summaryrefslogtreecommitdiff
path: root/drivers/md/Makefile
AgeCommit message (Collapse)AuthorFilesLines
2024-02-20dm vdo: use a proper Makefile for dm-vdoMike Snitzer1-2/+1
Requires moving dm-vdo-target.c into drivers/md/dm-vdo/ This change adds a proper drivers/md/dm-vdo/Makefile and eliminates the abnormal use of patsubst in drivers/md/Makefile -- which was the cause of at least one build failure that was reported by the upstream build bot. Also, split out VDO's drivers/md/dm-vdo/Kconfig and include it from drivers/md/Kconfig Signed-off-by: Mike Snitzer <snitzer@kernel.org> Signed-off-by: Matthew Sakai <msakai@redhat.com>
2024-02-20dm vdo: enable configuration and building of dm-vdoMatthew Sakai1-0/+2
dm-vdo targets are not supported for 32-bit configurations. A vdo target typically requires 1 to 1.5 GB of memory at any given time, which is likely a large fraction of the addressable memory of a 32-bit system. At the same time, the amount of addressable storage attached to a 32-bit system may not be large enough for deduplication to provide much benefit. Because of these concerns, 32-bit platforms are deemed unlikely to benefit from using a vdo target, so dm-vdo is targeted only at 64-bit platforms. Co-developed-by: J. corwin Coburn <corwin@hurlbutnet.net> Signed-off-by: J. corwin Coburn <corwin@hurlbutnet.net> Co-developed-by: John Wiele <jwiele@redhat.com> Signed-off-by: John Wiele <jwiele@redhat.com> Signed-off-by: Matthew Sakai <msakai@redhat.com> Signed-off-by: Mike Snitzer <snitzer@kernel.org>
2023-12-19md: Remove deprecated CONFIG_MD_FAULTYSong Liu1-2/+0
md-faulty has been marked as deprecated for 2.5 years. Remove it. Cc: Christoph Hellwig <hch@lst.de> Cc: Jens Axboe <axboe@kernel.dk> Cc: Neil Brown <neilb@suse.de> Cc: Guoqing Jiang <guoqing.jiang@linux.dev> Cc: Mateusz Grzonka <mateusz.grzonka@intel.com> Cc: Jes Sorensen <jes@trained-monkey.org> Signed-off-by: Song Liu <song@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Link: https://lore.kernel.org/r/20231214222107.2016042-4-song@kernel.org
2023-12-19md: Remove deprecated CONFIG_MD_MULTIPATHSong Liu1-2/+0
md-multipath has been marked as deprecated for 2.5 years. Remove it. Cc: Christoph Hellwig <hch@lst.de> Cc: Jens Axboe <axboe@kernel.dk> Cc: Neil Brown <neilb@suse.de> Cc: Guoqing Jiang <guoqing.jiang@linux.dev> Cc: Mateusz Grzonka <mateusz.grzonka@intel.com> Cc: Jes Sorensen <jes@trained-monkey.org> Signed-off-by: Song Liu <song@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Link: https://lore.kernel.org/r/20231214222107.2016042-3-song@kernel.org
2023-12-19md: Remove deprecated CONFIG_MD_LINEARSong Liu1-4/+2
md-linear has been marked as deprecated for 2.5 years. Remove it. Cc: Christoph Hellwig <hch@lst.de> Cc: Jens Axboe <axboe@kernel.dk> Cc: Neil Brown <neilb@suse.de> Cc: Guoqing Jiang <guoqing.jiang@linux.dev> Cc: Mateusz Grzonka <mateusz.grzonka@intel.com> Cc: Jes Sorensen <jes@trained-monkey.org> Signed-off-by: Song Liu <song@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Hannes Reinecke <hare@suse.de> Link: https://lore.kernel.org/r/20231214222107.2016042-2-song@kernel.org
2022-08-02Merge tag 'hardening-v5.20-rc1' of ↵Linus Torvalds1-0/+1
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull hardening updates from Kees Cook: - Fix Sparse warnings with randomizd kstack (GONG, Ruiqi) - Replace uintptr_t with unsigned long in usercopy (Jason A. Donenfeld) - Fix Clang -Wforward warning in LKDTM (Justin Stitt) - Fix comment to correctly refer to STRICT_DEVMEM (Lukas Bulwahn) - Introduce dm-verity binding logic to LoadPin LSM (Matthias Kaehlcke) - Clean up warnings and overflow and KASAN tests (Kees Cook) * tag 'hardening-v5.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: dm: verity-loadpin: Drop use of dm_table_get_num_targets() kasan: test: Silence GCC 12 warnings drivers: lkdtm: fix clang -Wformat warning x86: mm: refer to the intended config STRICT_DEVMEM in a comment dm: verity-loadpin: Use CONFIG_SECURITY_LOADPIN_VERITY for conditional compilation LoadPin: Enable loading from trusted dm-verity devices dm: Add verity helpers for LoadPin stack: Declare {randomize_,}kstack_offset to fix Sparse warnings lib: overflow: Do not define 64-bit tests on 32-bit MAINTAINERS: Add a general "kernel hardening" section usercopy: use unsigned long instead of uintptr_t
2022-07-08dm: verity-loadpin: Use CONFIG_SECURITY_LOADPIN_VERITY for conditional ↵Matthias Kaehlcke1-6/+1
compilation The verity glue for LoadPin is only needed when CONFIG_SECURITY_LOADPIN_VERITY is set, use this option for conditional compilation instead of the combo of CONFIG_DM_VERITY and CONFIG_SECURITY_LOADPIN. Signed-off-by: Matthias Kaehlcke <mka@chromium.org> Acked-by: Mike Snitzer <snitzer@kernel.org> Link: https://lore.kernel.org/lkml/20220627083512.v7.3.I5aca2dcc3b06de4bf53696cd21329dce8272b8aa@changeid Signed-off-by: Kees Cook <keescook@chromium.org>
2022-07-08dm: Add verity helpers for LoadPinMatthias Kaehlcke1-0/+6
LoadPin limits loading of kernel modules, firmware and certain other files to a 'pinned' file system (typically a read-only rootfs). To provide more flexibility LoadPin is being extended to also allow loading these files from trusted dm-verity devices. For that purpose LoadPin can be provided with a list of verity root digests that it should consider as trusted. Add a bunch of helpers to allow LoadPin to check whether a DM device is a trusted verity device. The new functions broadly fall in two categories: those that need access to verity internals (like the root digest), and the 'glue' between LoadPin and verity. The new file dm-verity-loadpin.c contains the glue functions. Signed-off-by: Matthias Kaehlcke <mka@chromium.org> Acked-by: Mike Snitzer <snitzer@kernel.org> Link: https://lore.kernel.org/lkml/20220627083512.v7.1.I3e928575a23481121e73286874c4c2bdb403355d@changeid Signed-off-by: Kees Cook <keescook@chromium.org>
2022-07-07dm: add dm_bio_rewind() API to DM coreMing Lei1-1/+1
Commit 7759eb23fd98 ("block: remove bio_rewind_iter()") removed a similar API for the following reasons: ``` It is pointed that bio_rewind_iter() is one very bad API[1]: 1) bio size may not be restored after rewinding 2) it causes some bogus change, such as 5151842b9d8732 (block: reset bi_iter.bi_done after splitting bio) 3) rewinding really makes things complicated wrt. bio splitting 4) unnecessary updating of .bi_done in fast path [1] https://marc.info/?t=153549924200005&r=1&w=2 So this patch takes Kent's suggestion to restore one bio into its original state via saving bio iterator(struct bvec_iter) in bio_integrity_prep(), given now bio_rewind_iter() is only used by bio integrity code. ``` However, saving off a copy of the 32 bytes bio->bi_iter in case rewind needed isn't efficient because it bloats per-bio-data for what is an unlikely case. That suggestion also ignores the need to restore crypto and integrity info. Add dm_bio_rewind() API for a specific use-case that is much more narrow than the previous more generic rewind code that was reverted: 1) most bios have a fixed end sector since bio split is done from front of the bio, if driver just records how many sectors between current bio's start sector and the original bio's end sector, the original position can be restored. Keeping the original bio's end sector fixed is a _hard_ requirement for this interface! 2) if a bio's end sector won't change (usually bio_trim() isn't called, or in the case of DM it preserves original bio), user can restore the original position by storing sector offset from the current ->bi_iter.bi_sector to bio's end sector; together with saving bio size, only 8 bytes is needed to restore to original bio. 3) DM's requeue use case: when BLK_STS_DM_REQUEUE happens, DM core needs to restore to an "original bio" which represents the current dm_io to be requeued (which may be a subset of the original bio). By storing the sector offset from the original bio's end sector and dm_io's size, dm_bio_rewind() can restore such original bio. See commit 7dd76d1feec7 ("dm: improve bio splitting and associated IO accounting") for more details on how DM does this. Leveraging this, allows DM core to shift the need for bio cloning from bio-split time (during IO submission) to the less likely BLK_STS_DM_REQUEUE handling (after IO completes with that error). 4) Unlike the original rewind API, dm_bio_rewind() doesn't add .bi_done to bvec_iter and there is no effect on the fast path. Implement dm_bio_rewind() by factoring out clear helpers that it calls: dm_bio_integrity_rewind, dm_bio_crypt_rewind and dm_bio_rewind_iter. DM is able to ensure that dm_bio_rewind() is used safely but, given the constraint that the bio's end must never change, other hypothetical future callers may not take the same care. So make dm_bio_rewind() and all supporting code local to DM to avoid risk of hypothetical abuse. A "dm_" prefix was added to all functions to avoid any namespace collisions. Suggested-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Ming Lei <ming.lei@redhat.com> Signed-off-by: Mike Snitzer <snitzer@kernel.org>
2021-10-27dm: introduce audit event module for device mapperMichael Weiß1-0/+4
To be able to send auditing events to user space, we introduce a generic dm-audit module. It provides helper functions to emit audit events through the kernel audit subsystem. We claim the AUDIT_DM_CTRL type=1336 and AUDIT_DM_EVENT type=1337 out of the audit event messages range in the corresponding userspace api in 'include/uapi/linux/audit.h' for those events. AUDIT_DM_CTRL is used to provide information about creation and destruction of device mapper targets which are triggered by user space admin control actions. AUDIT_DM_EVENT is used to provide information about actual errors during operation of the mapped device, showing e.g. integrity violations in audit log. Following commits to device mapper targets actually will make use of this to emit those events in relevant cases. The audit logs look like this if executing the following simple test: # dd if=/dev/zero of=test.img bs=1M count=1024 # losetup -f test.img # integritysetup -vD format --integrity sha256 -t 32 /dev/loop0 # integritysetup open -D /dev/loop0 --integrity sha256 integritytest # integritysetup status integritytest # integritysetup close integritytest # integritysetup open -D /dev/loop0 --integrity sha256 integritytest # integritysetup status integritytest # dd if=/dev/urandom of=/dev/loop0 bs=512 count=1 seek=100000 # dd if=/dev/mapper/integritytest of=/dev/null ------------------------- audit.log from auditd type=UNKNOWN[1336] msg=audit(1630425039.363:184): module=integrity op=ctr ppid=3807 pid=3819 auid=1000 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts2 ses=3 comm="integritysetup" exe="/sbin/integritysetup" subj==unconfined dev=254:3 error_msg='success' res=1 type=UNKNOWN[1336] msg=audit(1630425039.471:185): module=integrity op=dtr ppid=3807 pid=3819 auid=1000 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts2 ses=3 comm="integritysetup" exe="/sbin/integritysetup" subj==unconfined dev=254:3 error_msg='success' res=1 type=UNKNOWN[1336] msg=audit(1630425039.611:186): module=integrity op=ctr ppid=3807 pid=3819 auid=1000 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts2 ses=3 comm="integritysetup" exe="/sbin/integritysetup" subj==unconfined dev=254:3 error_msg='success' res=1 type=UNKNOWN[1336] msg=audit(1630425054.475:187): module=integrity op=dtr ppid=3807 pid=3819 auid=1000 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts2 ses=3 comm="integritysetup" exe="/sbin/integritysetup" subj==unconfined dev=254:3 error_msg='success' res=1 type=UNKNOWN[1336] msg=audit(1630425073.171:191): module=integrity op=ctr ppid=3807 pid=3883 auid=1000 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts2 ses=3 comm="integritysetup" exe="/sbin/integritysetup" subj==unconfined dev=254:3 error_msg='success' res=1 type=UNKNOWN[1336] msg=audit(1630425087.239:192): module=integrity op=dtr ppid=3807 pid=3902 auid=1000 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts2 ses=3 comm="integritysetup" exe="/sbin/integritysetup" subj==unconfined dev=254:3 error_msg='success' res=1 type=UNKNOWN[1336] msg=audit(1630425093.755:193): module=integrity op=ctr ppid=3807 pid=3906 auid=1000 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts2 ses=3 comm="integritysetup" exe="/sbin/integritysetup" subj==unconfined dev=254:3 error_msg='success' res=1 type=UNKNOWN[1337] msg=audit(1630425112.119:194): module=integrity op=integrity-checksum dev=254:3 sector=77480 res=0 type=UNKNOWN[1337] msg=audit(1630425112.119:195): module=integrity op=integrity-checksum dev=254:3 sector=77480 res=0 type=UNKNOWN[1337] msg=audit(1630425112.119:196): module=integrity op=integrity-checksum dev=254:3 sector=77480 res=0 type=UNKNOWN[1337] msg=audit(1630425112.119:197): module=integrity op=integrity-checksum dev=254:3 sector=77480 res=0 type=UNKNOWN[1337] msg=audit(1630425112.119:198): module=integrity op=integrity-checksum dev=254:3 sector=77480 res=0 type=UNKNOWN[1337] msg=audit(1630425112.119:199): module=integrity op=integrity-checksum dev=254:3 sector=77480 res=0 type=UNKNOWN[1337] msg=audit(1630425112.119:200): module=integrity op=integrity-checksum dev=254:3 sector=77480 res=0 type=UNKNOWN[1337] msg=audit(1630425112.119:201): module=integrity op=integrity-checksum dev=254:3 sector=77480 res=0 type=UNKNOWN[1337] msg=audit(1630425112.119:202): module=integrity op=integrity-checksum dev=254:3 sector=77480 res=0 type=UNKNOWN[1337] msg=audit(1630425112.119:203): module=integrity op=integrity-checksum dev=254:3 sector=77480 res=0 Signed-off-by: Michael Weiß <michael.weiss@aisec.fraunhofer.de> Signed-off-by: Paul Moore <paul@paul-moore.com> # fix audit.h numbering Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-08-10dm ima: measure data on table loadTushar Sugandhi1-0/+4
DM configures a block device with various target specific attributes passed to it as a table. DM loads the table, and calls each target’s respective constructors with the attributes as input parameters. Some of these attributes are critical to ensure the device meets certain security bar. Thus, IMA should measure these attributes, to ensure they are not tampered with, during the lifetime of the device. So that the external services can have high confidence in the configuration of the block-devices on a given system. Some devices may have large tables. And a given device may change its state (table-load, suspend, resume, rename, remove, table-clear etc.) many times. Measuring these attributes each time when the device changes its state will significantly increase the size of the IMA logs. Further, once configured, these attributes are not expected to change unless a new table is loaded, or a device is removed and recreated. Therefore the clear-text of the attributes should only be measured during table load, and the hash of the active/inactive table should be measured for the remaining device state changes. Export IMA function ima_measure_critical_data() to allow measurement of DM device parameters, as well as target specific attributes, during table load. Compute the hash of the inactive table and store it for measurements during future state change. If a load is called multiple times, update the inactive table hash with the hash of the latest populated table. So that the correct inactive table hash is measured when the device transitions to different states like resume, remove, rename, etc. Signed-off-by: Tushar Sugandhi <tusharsu@linux.microsoft.com> Signed-off-by: Colin Ian King <colin.king@canonical.com> # leak fix Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2021-06-04dm: move zone related code to dm-zone.cDamien Le Moal1-0/+4
Move core and table code used for zoned targets and conditionally defined with #ifdef CONFIG_BLK_DEV_ZONED to the new file dm-zone.c. This file is conditionally compiled depending on CONFIG_BLK_DEV_ZONED. The small helper dm_set_zones_restrictions() is introduced to initialize a mapped device request queue zone attributes in dm_table_set_restrictions(). Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.de> Reviewed-by: Himanshu Madhani <himanshu.madhani@oracle.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2020-12-04dm: rename multipath path selector source files to have "dm-ps" prefixMike Snitzer1-7/+12
Additional prefix helps clarify that these source files implement path selectors. Required updating Makefile to still build modules _without_ the "dm-ps" prefix to preserve dm-multipath's ability to autoload path selector modules. While at it, cleaned up some DM whitespace in Makefile. Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2020-12-04dm mpath: add IO affinity path selectorMike Christie1-0/+1
This patch adds a path selector that selects paths based on a CPU to path mapping the user passes in and what CPU we are executing on. The primary user for this PS is where the app is optimized to use specific CPUs so other PSs undo the apps handy work, and the storage and it's transport are not a bottlneck. For these io-affinity PS setups a path's transport/interconnect perf is not going to flucuate a lot and there is no major differences between paths, so QL/HST smarts do not help and RR always messes up what the app is trying to do. On a system with 16 cores, where you have a job per CPU: fio --filename=/dev/dm-0 --direct=1 --rw=randrw --bs=4k \ --ioengine=libaio --iodepth=128 --numjobs=16 and a dm-multipath device setup where each CPU is mapped to one path: // When in mq mode I had to set dm_mq_nr_hw_queues=$NUM_PATHS. // Bio mode also showed similar results. 0 16777216 multipath 0 0 1 1 io-affinity 0 16 1 8:16 1 8:32 2 8:64 4 8:48 8 8:80 10 8:96 20 8:112 40 8:128 80 8:144 100 8:160 200 8:176 400 8:192 800 8:208 1000 8:224 2000 8:240 4000 65:0 8000 we can see a IOPs increase of 25%. The percent increase depends on the device and interconnect. For a slower/medium speed path/device that can do around 180K IOPs a path if you ran that fio command to it directly we saw a 25% increase like above. Slower path'd devices that could do around 90K per path showed maybe around a 2 - 5% increase. If you use something like null_blk or scsi_debug which can multi-million IOPs and hack it up so each device they export shows up as a path then you see 50%+ increases. Signed-off-by: Mike Christie <michael.christie@oracle.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2020-07-16md: move the early init autodetect code to drivers/md/Christoph Hellwig1-0/+3
Just like the NFS and CIFS root code this better lives with the driver it is tightly integrated with. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Song Liu <song@kernel.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-05-15dm mpath: add Historical Service Time Path SelectorKhazhismel Kumykov1-0/+1
This new selector keeps an exponential moving average of the service time for each path (losely defined as delta between start_io and end_io), and uses this along with the number of inflight requests to estimate future service time for a path. Since we don't have a prober to account for temporally slow paths, re-try "slow" paths every once in a while (num_paths * historical_service_time). To account for fast paths transitioning to slow, if a path has not completed any request within (num_paths * historical_service_time), limit the number of outstanding requests. To account for low volume situations where number of inflight IOs would be zero, the last finish time of each path is factored in. Signed-off-by: Khazhismel Kumykov <khazhy@google.com> Co-developed-by: Gabriel Krisman Bertazi <krisman@collabora.com> Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2020-05-15dm: add emulated block size targetHeinz Mauelshagen1-0/+2
This new target is similar to the linear target except that it emulates a smaller logical block size on a device with a larger logical block size. Its main purpose is to emulate 512 byte sectors on 4K native disks (i.e. 512e). See Documentation/admin-guide/device-mapper/dm-ebs.rst for details. Reviewed-by: Damien Le Moal <DamienLeMoal@wdc.com> Signed-off-by: Heinz Mauelshagen <heinzm@redhat.com> Signed-off-by: Randy Dunlap <rdunlap@infradead.org> [Kconfig fixes] Signed-off-by: Zheng Bin <zhengbin13@huawei.com> [static fixes] Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2019-09-12dm: add clone targetNikos Tsironis1-0/+2
Add the dm-clone target, which allows cloning of arbitrary block devices. dm-clone produces a one-to-one copy of an existing, read-only source device into a writable destination device: It presents a virtual block device which makes all data appear immediately, and redirects reads and writes accordingly. The main use case of dm-clone is to clone a potentially remote, high-latency, read-only, archival-type block device into a writable, fast, primary-type device for fast, low-latency I/O. The cloned device is visible/mountable immediately and the copy of the source device to the destination device happens in the background, in parallel with user I/O. When the cloning completes, the dm-clone table can be removed altogether and be replaced, e.g., by a linear table, mapping directly to the destination device. For further information and examples of how to use dm-clone, please read Documentation/admin-guide/device-mapper/dm-clone.rst Suggested-by: Vangelis Koukis <vkoukis@arrikto.com> Co-developed-by: Ilias Tsitsimpis <iliastsi@arrikto.com> Signed-off-by: Ilias Tsitsimpis <iliastsi@arrikto.com> Signed-off-by: Nikos Tsironis <ntsironis@arrikto.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2019-08-23dm verity: add root hash pkcs#7 signature verificationJaskaran Khurana1-0/+4
The verification is to support cases where the root hash is not secured by Trusted Boot, UEFI Secureboot or similar technologies. One of the use cases for this is for dm-verity volumes mounted after boot, the root hash provided during the creation of the dm-verity volume has to be secure and thus in-kernel validation implemented here will be used before we trust the root hash and allow the block device to be created. The signature being provided for verification must verify the root hash and must be trusted by the builtin keyring for verification to succeed. The hash is added as a key of type "user" and the description is passed to the kernel so it can look it up and use it for verification. Adds CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG which can be turned on if root hash verification is needed. Kernel commandline dm_verity module parameter 'require_signatures' will indicate whether to force root hash signature verification (for all dm verity volumes). Signed-off-by: Jaskaran Khurana <jaskarankhurana@linux.microsoft.com> Tested-and-Reviewed-by: Milan Broz <gmazyland@gmail.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2019-04-30dm: add dust targetBryan Gurney1-0/+1
Add the dm-dust target, which simulates the behavior of bad sectors at arbitrary locations, and the ability to enable the emulation of the read failures at an arbitrary time. This target behaves similarly to a linear target. At a given time, the user can send a message to the target to start failing read requests on specific blocks. When the failure behavior is enabled, reads of blocks configured "bad" will fail with EIO. Writes of blocks configured "bad" will result in the following: 1. Remove the block from the "bad block list". 2. Successfully complete the write. After this point, the block will successfully contain the written data, and will service reads and writes normally. This emulates the behavior of a "remapped sector" on a hard disk drive. dm-dust provides logging of which blocks have been added or removed to the "bad block list", as well as logging when a block has been removed from the bad block list. These messages can be used alongside the messages from the driver using a dm-dust device to analyze the driver's behavior when a read fails at a given time. (This logging can be reduced via a "quiet" mode, if desired.) NOTE: If the block size is larger than 512 bytes, only the first sector of each "dust block" is detected. Placing a limiting layer above a dust target, to limit the minimum I/O size to the dust block size, will ensure proper emulation of the given large block size. Signed-off-by: Bryan Gurney <bgurney@redhat.com> Co-developed-by: Joe Shimkus <jshimkus@redhat.com> Co-developed-by: John Dorminy <jdorminy@redhat.com> Co-developed-by: John Pittman <jpittman@redhat.com> Co-developed-by: Thomas Jaskiewicz <tjaskiew@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2019-03-05dm: add support to directly boot to a mapped deviceHelen Koike1-0/+4
Add a "create" module parameter, which allows device-mapper targets to be configured at boot time. This enables early use of DM targets in the boot process (as the root device or otherwise) without the need of an initramfs. The syntax used in the boot param is based on the concise format from the dmsetup tool to follow the rule of least surprise: dmsetup table --concise /dev/mapper/lroot Which is: dm-mod.create=<name>,<uuid>,<minor>,<flags>,<table>[,<table>+][;<name>,<uuid>,<minor>,<flags>,<table>[,<table>+]+] Where, <name> ::= The device name. <uuid> ::= xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx | "" <minor> ::= The device minor number | "" <flags> ::= "ro" | "rw" <table> ::= <start_sector> <num_sectors> <target_type> <target_args> <target_type> ::= "verity" | "linear" | ... For example, the following could be added in the boot parameters: dm-mod.create="lroot,,,rw, 0 4096 linear 98:16 0, 4096 4096 linear 98:32 0" root=/dev/dm-0 Only the targets that were tested are allowed and the ones that don't change any block device when the device is create as read-only. For example, mirror and cache targets are not allowed. The rationale behind this is that if the user makes a mistake, choosing the wrong device to be the mirror or the cache can corrupt data. The only targets initially allowed are: * crypt * delay * linear * snapshot-origin * striped * verity Co-developed-by: Will Drewry <wad@chromium.org> Co-developed-by: Kees Cook <keescook@chromium.org> Co-developed-by: Enric Balletbo i Serra <enric.balletbo@collabora.com> Signed-off-by: Helen Koike <helen.koike@collabora.com> Reviewed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2018-06-08dm: add writecache targetMikulas Patocka1-0/+1
The writecache target caches writes on persistent memory or SSD. It is intended for databases or other programs that need extremely low commit latency. The writecache target doesn't cache reads because reads are supposed to be cached in page cache in normal RAM. If persistent memory isn't available this target can still be used in SSD mode. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Colin Ian King <colin.king@canonical.com> # fix missing goto Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> # fix compilation issue with !DAX Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> # use msecs_to_jiffies Acked-by: Dan Williams <dan.j.williams@intel.com> # reworks to unify ARM and x86 flushing Signed-off-by: Mike Snitzer <msnitzer@redhat.com>
2018-01-17dm: add unstriped targetScott Bauer1-0/+1
This device mapper "unstriped" target remaps and unstripes I/O so it is issued solely on a single drive in a HW RAID0 or dm-striped target. In a 4 drive HW RAID0 the striped target exposes 1/4th of the LBA range as a virtual drive. Each I/O to that virtual drive will only be issued to the 1 drive that was selected of the 4 drives in the HW RAID0. This unstriped target is most useful for Intel NVMe drives that have multiple cores but that do not have firmware control to pin separate LBA ranges to each discrete cpu core. Signed-off-by: Scott Bauer <scott.bauer@intel.com> Signed-off-by: Heinz Mauelshagen <heinzm@redhat.com> Acked-by: Keith Busch <keith.busch@intel.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2017-11-14Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/mdLinus Torvalds1-1/+4
Pull MD update from Shaohua Li: "This update mostly includes bug fixes: - md-cluster now supports raid10 from Guoqing - raid5 PPL fixes from Artur - badblock regression fix from Bo - suspend hang related fixes from Neil - raid5 reshape fixes from Neil - raid1 freeze deadlock fix from Nate - memleak fixes from Zdenek - bitmap related fixes from Me and Tao - other fixes and cleanups" * 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md: (33 commits) md: free unused memory after bitmap resize md: release allocated bitset sync_set md/bitmap: clear BITMAP_WRITE_ERROR bit before writing it to sb md: be cautious about using ->curr_resync_completed for ->recovery_offset badblocks: fix wrong return value in badblocks_set if badblocks are disabled md: don't check MD_SB_CHANGE_CLEAN in md_allow_write md-cluster: update document for raid10 md: remove redundant variable q raid1: remove obsolete code in raid1_write_request md-cluster: Use a small window for raid10 resync md-cluster: Suspend writes in RAID10 if within range md-cluster/raid10: set "do_balance = 0" if area is resyncing md: use lockdep_assert_held raid1: prevent freeze_array/wait_all_barriers deadlock md: use TASK_IDLE instead of blocking signals md: remove special meaning of ->quiesce(.., 2) md: allow metadata update while suspending. md: use mddev_suspend/resume instead of ->quiesce() md: move suspend_hi/lo handling into core md code md: don't call bitmap_create() while array is quiesced. ...
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman1-0/+1
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-10-16md: rename some drivers/md/ files to have an "md-" prefixMike Snitzer1-1/+4
Motivated by the desire to illiminate the imprecise nature of DM-specific patches being unnecessarily sent to both the MD maintainer and mailing-list. Which is born out of the fact that DM files also reside in drivers/md/ Now all MD-specific files in drivers/md/ start with either "raid" or "md-" and the MAINTAINERS file has been updated accordingly. Shaohua: don't change module name Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-06-19dm zoned: drive-managed zoned block device targetDamien Le Moal1-0/+2
The dm-zoned device mapper target provides transparent write access to zoned block devices (ZBC and ZAC compliant block devices). dm-zoned hides to the device user (a file system or an application doing raw block device accesses) any constraint imposed on write requests by the device, equivalent to a drive-managed zoned block device model. Write requests are processed using a combination of on-disk buffering using the device conventional zones and direct in-place processing for requests aligned to a zone sequential write pointer position. A background reclaim process implemented using dm_kcopyd_copy ensures that conventional zones are always available for executing unaligned write requests. The reclaim process overhead is minimized by managing buffer zones in a least-recently-written order and first targeting the oldest buffer zones. Doing so, blocks under regular write access (such as metadata blocks of a file system) remain stored in conventional zones, resulting in no apparent overhead. dm-zoned implementation focus on simplicity and on minimizing overhead (CPU, memory and storage overhead). For a 14TB host-managed disk with 256 MB zones, dm-zoned memory usage per disk instance is at most about 3 MB and as little as 5 zones will be used internally for storing metadata and performing buffer zone reclaim operations. This is achieved using zone level indirection rather than a full block indirection system for managing block movement between zones. dm-zoned primary target is host-managed zoned block devices but it can also be used with host-aware device models to mitigate potential device-side performance degradation due to excessive random writing. Zoned block devices can be formatted and checked for use with the dm-zoned target using the dmzadm utility available at: https://github.com/hgst/dm-zoned-tools Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com> [Mike Snitzer partly refactored Damien's original work to cleanup the code] Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2017-05-03Merge tag 'for-4.12/dm-changes' of ↵Linus Torvalds1-3/+4
git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm Pull device mapper updates from Mike Snitzer: - A major update for DM cache that reduces the latency for deciding whether blocks should migrate to/from the cache. The bio-prison-v2 interface supports this improvement by enabling direct dispatch of work to workqueues rather than having to delay the actual work dispatch to the DM cache core. So the dm-cache policies are much more nimble by being able to drive IO as they see fit. One immediate benefit from the improved latency is a cache that should be much more adaptive to changing workloads. - Add a new DM integrity target that emulates a block device that has additional per-sector tags that can be used for storing integrity information. - Add a new authenticated encryption feature to the DM crypt target that builds on the capabilities provided by the DM integrity target. - Add MD interface for switching the raid4/5/6 journal mode and update the DM raid target to use it to enable aid4/5/6 journal write-back support. - Switch the DM verity target over to using the asynchronous hash crypto API (this helps work better with architectures that have access to off-CPU algorithm providers, which should reduce CPU utilization). - Various request-based DM and DM multipath fixes and improvements from Bart and Christoph. - A DM thinp target fix for a bio structure leak that occurs for each discard IFF discard passdown is enabled. - A fix for a possible deadlock in DM bufio and a fix to re-check the new buffer allocation watermark in the face of competing admin changes to the 'max_cache_size_bytes' tunable. - A couple DM core cleanups. * tag 'for-4.12/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm: (50 commits) dm bufio: check new buffer allocation watermark every 30 seconds dm bufio: avoid a possible ABBA deadlock dm mpath: make it easier to detect unintended I/O request flushes dm mpath: cleanup QUEUE_IF_NO_PATH bit manipulation by introducing assign_bit() dm mpath: micro-optimize the hot path relative to MPATHF_QUEUE_IF_NO_PATH dm: introduce enum dm_queue_mode to cleanup related code dm mpath: verify __pg_init_all_paths locking assumptions at runtime dm: verify suspend_locking assumptions at runtime dm block manager: remove an unused argument from dm_block_manager_create() dm rq: check blk_mq_register_dev() return value in dm_mq_init_request_queue() dm mpath: delay requeuing while path initialization is in progress dm mpath: avoid that path removal can trigger an infinite loop dm mpath: split and rename activate_path() to prepare for its expanded use dm ioctl: prevent stack leak in dm ioctl call dm integrity: use previously calculated log2 of sectors_per_block dm integrity: use hex2bin instead of open-coded variant dm crypt: replace custom implementation of hex2bin() dm crypt: remove obsolete references to per-CPU state dm verity: switch to using asynchronous hash crypto API dm crypt: use WQ_HIGHPRI for the IO and crypt workqueues ...
2017-03-24dm: add integrity targetMikulas Patocka1-0/+1
The dm-integrity target emulates a block device that has additional per-sector tags that can be used for storing integrity information. A general problem with storing integrity tags with every sector is that writing the sector and the integrity tag must be atomic - i.e. in case of crash, either both sector and integrity tag or none of them is written. To guarantee write atomicity the dm-integrity target uses a journal. It writes sector data and integrity tags into a journal, commits the journal and then copies the data and integrity tags to their respective location. The dm-integrity target can be used with the dm-crypt target - in this situation the dm-crypt target creates the integrity data and passes them to the dm-integrity target via bio_integrity_payload attached to the bio. In this mode, the dm-crypt and dm-integrity targets provide authenticated disk encryption - if the attacker modifies the encrypted device, an I/O error is returned instead of random data. The dm-integrity target can also be used as a standalone target, in this mode it calculates and verifies the integrity tag internally. In this mode, the dm-integrity target can be used to detect silent data corruption on the disk or in the I/O path. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Milan Broz <gmazyland@gmail.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2017-03-16raid5-ppl: Partial Parity Log write logging implementationArtur Paszkiewicz1-1/+1
Implement the calculation of partial parity for a stripe and PPL write logging functionality. The description of PPL is added to the documentation. More details can be found in the comments in raid5-ppl.c. Attach a page for holding the partial parity data to stripe_head. Allocate it only if mddev has the MD_HAS_PPL flag set. Partial parity is the xor of not modified data chunks of a stripe and is calculated as follows: - reconstruct-write case: xor data from all not updated disks in a stripe - read-modify-write case: xor old data and parity from all updated disks in a stripe Implement it using the async_tx API and integrate into raid_run_ops(). It must be called when we still have access to old data, so do it when STRIPE_OP_BIODRAIN is set, but before ops_run_prexor5(). The result is stored into sh->ppl_page. Partial parity is not meaningful for full stripe write and is not stored in the log or used for recovery, so don't attempt to calculate it when stripe has STRIPE_FULL_WRITE. Put the PPL metadata structures to md_p.h because userspace tools (mdadm) will also need to read/write PPL. Warn about using PPL with enabled disk volatile write-back cache for now. It can be removed once disk cache flushing before writing PPL is implemented. Signed-off-by: Artur Paszkiewicz <artur.paszkiewicz@intel.com> Signed-off-by: Shaohua Li <shli@fb.com>
2017-03-07dm cache: significant rework to leverage dm-bio-prison-v2Joe Thornber1-3/+2
The cache policy interfaces have been updated to work well with the new bio-prison v2 interface's ability to queue work immediately (promotion, demotion, etc) -- overriding benefit being reduced latency on processing IO through the cache. Previously such work would be left for the DM cache core to queue on various lists and then process in batches later -- this caused a serious delay in latency for IO driven by the cache. The background tracker code was factored out so that all cache policies can make use of it. Also, the "cleaner" policy has been removed and is now a variant of the smq policy that simply disallows migrations. Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2017-03-07dm bio prison v2: new interface for the bio prisonJoe Thornber1-0/+1
The deferred set is gone and all methods have _v2 appended to the end of their names to allow for continued use of the original bio prison in DM thin-provisioning. Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com>
2016-06-10dm: move request-based code out to dm-rq.[hc]Mike Snitzer1-1/+2
Add some seperation be