PCIe 6a resources")
Cc: stable@vger.kernel.org # 6.11
Cc: Abel Vesa <abel.vesa@linaro.org>
Signed-off-by: Johan Hovold <johan+linaro@kernel.org>
Reviewed-by: Stephan Gerhold <stephan.gerhold@linaro.org>
Reviewed-by: Konrad Dybcio <konrad.dybcio@oss.qualcomm.com>
Link: https://lore.kernel.org/r/20241016145112.24785-7-johan+linaro@kernel.org
Signed-off-by: Bjorn Andersson <andersson@kernel.org>
|
|
The NVMe regulator has been left enabled by the boot firmware. Mark it
as such to avoid disabling the regulator temporarily during boot.
Fixes: 09d77be56093 ("arm64: dts: qcom: Add support for X1-based Surface Laptop 7 devices")
Cc: Konrad Dybcio <quic_kdybcio@quicinc.com>
Signed-off-by: Johan Hovold <johan+linaro@kernel.org>
Reviewed-by: Stephan Gerhold <stephan.gerhold@linaro.org>
Reviewed-by: Konrad Dybcio <konrad.dybcio@oss.qualcomm.com>
Link: https://lore.kernel.org/r/20241016145112.24785-6-johan+linaro@kernel.org
Signed-off-by: Bjorn Andersson <andersson@kernel.org>
|
|
The NVMe regulator has been left enabled by the boot firmware. Mark it
as such to avoid disabling the regulator temporarily during boot.
Fixes: 45247fe17db2 ("arm64: dts: qcom: x1e80100: add Lenovo Thinkpad Yoga slim 7x devicetree")
Cc: stable@vger.kernel.org # 6.11
Cc: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Signed-off-by: Johan Hovold <johan+linaro@kernel.org>
Reviewed-by: Stephan Gerhold <stephan.gerhold@linaro.org>
Reviewed-by: Konrad Dybcio <konrad.dybcio@oss.qualcomm.com>
Link: https://lore.kernel.org/r/20241016145112.24785-5-johan+linaro@kernel.org
Signed-off-by: Bjorn Andersson <andersson@kernel.org>
|
|
The NVMe regulator has been left enabled by the boot firmware. Mark it
as such to avoid disabling the regulator temporarily during boot.
Fixes: d0e2f8f62dff ("arm64: dts: qcom: Add device tree for ASUS Vivobook S 15")
Cc: stable@vger.kernel.org # 6.11
Cc: Xilin Wu <wuxilin123@gmail.com>
Signed-off-by: Johan Hovold <johan+linaro@kernel.org>
Reviewed-by: Stephan Gerhold <stephan.gerhold@linaro.org>
Reviewed-by: Konrad Dybcio <konrad.dybcio@oss.qualcomm.com>
Link: https://lore.kernel.org/r/20241016145112.24785-4-johan+linaro@kernel.org
Signed-off-by: Bjorn Andersson <andersson@kernel.org>
|
|
The NVMe regulator has been left enabled by the boot firmware. Mark it
as such to avoid disabling the regulator temporarily during boot.
Fixes: eb57cbe730d1 ("arm64: dts: qcom: x1e80100: Describe the PCIe 6a resources")
Cc: stable@vger.kernel.org # 6.11
Cc: Abel Vesa <abel.vesa@linaro.org>
Signed-off-by: Johan Hovold <johan+linaro@kernel.org>
Reviewed-by: Stephan Gerhold <stephan.gerhold@linaro.org>
Reviewed-by: Konrad Dybcio <konrad.dybcio@oss.qualcomm.com>
Link: https://lore.kernel.org/r/20241016145112.24785-3-johan+linaro@kernel.org
Signed-off-by: Bjorn Andersson <andersson@kernel.org>
|
|
The NVMe regulator has been left enabled by the boot firmware. Mark it
as such to avoid disabling the regulator temporarily during boot.
Fixes: 7d1cbe2f4985 ("arm64: dts: qcom: Add X1E78100 ThinkPad T14s Gen 6")
Cc: Konrad Dybcio <konradybcio@kernel.org>
Signed-off-by: Johan Hovold <johan+linaro@kernel.org>
Reviewed-by: Stephan Gerhold <stephan.gerhold@linaro.org>
Reviewed-by: Konrad Dybcio <konrad.dybcio@oss.qualcomm.com>
Link: https://lore.kernel.org/r/20241016145112.24785-2-johan+linaro@kernel.org
Signed-off-by: Bjorn Andersson <andersson@kernel.org>
|
|
Export the symbol __cmpxchg_small() for btrfs.ko that uses it to store
blk_status_t, which is u8. Reported by LKP:
>> ERROR: modpost: "__cmpxchg_small" [fs/btrfs/btrfs.ko] undefined!
Patch using the cmpxchg() https://lore.kernel.org/linux-btrfs/1d4f72f7fee285b2ddf4bf62b0ac0fd89def5417.1728575379.git.naohiro.aota@wdc.com/
Link: https://lore.kernel.org/all/20241016134919.GO1609@suse.cz/
Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Like commit 2c0d278f3293f ("KVM: LAPIC: Mark hrtimer to expire in hard
interrupt context") and commit 9090825fa9974 ("KVM: arm/arm64: Let the
timer expire in hardirq context on RT"), On PREEMPT_RT enabled kernels
unmarked hrtimers are moved into soft interrupt expiry mode by default.
Then the timers are canceled from an preempt-notifier which is invoked
with disabled preemption which is not allowed on PREEMPT_RT.
The timer callback is short so in could be invoked in hard-IRQ context.
So let the timer expire on hard-IRQ context even on -RT.
This fix a "scheduling while atomic" bug for PREEMPT_RT enabled kernels:
BUG: scheduling while atomic: qemu-system-loo/1011/0x00000002
Modules linked in: amdgpu rfkill nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat ns
CPU: 1 UID: 0 PID: 1011 Comm: qemu-system-loo Tainted: G W 6.12.0-rc2+ #1774
Tainted: [W]=WARN
Hardware name: Loongson Loongson-3A5000-7A1000-1w-CRB/Loongson-LS3A5000-7A1000-1w-CRB, BIOS vUDK2018-LoongArch-V2.0.0-prebeta9 10/21/2022
Stack : ffffffffffffffff 0000000000000000 9000000004e3ea38 9000000116744000
90000001167475a0 0000000000000000 90000001167475a8 9000000005644830
90000000058dc000 90000000058dbff8 9000000116747420 0000000000000001
0000000000000001 6a613fc938313980 000000000790c000 90000001001c1140
00000000000003fe 0000000000000001 000000000000000d 0000000000000003
0000000000000030 00000000000003f3 000000000790c000 9000000116747830
90000000057ef000 0000000000000000 9000000005644830 0000000000000004
0000000000000000 90000000057f4b58 0000000000000001 9000000116747868
900000000451b600 9000000005644830 9000000003a13998 0000000010000020
00000000000000b0 0000000000000004 0000000000000000 0000000000071c1d
...
Call Trace:
[<9000000003a13998>] show_stack+0x38/0x180
[<9000000004e3ea34>] dump_stack_lvl+0x84/0xc0
[<9000000003a71708>] __schedule_bug+0x48/0x60
[<9000000004e45734>] __schedule+0x1114/0x1660
[<9000000004e46040>] schedule_rtlock+0x20/0x60
[<9000000004e4e330>] rtlock_slowlock_locked+0x3f0/0x10a0
[<9000000004e4f038>] rt_spin_lock+0x58/0x80
[<9000000003b02d68>] hrtimer_cancel_wait_running+0x68/0xc0
[<9000000003b02e30>] hrtimer_cancel+0x70/0x80
[<ffff80000235eb70>] kvm_restore_timer+0x50/0x1a0 [kvm]
[<ffff8000023616c8>] kvm_arch_vcpu_load+0x68/0x2a0 [kvm]
[<ffff80000234c2d4>] kvm_sched_in+0x34/0x60 [kvm]
[<9000000003a749a0>] finish_task_switch.isra.0+0x140/0x2e0
[<9000000004e44a70>] __schedule+0x450/0x1660
[<9000000004e45cb0>] schedule+0x30/0x180
[<ffff800002354c70>] kvm_vcpu_block+0x70/0x120 [kvm]
[<ffff800002354d80>] kvm_vcpu_halt+0x60/0x3e0 [kvm]
[<ffff80000235b194>] kvm_handle_gspr+0x3f4/0x4e0 [kvm]
[<ffff80000235f548>] kvm_handle_exit+0x1c8/0x260 [kvm]
Reviewed-by: Bibo Mao <maobibo@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
|
|
Currently, KASAN on LoongArch assume the CPU VA bits is 48, which is
true for Loongson-3 series, but not for Loongson-2 series (only 40 or
lower), this patch fix that issue and make KASAN usable for variable
cpu_vabits.
Solution is very simple: Just define XRANGE_SHADOW_SHIFT which means
valid address length from VA_BITS to min(cpu_vabits, VA_BITS).
Cc: stable@vger.kernel.org
Signed-off-by: Kanglong Wang <wangkanglong@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
|
|
The BIOS reserves RMP table memory via e820 reservations. This can still lead
to RMP page faults during kexec if the host tries to access memory within the
same 2MB region.
Commit
400fea4b9651 ("x86/sev: Add callback to apply RMP table fixups for kexec"
adjusts the e820 reservations for the RMP table so that the entire 2MB range
at the start/end of the RMP table is marked reserved.
The e820 reservations are then passed to firmware via SNP_INIT where they get
marked HV-Fixed.
The RMP table fixups are done after the e820 ranges have been added to
memblock, allowing the fixup ranges to still be allocated and used by the
system.
The problem is that this memory range is now marked reserved in the e820
tables and during SNP initialization these reserved ranges are marked as
HV-Fixed. This means that the pages cannot be used by an SNP guest, only by
the hypervisor.
However, the memory management subsystem does not make this distinction and
can allocate one of those pages to an SNP guest. This will ultimately result
in RMPUPDATE failures associated with the guest, causing it to fail to start
or terminate when accessing the HV-Fixed page.
The issue is captured below with memblock=debug:
[ 0.000000] SEV-SNP: *** DEBUG: snp_probe_rmptable_info:352 - rmp_base=0x280d4800000, rmp_end=0x28357efffff
...
[ 0.000000] BIOS-provided physical RAM map:
...
[ 0.000000] BIOS-e820: [mem 0x00000280d4800000-0x0000028357efffff] reserved
[ 0.000000] BIOS-e820: [mem 0x0000028357f00000-0x0000028357ffffff] usable
...
...
[ 0.183593] memblock add: [0x0000028357f00000-0x0000028357ffffff] e820__memblock_setup+0x74/0xb0
...
[ 0.203179] MEMBLOCK configuration:
[ 0.207057] memory size = 0x0000027d0d194000 reserved size = 0x0000000009ed2c00
[ 0.215299] memory.cnt = 0xb
...
[ 0.311192] memory[0x9] [0x0000028357f00000-0x0000028357ffffff], 0x0000000000100000 bytes flags: 0x0
...
...
[ 0.419110] SEV-SNP: Reserving start/end of RMP table on a 2MB boundary [0x0000028357e00000]
[ 0.428514] e820: update [mem 0x28357e00000-0x28357ffffff] usable ==> reserved
[ 0.428517] e820: update [mem 0x28357e00000-0x28357ffffff] usable ==> reserved
[ 0.428520] e820: update [mem 0x28357e00000-0x28357ffffff] usable ==> reserved
...
...
[ 5.604051] MEMBLOCK configuration:
[ 5.607922] memory size = 0x0000027d0d194000 reserved size = 0x0000000011faae02
[ 5.616163] memory.cnt = 0xe
...
[ 5.754525] memory[0xc] [0x0000028357f00000-0x0000028357ffffff], 0x0000000000100000 bytes on node 0 flags: 0x0
...
...
[ 10.080295] Early memory node ranges[ 10.168065]
...
node 0: [mem 0x0000028357f00000-0x0000028357ffffff]
...
...
[ 8149.348948] SEV-SNP: RMPUPDATE failed for PFN 28357f7c, pg_level: 1, ret: 2
As shown above, the memblock allocations show 1MB after the end of the RMP as
available for allocation, which is what the RMP table fixups have reserved.
This memory range subsequently gets allocated as SNP guest memory, resulting
in an RMPUPDATE failure.
This can potentially be fixed by not reserving the memory range in the e820
table, but that causes kexec failures when using the KEXEC_FILE_LOAD syscall.
The solution is to use memblock_reserve() to mark the memory reserved for the
system, ensuring that it cannot be allocated to an SNP guest.
Since HV-Fixed memory is still readable/writable by the host, this only ends
up being a problem if the memory in this range requires a page state change,
which generally will only happen when allocating memory in this range to be
used for running SNP guests, which is now possible with the SNP hypervisor
support in kernel 6.11.
Backporter note:
Fixes tag points to a 6.9 change but as the last paragraph above explains,
this whole thing can happen after 6.11 received SNP HV support, therefore
backporting to 6.9 is not really necessary.
[ bp: Massage commit message. ]
Fixes: 400fea4b9651 ("x86/sev: Add callback to apply RMP table fixups for kexec")
Suggested-by: Thomas Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: <stable@kernel.org> # 6.11, see Backporter note above.
Link: https://lore.kernel.org/r/20240815221630.131133-1-Ashish.Kalra@amd.com
|
|
Improve function of Star64 bottom network port phy0 with updated delay values.
Initial upstream patches supporting Star64 use the same vendor board support
package parameters known to result in an unreliable bottom network port.
Success acquiring DHCP lease and no dropped packets to ping LAN address:
rx 900: tx 1500 1650 1800 1950
rx 750: tx 1650 1800 1950
rx 600: tx 1800 1950
rx 1050: tx 1650 1800 1950
rx 1200: tx 1500 1650 1800 1950
rx 1350: tx 1500 1650 1800 1950
rx 1500: tx 1500 1650 1800 1950
rx 1650: tx 1500 1650 1800 1950
rx 1800: tx 1500 1650 1800 1950
rx 1900: tx 1950
rx 1950: tx 1950
Failure acquiring DHCP lease or many dropped packets:
rx 450: tx 1500 1800 1950
rx 600: tx 1200 1350 1650
rx 750: tx 1350 1500
rx 900: tx 1200 1350
rx 1050: tx 1050 1200 1350 1500
rx 1200: tx 1350
rx 1350: tx 1350
rx 1500: tx 1200 1350
rx 1650: tx 1050 1200 1350
rx 1800: tx 1050 1200 1350
rx 1900: tx 1500 1650 1800
rx 1950: tx 1200 1350
Non-functional:
rx 0: tx 0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800 1950
rx 150: tx 0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800 1950
rx 300: tx 0 150 300 450 600 750 900 1050 1200 1350 1500 1650 1800 1950
rx 450: tx 0 150 300 450 600 750 900 1050 1200 1350 1650
rx 600: tx 0 150 300 450 600 750 900 1050
rx 750: tx 0 150 300 450 600 750 900 1050 1200
rx 900: tx 0 150 300 450 600 750 900 1050
rx 1050: tx 0 150 300 450 600 750 900
rx 1200: tx 0 150 300 450 600 750 900 1050 1200
rx 1350: tx 0 150 300 450 600 750 900 1050 1200
rx 1500: tx 0 150 300 450 600 750 900 1050
rx 1650: tx 0 150 300 450 600 750 900
rx 1800: tx 0 150 300 450 600 750 900
rx 1900: tx 0 150 300 450 600 750 900 1050 1200 1350
rx 1950: tx 0 150 300 450 600 750 900 1050
Selecting the median of all working rx delay values 1500 combined with tx delay
values 1500, 1650, 1800, and 1950 only the tx delay value of 1950 (default) is
reliable as tested in both Linux 6.11.2 and U-Boot v2024.10
Signed-off-by: E Shattow <e@freeshell.de>
CC: stable@vger.kernel.org
Fixes: 2606bf583b962 ("riscv: dts: starfive: add Star64 board devicetree")
Acked-by: Emil Renner Berthing <emil.renner.berthing@canonical.com>
Signed-off-by: Conor Dooley <conor.dooley@microchip.com>
|
|
This makes the name consistent with both other x1e80100 devices and the
dictionary. A UCM fix was merged already and is required in order for
sound to work after this commit.
Signed-off-by: Maya Matuszczyk <maccraft123mc@gmail.com>
Reviewed-by: Konrad Dybcio <konrad.dybcio@oss.qualcomm.com>
Reviewed-by: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
Link: https://lore.kernel.org/r/20241019190214.3337-2-maccraft123mc@gmail.com
Signed-off-by: Bjorn Andersson <andersson@kernel.org>
|
|
This function should've been split a long time ago because it is used in
two paths:
1) On the late loading path, when the microcode is loaded through the
request_firmware interface
2) In the save_microcode_in_initrd() path which collects all the
microcode patches which are relevant for the current system before
the initrd with the microcode container has been jettisoned.
In that path, it is not really necessary to iterate over the nodes on
a system and match a patch however it didn't cause any trouble so it
was left for a later cleanup
However, that later cleanup was expedited by the fact that Jens was
enabling "Use L3 as a NUMA node" in the BIOS setting in his machine and
so this causes the NUMA CPU masks used in cpumask_of_node() to be
generated *after* 2) above happened on the first node. Which means, all
those masks were funky, wrong, uninitialized and whatnot, leading to
explosions when dereffing c->microcode in load_microcode_amd().
So split that function and do only the necessary work needed at each
stage.
Fixes: 94838d230a6c ("x86/microcode/AMD: Use the family,model,stepping encoded in the patch ID")
Reported-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Jens Axboe <axboe@kernel.dk>
Link: https://lore.kernel.org/r/91194406-3fdf-4e38-9838-d334af538f74@kernel.dk
|
|
Commit in Fixes changed how a microcode patch is loaded on Zen and newer but
the patch matching needs to happen with different rigidity, depending on what
is being done:
1) When the patch is added to the patches cache, the stepping must be ignored
because the driver still supports different steppings per system
2) When the patch is matched for loading, then the stepping must be taken into
account because each CPU needs the patch matching its exact stepping
Take care of that by making the matching smarter.
Fixes: 94838d230a6c ("x86/microcode/AMD: Use the family,model,stepping encoded in the patch ID")
Reported-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Jens Axboe <axboe@kernel.dk>
Link: https://lore.kernel.org/r/91194406-3fdf-4e38-9838-d334af538f74@kernel.dk
|
|
The LVDS panel on this device uses 72.4 MHz pixel clock, set IMX8MP_VIDEO_PLL1
to 72.4 * 7 = 506.8 MHz so the LDB serializer and LCDIFv3 scanout engine can
reach accurate pixel clock of exactly 72.4 MHz.
Without this patch, the Video PLL1 frequency is the default set in imx8mp.dtsi
which is 1039.5 MHz, which divides down to inaccurate pixel clock of 74.25 MHz
which works for this particular panel by sheer chance.
Stop taking that chance and set correct accurate pixel clock frequency instead.
Fixes: 326d86e197fc ("arm64: dts: imx8mp-phyboard-pollux-rdk: add etml panel support")
Reported-by: Isaac Scott <isaac.scott@ideasonboard.com>
Signed-off-by: Marek Vasut <marex@denx.de>
Reviewed-by: Yannic Moog <y.moog@phytec.de>
Tested-by: Yannic Moog <y.moog@phytec.de>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
|
|
The ipg clk for sdhc sources from IPG_CLK_ROOT per i.MX 8M Plus
Applications Processor Reference Manual, Table 5-2. System Clocks.
Fixes: 6d9b8d20431f ("arm64: dts: freescale: Add i.MX8MP dtsi support")
Signed-off-by: Peng Fan <peng.fan@nxp.com>
Reviewed-by: Fabio Estevam <festevam@gmail.com>
Signed-off-by: Shawn Guo <shawnguo@kernel.org>
|
|
Linear Address Masking (LAM) has a weakness related to transient
execution as described in the SLAM paper[1]. Unless Linear Address
Space Separation (LASS) is enabled this weakness may be exploitable.
Until kernel adds support for LASS[2], only allow LAM for COMPILE_TEST,
or when speculation mitigations have been disabled at compile time,
otherwise keep LAM disabled.
There are no processors in market that support LAM yet, so currently
nobody is affected by this issue.
[1] SLAM: https://download.vusec.net/papers/slam_sp24.pdf
[2] LASS: https://lore.kernel.org/lkml/20230609183632.48706-1-alexander.shishkin@linux.intel.com/
[ dhansen: update SPECULATION_MITIGATIONS -> CPU_MITIGATIONS ]
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc:stable@vger.kernel.org
Link: https://lore.kernel.org/all/5373262886f2783f054256babdf5a98545dc986b.1706068222.git.pawan.kumar.gupta%40linux.intel.com
|
|
Pull kvm fixes from Paolo Bonzini:
"ARM64:
- Fix the guest view of the ID registers, making the relevant fields
writable from userspace (affecting ID_AA64DFR0_EL1 and
ID_AA64PFR1_EL1)
- Correcly expose S1PIE to guests, fixing a regression introduced in
6.12-rc1 with the S1POE support
- Fix the recycling of stage-2 shadow MMUs by tracking the context
(are we allowed to block or not) as well as the recycling state
- Address a couple of issues with the vgic when userspace
misconfigures the emulation, resulting in various splats. Headaches
courtesy of our Syzkaller friends
- Stop wasting space in the HYP idmap, as we are dangerously close to
the 4kB limit, and this has already exploded in -next
- Fix another race in vgic_init()
- Fix a UBSAN error when faking the cache topology with MTE enabled
RISCV:
- RISCV: KVM: use raw_spinlock for critical section in imsic
x86:
- A bandaid for lack of XCR0 setup in selftests, which causes trouble
if the compiler is configured to have x86-64-v3 (with AVX) as the
default ISA. Proper XCR0 setup will come in the next merge window.
- Fix an issue where KVM would not ignore low bits of the nested CR3
and potentially leak up to 31 bytes out of the guest memory's
bounds
- Fix case in which an out-of-date cached value for the segments
could by returned by KVM_GET_SREGS.
- More cleanups for KVM_X86_QUIRK_SLOT_ZAP_ALL
- Override MTRR state for KVM confidential guests, making it WB by
default as is already the case for Hyper-V guests.
Generic:
- Remove a couple of unused functions"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (27 commits)
RISCV: KVM: use raw_spinlock for critical section in imsic
KVM: selftests: Fix out-of-bounds reads in CPUID test's array lookups
KVM: selftests: x86: Avoid using SSE/AVX instructions
KVM: nSVM: Ignore nCR3[4:0] when loading PDPTEs from memory
KVM: VMX: reset the segment cache after segment init in vmx_vcpu_reset()
KVM: x86: Clean up documentation for KVM_X86_QUIRK_SLOT_ZAP_ALL
KVM: x86/mmu: Add lockdep assert to enforce safe usage of kvm_unmap_gfn_range()
KVM: x86/mmu: Zap only SPs that shadow gPTEs when deleting memslot
x86/kvm: Override default caching mode for SEV-SNP and TDX
KVM: Remove unused kvm_vcpu_gfn_to_pfn_atomic
KVM: Remove unused kvm_vcpu_gfn_to_pfn
KVM: arm64: Ensure vgic_ready() is ordered against MMIO registration
KVM: arm64: vgic: Don't check for vgic_ready() when setting NR_IRQS
KVM: arm64: Fix shift-out-of-bounds bug
KVM: arm64: Shave a few bytes from the EL2 idmap code
KVM: arm64: Don't eagerly teardown the vgic on init error
KVM: arm64: Expose S1PIE to guests
KVM: arm64: nv: Clarify safety of allowing TLBI unmaps to reschedule
KVM: arm64: nv: Punt stage-2 recycling to a vCPU request
KVM: arm64: nv: Do not block when unmapping stage-2 if disallowed
...
|
|
There are two pages in one TLB entry on LoongArch system. For kernel
space, it requires both two pte entries (buddies) with PAGE_GLOBAL bit
set, otherwise HW treats it as non-global tlb, there will be potential
problems if tlb entry for kernel space is not global. Such as fail to
flush kernel tlb with the function local_flush_tlb_kernel_range() which
supposed only flush tlb with global bit.
Kernel address space areas include percpu, vmalloc, vmemmap, fixmap and
kasan areas. For these areas both two consecutive page table entries
should be enabled with PAGE_GLOBAL bit. So with function set_pte() and
pte_clear(), pte buddy entry is checked and set besides its own pte
entry. However it is not atomic operation to set both two pte entries,
there is problem with test_vmalloc test case.
So function kernel_pte_init() is added to init a pte table when it is
created for kernel address space, and the default initial pte value is
PAGE_GLOBAL rather than zero at beginning. Then only its own pte entry
need update with function set_pte() and pte_clear(), nothing to do with
the pte buddy entry.
Signed-off-by: Bibo Mao <maobibo@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
|
|
Not all tasks have a vDSO mapped, for example kthreads never do. If such
a task ever ends up calling stack_top(), it will derefence the NULL vdso
pointer and crash.
This can for example happen when using kunit:
[<9000000000203874>] stack_top+0x58/0xa8
[<90000000002956cc>] arch_pick_mmap_layout+0x164/0x220
[<90000000003c284c>] kunit_vm_mmap_init+0x108/0x12c
[<90000000003c1fbc>] __kunit_add_resource+0x38/0x8c
[<90000000003c2704>] kunit_vm_mmap+0x88/0xc8
[<9000000000410b14>] usercopy_test_init+0xbc/0x25c
[<90000000003c1db4>] kunit_try_run_case+0x5c/0x184
[<90000000003c3d54>] kunit_generic_run_threadfn_adapter+0x24/0x48
[<900000000022e4bc>] kthread+0xc8/0xd4
[<9000000000200ce8>] ret_from_kernel_thread+0xc/0xa4
Fixes: 803b0fc5c3f2 ("LoongArch: Add process management")
Signed-off-by: Thomas Weißschuh <thomas.weissschuh@linutronix.de>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
|
|
The current size of vDSO code mapping is hardcoded to PAGE_SIZE. This
cannot work for 4KB page size after commit 18efd0b10e0fd77 ("LoongArch:
vDSO: Wire up getrandom() vDSO implementation") because the code size
increases to 8KB. Thus set the code mapping size to its real size, i.e.
PAGE_ALIGN(vdso_end - vdso_start).
Fixes: 18efd0b10e0fd77 ("LoongArch: vDSO: Wire up getrandom() vDSO implementation")
Reviewed-by: Xi Ruoyao <xry111@xry111.site>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
|
|
Unaligned access exception can be triggered in irq-enabled context such
as user mode, in this case do_ale() may call get_user() which may cause
sleep. Then we will get:
BUG: sleeping function called from invalid context at arch/loongarch/kernel/access-helper.h:7
in_atomic(): 0, irqs_disabled(): 1, non_block: 0, pid: 129, name: modprobe
preempt_count: 0, expected: 0
RCU nest depth: 0, expected: 0
CPU: 0 UID: 0 PID: 129 Comm: modprobe Tainted: G W 6.12.0-rc1+ #1723
Tainted: [W]=WARN
Stack : 9000000105e0bd48 0000000000000000 9000000003803944 9000000105e08000
9000000105e0bc70 9000000105e0bc78 0000000000000000 0000000000000000
9000000105e0bc78 0000000000000001 9000000185e0ba07 9000000105e0b890
ffffffffffffffff 9000000105e0bc78 73924b81763be05b 9000000100194500
000000000000020c 000000000000000a 0000000000000000 0000000000000003
00000000000023f0 00000000000e1401 00000000072f8000 0000007ffbb0e260
0000000000000000 0000000000000000 9000000005437650 90000000055d5000
0000000000000000 0000000000000003 0000007ffbb0e1f0 0000000000000000
0000005567b00490 0000000000000000 9000000003803964 0000007ffbb0dfec
00000000000000b0 0000000000000007 0000000000000003 0000000000071c1d
...
Call Trace:
[<9000000003803964>] show_stack+0x64/0x1a0
[<9000000004c57464>] dump_stack_lvl+0x74/0xb0
[<9000000003861ab4>] __might_resched+0x154/0x1a0
[<900000000380c96c>] emulate_load_store_insn+0x6c/0xf60
[<9000000004c58118>] do_ale+0x78/0x180
[<9000000003801bc8>] handle_ale+0x128/0x1e0
So enable IRQ if unaligned access exception is triggered in irq-enabled
context to fix it.
Cc: stable@vger.kernel.org
Reported-by: Binbin Zhou <zhoubinbin@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
|
|
In loongson_sysconf, The "core" of cores_per_node and cores_per_package
stands for a logical core, which means in a SMT system it stands for a
thread indeed. This information is gotten from SMBIOS Type4 Structure,
so in order to get a correct cores_per_package for both SMT and non-SMT
systems in parse_cpu_table() we should use SMBIOS_THREAD_PACKAGE_OFFSET
instead of SMBIOS_CORE_PACKAGE_OFFSET.
Cc: stable@vger.kernel.org
Reported-by: Chao Li <lichao@loongson.cn>
Tested-by: Chao Li <lichao@loongson.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
|
|
The information contained in the comment for LOONGARCH_CSR_ERA is even
less informative than the macro itself, which can cause confusion for
junior developers. Let's use the full English term.
Signed-off-by: Yanteng Si <siyanteng@cqsoftware.com.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
|
|
When BPF_TRAMP_F_CALL_ORIG is enabled, the address of a bpf_tramp_image
struct on the stack is passed during the size calculation pass and
an address on the heap is passed during code generation. This may
cause a heap buffer overflow if the heap address is tagged because
emit_a64_mov_i64() will emit longer code than it did during the size
calculation pass. The same problem could occur without tag-based
KASAN if one of the 16-bit words of the stack address happened to
be all-ones during the size calculation pass. Fix the problem by
assuming the worst case (4 instructions) when calculating the size
of the bpf_tramp_image address emission.
Fixes: 19d3c179a377 ("bpf, arm64: Fix trampoline for BPF_TRAMP_F_CALL_ORIG")
Signed-off-by: Peter Collingbourne <pcc@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Xu Kuohai <xukuohai@huawei.com>
Link: https://linux-review.googlesource.com/id/I1496f2bc24fba7a1d492e16e2b94cf43714f2d3c
Link: https://lore.kernel.org/bpf/20241018221644.3240898-1-pcc@google.com
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- Explicitly disable the TSC deadline timer when going idle to address
some CPU errata in that area
- Do not apply the Zenbleed fix on anything else except AMD Zen2 on the
late microcode loading path
- Clear CPU buffers later in the NMI exit path on 32-bit to avoid
register clearing while they still contain sensitive data, for the
RDFS mitigation
- Do not clobber EFLAGS.ZF with VERW on the opportunistic SYSRET exit
path on 32-bit
- Fix parsing issues of memory bandwidth specification in sysfs for
resctrl's memory bandwidth allocation feature
- Other small cleanups and improvements
* tag 'x86_urgent_for_v6.12_rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic: Always explicitly disarm TSC-deadline timer
x86/CPU/AMD: Only apply Zenbleed fix for Zen2 during late microcode load
x86/bugs: Use code segment selector for VERW operand
x86/entry_32: Clear CPU buffers after register restore in NMI return
x86/entry_32: Do not clobber user EFLAGS.ZF
x86/resctrl: Annotate get_mem_config() functions as __init
x86/resctrl: Avoid overflow in MB settings in bw_validate()
x86/amd_nb: Add new PCI ID for AMD family 1Ah model 20h
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 6.12, take #3
- Stop wasting space in the HYP idmap, as we are dangerously close
to the 4kB limit, and this has already exploded in -next
- Fix another race in vgic_init()
- Fix a UBSAN error when faking the cache topology with MTE
enabled
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 6.12, take #2
- Fix the guest view of the ID registers, making the relevant fields
writable from userspace (affecting ID_AA64DFR0_EL1 and ID_AA64PFR1_EL1)
- Correcly expose S1PIE to guests, fixing a regression introduced
in 6.12-rc1 with the S1POE support
- Fix the recycling of stage-2 shadow MMUs by tracking the context
(are we allowed to block or not) as well as the recycling state
- Address a couple of issues with the vgic when userspace misconfigures
the emulation, resulting in various splats. Headaches courtesy
of our Syzkaller friends
|
|
For the external interrupt updating procedure in imsic, there was a
spinlock to protect it already. But since it should not be preempted in
any cases, we should turn to use raw_spinlock to prevent any preemption
in case PREEMPT_RT was enabled.
Signed-off-by: Cyan Yang <cyan.yang@sifive.com>
Reviewed-by: Yong-Xuan Wang <yongxuan.wang@sifive.com>
Reviewed-by: Anup Patel <anup@brainfault.org>
Message-ID: <20240919160126.44487-1-cyan.yang@sifive.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Ignore nCR3[4:0] when loading PDPTEs from memory for nested SVM, as bits
4:0 of CR3 are ignored when PAE paging is used, and thus VMRUN doesn't
enforce 32-byte alignment of nCR3.
In the absolute worst case scenario, failure to ignore bits 4:0 can result
in an out-of-bounds read, e.g. if the target page is at the end of a
memslot, and the VMM isn't using guard pages.
Per the APM:
The CR3 register points to the base address of the page-directory-pointer
table. The page-directory-pointer table is aligned on a 32-byte boundary,
with the low 5 address bits 4:0 assumed to be 0.
And the SDM's much more explicit:
4:0 Ignored
Note, KVM gets this right when loading PDPTRs, it's only the nSVM flow
that is broken.
Fixes: e4e517b4be01 ("KVM: MMU: Do not unconditionally read PDPTE from guest memory")
Reported-by: Kirk Swidowski <swidowski@google.com>
Cc: Andy Nguyen <theflow@google.com>
Cc: 3pvd <3pvd@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20241009140838.1036226-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Reset the segment cache after segment initialization in vmx_vcpu_reset()
to harden KVM against caching stale/uninitialized data. Without the
recent fix to bypass the cache in kvm_arch_vcpu_put(), the following
scenario is possible:
- vCPU is just created, and the vCPU thread is preempted before
SS.AR_BYTES is written in vmx_vcpu_reset().
- When scheduling out the vCPU task, kvm_arch_vcpu_in_kernel() =>
vmx_get_cpl() reads and caches '0' for SS.AR_BYTES.
- vmx_vcpu_reset() => seg_setup() configures SS.AR_BYTES, but doesn't
invoke vmx_segment_cache_clear() to invalidate the cache.
As a result, KVM retains a stale value in the cache, which can be read,
e.g. via KVM_GET_SREGS. Usually this is not a problem because the VMX
segment cache is reset on each VM-Exit, but if the userspace VMM (e.g KVM
selftests) reads and writes system registers just after the vCPU was
created, _without_ modifying SS.AR_BYTES, userspace will write back the
stale '0' value and ultimately will trigger a VM-Entry failure due to
incorrect SS segment type.
Invalidating the cache after writing the VMCS doesn't address the general
issue of cache accesses from IRQ context being unsafe, but it does prevent
KVM from clobbering the VMCS, i.e. mitigates the harm done _if_ KVM has a
bug that results in an unsafe cache access.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Fixes: 2fb92db1ec08 ("KVM: VMX: Cache vmcs segment fields")
[sean: rework changelog to account for previous patch]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20241009175002.1118178-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add a lockdep assertion in kvm_unmap_gfn_range() to ensure that either
mmu_invalidate_in_progress is elevated, or that the range is being zapped
due to memslot removal (loosely detected by slots_lock being held).
Zapping SPTEs without mmu_invalidate_{in_progress,seq} protection is unsafe
as KVM's page fault path snapshots state before acquiring mmu_lock, and
thus can create SPTEs with stale information if vCPUs aren't forced to
retry faults (due to seeing an in-progress or past MMU invalidation).
Memslot removal is a special case, as the memslot is retrieved outside of
mmu_invalidate_seq, i.e. doesn't use the "standard" protections, and
instead relies on SRCU synchronization to ensure any in-flight page faults
are fully resolved before zapping SPTEs.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20241009192345.1148353-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
When performing a targeted zap on memslot removal, zap only MMU pages that
shadow guest PTEs, as zapping all SPs that "match" the gfn is inexact and
unnecessary. Furthermore, for_each_gfn_valid_sp() arguably shouldn't
exist, because it doesn't do what most people would it expect it to do.
The "round gfn for level" adjustment that is done for direct SPs (no gPTE)
means that the exact gfn comparison will not get a match, even when a SP
does "cover" a gfn, or was even created specifically for a gfn.
For memslot deletion specifically, KVM's behavior will vary significantly
based on the size and alignment of a memslot, and in weird ways. E.g. for
a 4KiB memslot, KVM will zap more SPs if the slot is 1GiB aligned than if
it's only 4KiB aligned. And as described below, zapping SPs in the
aligned case overzaps for direct MMUs, as odds are good the upper-level
SPs are serving other memslots.
To iterate over all potentially-relevant gfns, KVM would need to make a
pass over the hash table for each level, with the gfn used for lookup
rounded for said level. And then check that the SP is of the correct
level, too, e.g. to avoid over-zapping.
But even then, KVM would massively overzap, as processing every level is
all but guaranteed to zap SPs that serve other memslots, especially if the
memslot being removed is relatively small. KVM could mitigate that issue
by processing only levels that can be possible guest huge pages, i.e. are
less likely to be re-used for other memslot, but while somewhat logical,
that's quite arbitrary and would be a bit of a mess to implement.
So, zap only SPs with gPTEs, as the resulting behavior is easy to describe,
is predictable, and is explicitly minimal, i.e. KVM only zaps SPs that
absolutely must be zapped.
Cc: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Yan Zhao <yan.y.zhao@intel.com>
Tested-by: Yan Zhao <yan.y.zhao@intel.com>
Message-ID: <20241009192345.1148353-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
AMD SEV-SNP and Intel TDX have limited access to MTRR: either it is not
advertised in CPUID or it cannot be programmed (on TDX, due to #VE on
CR0.CD clear).
This results in guests using uncached mappings where it shouldn't and
pmd/pud_set_huge() failures due to non-uniform memory type reported by
mtrr_type_lookup().
Override MTRR state, making it WB by default as the kernel does for
Hyper-V guests.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Suggested-by: Binbin Wu <binbin.wu@intel.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Message-ID: <20241015095818.357915-1-kirill.shutemov@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Pull rust fixes from Miguel Ojeda:
"Toolchain and infrastructure:
- Fix several issues with the 'rustc-option' macro. It includes a
refactor from Masahiro of three '{cc,rust}-*' macros, which is not
a fix but avoids repeating the same commands (which would be
several lines in the case of 'rustc-option').
- Fix conditions for 'CONFIG_HAVE_CFI_ICALL_NORMALIZE_INTEGERS'. It
includes the addition of 'CONFIG_RUSTC_LLVM_VERSION', which is not
a fix but is needed for the actual fix.
And a trivial grammar fix"
* tag 'rust-fixes-6.12-2' of https://github.com/Rust-for-Linux/linux:
cfi: fix conditions for HAVE_CFI_ICALL_NORMALIZE_INTEGERS
kbuild: rust: add `CONFIG_RUSTC_LLVM_VERSION`
kbuild: fix issues with rustc-option
kbuild: refactor cc-option-yn, cc-disable-warning, rust-option-yn macros
lib/Kconfig.debug: fix grammar in RUST_BUILD_ASSERT_ALLOW
|
|
Pull bpf fixes from Daniel Borkmann:
- Fix BPF verifier to not affect subreg_def marks in its range
propagation (Eduard Zingerman)
- Fix a truncation bug in the BPF verifier's handling of
coerce_reg_to_size_sx (Dimitar Kanaliev)
- Fix the BPF verifier's delta propagation between linked registers
under 32-bit addition (Daniel Borkmann)
- Fix a NULL pointer dereference in BPF devmap due to missing rxq
information (Florian Kauer)
- Fix a memory leak in bpf_core_apply (Jiri Olsa)
- Fix an UBSAN-reported array-index-out-of-bounds in BTF parsing for
arrays of nested structs (Hou Tao)
- Fix build ID fetching where memory areas backing the file were
created with memfd_secret (Andrii Nakryiko)
- Fix BPF task iterator tid filtering which was incorrectly using pid
instead of tid (Jordan Rome)
- Several fixes for BPF sockmap and BPF sockhash redirection in
combination with vsocks (Michal Luczaj)
- Fix riscv BPF JIT and make BPF_CMPXCHG fully ordered (Andrea Parri)
- Fix riscv BPF JIT under CONFIG_CFI_CLANG to prevent the possibility
of an infinite BPF tailcall (Pu Lehui)
- Fix a build warning from resolve_btfids that bpf_lsm_key_free cannot
be resolved (Thomas Weißschuh)
- Fix a bug in kfunc BTF caching for modules where the wrong BTF object
was returned (Toke Høiland-Jørgensen)
- Fix a BPF selftest compilation error in cgroup-related tests with
musl libc (Tony Ambardar)
- Several fixes to BPF link info dumps to fill missing fields (Tyrone
Wu)
- Add BPF selftests for kfuncs from multiple modules, checking that the
correct kfuncs are called (Simon Sundberg)
- Ensure that internal and user-facing bpf_redirect flags don't overlap
(Toke Høiland-Jørgensen)
- Switch to use kvzmalloc to allocate BPF verifier environment (Rik van
Riel)
- Use raw_spinlock_t in BPF ringbuf to fix a sleep in atomic splat
under RT (Wander Lairson Costa)
* tag 'bpf-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf: (38 commits)
lib/buildid: Handle memfd_secret() files in build_id_parse()
selftests/bpf: Add test case for delta propagation
bpf: Fix print_reg_state's constant scalar dump
bpf: Fix incorrect delta propagation between linked registers
bpf: Properly test iter/task tid filtering
bpf: Fix iter/task tid filtering
riscv, bpf: Make BPF_CMPXCHG fully ordered
bpf, vsock: Drop static vsock_bpf_prot initialization
vsock: Update msg_count on read_skb()
vsock: Update rx_bytes on read_skb()
bpf, sockmap: SK_DROP on attempted redirects of unsupported af_vsock
selftests/bpf: Add asserts for netfilter link info
bpf: Fix link info netfilter flags to populate defrag flag
selftests/bpf: Add test for sign extension in coerce_subreg_to_size_sx()
selftests/bpf: Add test for truncation after sign extension in coerce_reg_to_size_sx()
bpf: Fix truncation bug in coerce_reg_to_size_sx()
selftests/bpf: Assert link info uprobe_multi count & path_size if unset
bpf: Fix unpopulated path_size when uprobe_multi fields unset
selftests/bpf: Fix cross-compiling urandom_read
selftests/bpf: Add test for kfunc module order
...
|