| Age | Commit message (Collapse) | Author | Files | Lines |
|
commit ae148243d3f0816b37477106c05a2ec7d5f32614 upstream.
In commit 6096d91af0b6 ("dm space map metadata: fix occasional leak
of a metadata block on resize"), we refactor the commit logic to a new
function 'apply_bops'. But when that logic was replaced in out() the
return value was not stored. This may lead out() returning a wrong
value to the caller.
Fixes: 6096d91af0b6 ("dm space map metadata: fix occasional leak of a metadata block on resize")
Cc: stable@vger.kernel.org
Signed-off-by: ZhangXiaoxu <zhangxiaoxu5@huawei.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dc1a3e8e0cc6b2293b48c044710e63395aeb4fb4 upstream.
If rs_prepare_reshape() fails, no cleanup is executed, leading to
leak of the raid_set structure allocated at the beginning of
raid_ctr(). To fix this issue, go to the label 'bad' if the error
occurs.
Fixes: 11e4723206683 ("dm raid: stop keeping raid set frozen altogether")
Cc: stable@vger.kernel.org
Signed-off-by: Wenwen Wang <wenwen@cs.uga.edu>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5729b6e5a1bcb0bbc28abe82d749c7392f66d2c7 upstream.
Fix a crash that was introduced by the commit 724376a04d1a. The crash is
reported here: https://gitlab.com/cryptsetup/cryptsetup/issues/468
When reading from the integrity device, the function
dm_integrity_map_continue calls find_journal_node to find out if the
location to read is present in the journal. Then, it calculates how many
sectors are consecutively stored in the journal. Then, it locks the range
with add_new_range and wait_and_add_new_range.
The problem is that during wait_and_add_new_range, we hold no locks (we
don't hold ic->endio_wait.lock and we don't hold a range lock), so the
journal may change arbitrarily while wait_and_add_new_range sleeps.
The code then goes to __journal_read_write and hits
BUG_ON(journal_entry_get_sector(je) != logical_sector); because the
journal has changed.
In order to fix this bug, we need to re-check the journal location after
wait_and_add_new_range. We restrict the length to one block in order to
not complicate the code too much.
Fixes: 724376a04d1a ("dm integrity: implement fair range locks")
Cc: stable@vger.kernel.org # v4.19+
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e4f9d6013820d1eba1432d51dd1c5795759aa77f upstream.
When btree_split_beneath() splits a node to two new children, it will
allocate two blocks: left and right. If right block's allocation
failed, the left block will be unlocked and marked dirty. If this
happened, the left block'ss content is zero, because it wasn't
initialized with the btree struct before the attempot to allocate the
right block. Upon return, when flushing the left block to disk, the
validator will fail when check this block. Then a BUG_ON is raised.
Fix this by completely initializing the left block before allocating and
initializing the right block.
Fixes: 4dcb8b57df359 ("dm btree: fix leak of bufio-backed block in btree_split_beneath error path")
Cc: stable@vger.kernel.org
Signed-off-by: ZhangXiaoxu <zhangxiaoxu5@huawei.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d1fef41465f0e8cae0693fb184caa6bfafb6cd16 upstream.
This patch fixes a problem in dm-kcopyd that may leave jobs in
complete queue indefinitely in the event of backing storage failure.
This behavior has been observed while running 100% write file fio
workload against an XFS volume created on top of a dm-zoned target
device. If the underlying storage of dm-zoned goes to offline state
under I/O, kcopyd sometimes never issues the end copy callback and
dm-zoned reclaim work hangs indefinitely waiting for that completion.
This behavior was traced down to the error handling code in
process_jobs() function that places the failed job to complete_jobs
queue, but doesn't wake up the job handler. In case of backing device
failure, all outstanding jobs may end up going to complete_jobs queue
via this code path and then stay there forever because there are no
more successful I/O jobs to wake up the job handler.
This patch adds a wake() call to always wake up kcopyd job wait queue
for all I/O jobs that fail before dm_io() gets called for that job.
The patch also sets the write error status in all sub jobs that are
failed because their master job has failed.
Fixes: b73c67c2cbb00 ("dm kcopyd: add sequential write feature")
Cc: stable@vger.kernel.org
Signed-off-by: Dmitry Fomichev <dmitry.fomichev@wdc.com>
Reviewed-by: Damien Le Moal <damien.lemoal@wdc.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit cf3591ef832915892f2499b7e54b51d4c578b28c upstream.
Revert the commit bd293d071ffe65e645b4d8104f9d8fe15ea13862. The proper
fix has been made available with commit d0a255e795ab ("loop: set
PF_MEMALLOC_NOIO for the worker thread").
Note that the fix offered by commit bd293d071ffe doesn't really prevent
the deadlock from occuring - if we look at the stacktrace reported by
Junxiao Bi, we see that it hangs in bit_wait_io and not on the mutex -
i.e. it has already successfully taken the mutex. Changing the mutex
from mutex_lock to mutex_trylock won't help with deadlocks that happen
afterwards.
PID: 474 TASK: ffff8813e11f4600 CPU: 10 COMMAND: "kswapd0"
#0 [ffff8813dedfb938] __schedule at ffffffff8173f405
#1 [ffff8813dedfb990] schedule at ffffffff8173fa27
#2 [ffff8813dedfb9b0] schedule_timeout at ffffffff81742fec
#3 [ffff8813dedfba60] io_schedule_timeout at ffffffff8173f186
#4 [ffff8813dedfbaa0] bit_wait_io at ffffffff8174034f
#5 [ffff8813dedfbac0] __wait_on_bit at ffffffff8173fec8
#6 [ffff8813dedfbb10] out_of_line_wait_on_bit at ffffffff8173ff81
#7 [ffff8813dedfbb90] __make_buffer_clean at ffffffffa038736f [dm_bufio]
#8 [ffff8813dedfbbb0] __try_evict_buffer at ffffffffa0387bb8 [dm_bufio]
#9 [ffff8813dedfbbd0] dm_bufio_shrink_scan at ffffffffa0387cc3 [dm_bufio]
#10 [ffff8813dedfbc40] shrink_slab at ffffffff811a87ce
#11 [ffff8813dedfbd30] shrink_zone at ffffffff811ad778
#12 [ffff8813dedfbdc0] kswapd at ffffffff811ae92f
#13 [ffff8813dedfbec0] kthread at ffffffff810a8428
#14 [ffff8813dedfbf50] ret_from_fork at ffffffff81745242
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: stable@vger.kernel.org
Fixes: bd293d071ffe ("dm bufio: fix deadlock with loop device")
Depends-on: d0a255e795ab ("loop: set PF_MEMALLOC_NOIO for the worker thread")
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bcb44433bba5eaff293888ef22ffa07f1f0347d6 upstream.
Storage devices which report supporting discard commands like
WRITE_SAME_16 with unmap, but reject discard commands sent to the
storage device. This is a clear storage firmware bug but it doesn't
change the fact that should a program cause discards to be sent to a
multipath device layered on this buggy storage, all paths can end up
failed at the same time from the discards, causing possible I/O loss.
The first discard to a path will fail with Illegal Request, Invalid
field in cdb, e.g.:
kernel: sd 8:0:8:19: [sdfn] tag#0 FAILED Result: hostbyte=DID_OK driverbyte=DRIVER_SENSE
kernel: sd 8:0:8:19: [sdfn] tag#0 Sense Key : Illegal Request [current]
kernel: sd 8:0:8:19: [sdfn] tag#0 Add. Sense: Invalid field in cdb
kernel: sd 8:0:8:19: [sdfn] tag#0 CDB: Write same(16) 93 08 00 00 00 00 00 a0 08 00 00 00 80 00 00 00
kernel: blk_update_request: critical target error, dev sdfn, sector 10487808
The SCSI layer converts this to the BLK_STS_TARGET error number, the sd
device disables its support for discard on this path, and because of the
BLK_STS_TARGET error multipath fails the discard without failing any
path or retrying down a different path. But subsequent discards can
cause path failures. Any discards sent to the path which already failed
a discard ends up failing with EIO from blk_cloned_rq_check_limits with
an "over max size limit" error since the discard limit was set to 0 by
the sd driver for the path. As the error is EIO, this now fails the
path and multipath tries to send the discard down the next path. This
cycle continues as discards are sent until all paths fail.
Fix this by training DM core to disable DISCARD if the underlying
storage already did so.
Also, fix branching in dm_done() and clone_endio() to reflect the
mutually exclussive nature of the IO operations in question.
Cc: stable@vger.kernel.org
Reported-by: David Jeffery <djeffery@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
[Salvatore Bonaccorso: backported to 4.19: Adjust for context changes in
drivers/md/dm-core.h]
Signed-off-by: Salvatore Bonaccorso <carnil@debian.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bd293d071ffe65e645b4d8104f9d8fe15ea13862 upstream.
When thin-volume is built on loop device, if available memory is low,
the following deadlock can be triggered:
One process P1 allocates memory with GFP_FS flag, direct alloc fails,
memory reclaim invokes memory shrinker in dm_bufio, dm_bufio_shrink_scan()
runs, mutex dm_bufio_client->lock is acquired, then P1 waits for dm_buffer
IO to complete in __try_evict_buffer().
But this IO may never complete if issued to an underlying loop device
that forwards it using direct-IO, which allocates memory using
GFP_KERNEL (see: do_blockdev_direct_IO()). If allocation fails, memory
reclaim will invoke memory shrinker in dm_bufio, dm_bufio_shrink_scan()
will be invoked, and since the mutex is already held by P1 the loop
thread will hang, and IO will never complete. Resulting in ABBA
deadlock.
Cc: stable@vger.kernel.org
Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 3b8cafdd5436f9298b3bf6eb831df5eef5ee82b6 upstream.
dm-zoned uses the zone flag DMZ_ACTIVE to indicate that a zone of the
backend device is being actively read or written and so cannot be
reclaimed. This flag is set as long as the zone atomic reference
counter is not 0. When this atomic is decremented and reaches 0 (e.g.
on BIO completion), the active flag is cleared and set again whenever
the zone is reused and BIO issued with the atomic counter incremented.
These 2 operations (atomic inc/dec and flag set/clear) are however not
always executed atomically under the target metadata mutex lock and
this causes the warning:
WARN_ON(!test_bit(DMZ_ACTIVE, &zone->flags));
in dmz_deactivate_zone() to be displayed. This problem is regularly
triggered with xfstests generic/209, generic/300, generic/451 and
xfs/077 with XFS being used as the file system on the dm-zoned target
device. Similarly, xfstests ext4/303, ext4/304, generic/209 and
generic/300 trigger the warning with ext4 use.
This problem can be easily fixed by simply removing the DMZ_ACTIVE flag
and managing the "ACTIVE" state by directly looking at the reference
counter value. To do so, the functions dmz_activate_zone() and
dmz_deactivate_zone() are changed to inline functions respectively
calling atomic_inc() and atomic_dec(), while the dmz_is_active() macro
is changed to an inline function calling atomic_read().
Fixes: 3b1a94c88b79 ("dm zoned: drive-managed zoned block device target")
Cc: stable@vger.kernel.org
Reported-by: Masato Suzuki <masato.suzuki@wdc.com>
Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d9771f5ec46c282d518b453c793635dbdc3a2a94 upstream.
commit d5d885fd514f ("md: introduce new personality funciton start()")
splits the init job to two parts. The first part run() does the jobs that
do not require the md threads. The second part start() does the jobs that
require the md threads.
Now it just does run() in adding new journal device. It needs to do the
second part start() too.
Fixes: d5d885fd514f ("md: introduce new personality funciton start()")
Cc: stable@vger.kernel.org #v4.9+
Reported-by: Michal Soltys <soltys@ziu.info>
Signed-off-by: Xiao Ni <xni@redhat.com>
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f54d801dda14942dbefa00541d10603015b7859c upstream.
Commit 9baf30972b55 ("bcache: fix for gc and write-back race") added a
new work queue dc->writeback_write_wq, but forgot to destroy it in the
error condition when creating dc->writeback_thread failed.
This patch destroys dc->writeback_write_wq if kthread_create() returns
error pointer to dc->writeback_thread, then a memory leak is avoided.
Fixes: 9baf30972b55 ("bcache: fix for gc and write-back race")
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 5461999848e0462c14f306a62923d22de820a59c upstream.
In bch_cached_dev_files[] from driver/md/bcache/sysfs.c, sysfs_errors is
incorrectly inserted in. The correct entry should be sysfs_io_errors.
This patch fixes the problem and now I/O errors of cached device can be
read from /sys/block/bcache<N>/bcache/io_errors.
Fixes: c7b7bd07404c5 ("bcache: add io_disable to struct cached_dev")
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 578df99b1b0531d19af956530fe4da63d01a1604 upstream.
When md raid device (e.g. raid456) is used as backing device, read-ahead
requests on a degrading and recovering md raid device might be failured
immediately by md raid code, but indeed this md raid array can still be
read or write for normal I/O requests. Therefore such failed read-ahead
request are not real hardware failure. Further more, after degrading and
recovering accomplished, read-ahead requests will be handled by md raid
array again.
For such condition, I/O failures of read-ahead requests don't indicate
real health status (because normal I/O still be served), they should not
be counted into I/O error counter dc->io_errors.
Since there is no simple way to detect whether the backing divice is a
md raid device, this patch simply ignores I/O failures for read-ahead
bios on backing device, to avoid bogus backing device failure on a
degrading md raid array.
Suggested-and-tested-by: Thorsten Knabe <linux@thorsten-knabe.de>
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ba82c1ac1667d6efb91a268edb13fc9cdaecec9b upstream.
This reverts commit 6268dc2c4703aabfb0b35681be709acf4c2826c6.
This patch depends on commit c4dc2497d50d ("bcache: fix high CPU
occupancy during journal") which is reverted in previous patch. So
revert this one too.
Fixes: 6268dc2c4703 ("bcache: free heap cache_set->flush_btree in bch_journal_free")
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Cc: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 249a5f6da57c28a903c75d81505d58ec8c10030d upstream.
This reverts commit c4dc2497d50d9c6fb16aa0d07b6a14f3b2adb1e0.
This patch enlarges a race between normal btree flush code path and
flush_btree_write(), which causes deadlock when journal space is
exhausted. Reverts this patch makes the race window from 128 btree
nodes to only 1 btree nodes.
Fixes: c4dc2497d50d ("bcache: fix high CPU occupancy during journal")
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Cc: Tang Junhui <tang.junhui.linux@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 695277f16b3a102fcc22c97fdf2de77c7b19f0b3 upstream.
This reverts commit 6147305c73e4511ca1a975b766b97a779d442567.
Although this patch helps the failed bcache device to stop faster when
too many I/O errors detected on corresponding cached device, setting
CACHE_SET_IO_DISABLE bit to cache set c->flags was not a good idea. This
operation will disable all I/Os on cache set, which means other attached
bcache devices won't work neither.
Without this patch, the failed bcache device can also be stopped
eventually if internal I/O accomplished (e.g. writeback). Therefore here
I revert it.
Fixes: 6147305c73e4 ("bcache: set CACHE_SET_IO_DISABLE in bch_cached_dev_error()")
Reported-by: Yong Li <mr.liyong@qq.com>
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 7e865eba00a3df2dc8c4746173a8ca1c1c7f042e ]
When enable lockdep and reboot system with a writeback mode bcache
device, the following potential deadlock warning is reported by lockdep
engine.
[ 101.536569][ T401] kworker/2:2/401 is trying to acquire lock:
[ 101.538575][ T401] 00000000bbf6e6c7 ((wq_completion)bcache_writeback_wq){+.+.}, at: flush_workqueue+0x87/0x4c0
[ 101.542054][ T401]
[ 101.542054][ T401] but task is already holding lock:
[ 101.544587][ T401] 00000000f5f305b3 ((work_completion)(&cl->work)#2){+.+.}, at: process_one_work+0x21e/0x640
[ 101.548386][ T401]
[ 101.548386][ T401] which lock already depends on the new lock.
[ 101.548386][ T401]
[ 101.551874][ T401]
[ 101.551874][ T401] the existing dependency chain (in reverse order) is:
[ 101.555000][ T401]
[ 101.555000][ T401] -> #1 ((work_completion)(&cl->work)#2){+.+.}:
[ 101.557860][ T401] process_one_work+0x277/0x640
[ 101.559661][ T401] worker_thread+0x39/0x3f0
[ 101.561340][ T401] kthread+0x125/0x140
[ 101.562963][ T401] ret_from_fork+0x3a/0x50
[ 101.564718][ T401]
[ 101.564718][ T401] -> #0 ((wq_completion)bcache_writeback_wq){+.+.}:
[ 101.567701][ T401] lock_acquire+0xb4/0x1c0
[ 101.569651][ T401] flush_workqueue+0xae/0x4c0
[ 101.571494][ T401] drain_workqueue+0xa9/0x180
[ 101.573234][ T401] destroy_workqueue+0x17/0x250
[ 101.575109][ T401] cached_dev_free+0x44/0x120 [bcache]
[ 101.577304][ T401] process_one_work+0x2a4/0x640
[ 101.579357][ T401] worker_thread+0x39/0x3f0
[ 101.581055][ T401] kthread+0x125/0x140
[ 101.582709][ T401] ret_from_fork+0x3a/0x50
[ 101.584592][ T401]
[ 101.584592][ T401] other info that might help us debug this:
[ 101.584592][ T401]
[ 101.588355][ T401] Possible unsafe locking scenario:
[ 101.588355][ T401]
[ 101.590974][ T401] CPU0 CPU1
[ 101.592889][ T401] ---- ----
[ 101.594743][ T401] lock((work_completion)(&cl->work)#2);
[ 101.596785][ T401] lock((wq_completion)bcache_writeback_wq);
[ 101.600072][ T401] lock((work_completion)(&cl->work)#2);
[ 101.602971][ T401] lock((wq_completion)bcache_writeback_wq);
[ 101.605255][ T401]
[ 101.605255][ T401] *** DEADLOCK ***
[ 101.605255][ T401]
[ 101.608310][ T401] 2 locks held by kworker/2:2/401:
[ 101.610208][ T401] #0: 00000000cf2c7d17 ((wq_completion)events){+.+.}, at: process_one_work+0x21e/0x640
[ 101.613709][ T401] #1: 00000000f5f305b3 ((work_completion)(&cl->work)#2){+.+.}, at: process_one_work+0x21e/0x640
[ 101.617480][ T401]
[ 101.617480][ T401] stack backtrace:
[ 101.619539][ T401] CPU: 2 PID: 401 Comm: kworker/2:2 Tainted: G W 5.2.0-rc4-lp151.20-default+ #1
[ 101.623225][ T401] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/13/2018
[ 101.627210][ T401] Workqueue: events cached_dev_free [bcache]
[ 101.629239][ T401] Call Trace:
[ 101.630360][ T401] dump_stack+0x85/0xcb
[ 101.631777][ T401] print_circular_bug+0x19a/0x1f0
[ 101.633485][ T401] __lock_acquire+0x16cd/0x1850
[ 101.635184][ T401] ? __lock_acquire+0x6a8/0x1850
[ 101.636863][ T401] ? lock_acquire+0xb4/0x1c0
[ 101.638421][ T401] ? find_held_lock+0x34/0xa0
[ 101.640015][ T401] lock_acquire+0xb4/0x1c0
[ 101.641513][ T401] ? flush_workqueue+0x87/0x4c0
[ 101.643248][ T401] flush_workqueue+0xae/0x4c0
[ 101.644832][ T401] ? flush_workqueue+0x87/0x4c0
[ 101.646476][ T401] ? drain_workqueue+0xa9/0x180
[ 101.648303][ T401] drain_workqueue+0xa9/0x180
[ 101.649867][ T401] destroy_workqueue+0x17/0x250
[ 101.651503][ T401] cached_dev_free+0x44/0x120 [bcache]
[ 101.653328][ T401] process_one_work+0x2a4/0x640
[ 101.655029][ T401] worker_thread+0x39/0x3f0
[ 101.656693][ T401] ? process_one_work+0x640/0x640
[ 101.658501][ T401] kthread+0x125/0x140
[ 101.660012][ T401] ? kthread_create_worker_on_cpu+0x70/0x70
[ 101.661985][ T401] ret_from_fork+0x3a/0x50
[ 101.691318][ T401] bcache: bcache_device_free() bcache0 stopped
Here is how the above potential deadlock may happen in reboot/shutdown
code path,
1) bcache_reboot() is called firstly in the reboot/shutdown code path,
then in bcache_reboot(), bcache_device_stop() is called.
2) bcache_device_stop() sets BCACHE_DEV_CLOSING on d->falgs, then call
closure_queue(&d->cl) to invoke cached_dev_flush(). And in turn
cached_dev_flush() calls cached_dev_free() via closure_at()
3) In cached_dev_free(), after stopped writebach kthread
dc->writeback_thread, the kwork dc->writeback_write_wq is stopping by
destroy_workqueue().
4) Inside destroy_workqueue(), drain_workqueue() is called. Inside
drain_workqueue(), flush_workqueue() is called. Then wq->lockdep_map
is acquired by lock_map_acquire() in flush_workqueue(). After the
lock acquired the rest part of flush_workqueue() just wait for the
workqueue to complete.
5) Now we look back at writeback thread routine bch_writeback_thread(),
in the main while-loop, write_dirty() is called via continue_at() in
read_dirty_submit(), which is called via continue_at() in while-loop
level called function read_dirty(). Inside write_dirty() it may be
re-called on workqueeu dc->writeback_write_wq via continue_at().
It means when the writeback kthread is stopped in cached_dev_free()
there might be still one kworker queued on dc->writeback_write_wq
to execute write_dirty() again.
6) Now this kworker is scheduled on dc->writeback_write_wq to run by
process_one_work() (which is called by worker_thread()). Before
calling the kwork routine, wq->lockdep_map is acquired.
7) But wq->lockdep_map is acquired already in step 4), so a A-A lock
(lockdep terminology) scenario happens.
Indeed on multiple cores syatem, the above deadlock is very rare to
happen, just as the code comments in process_one_work() says,
2263 * AFAICT there is no possible deadlock scenario between the
2264 * flush_work() and complete() primitives (except for
single-threaded
2265 * workqueues), so hiding them isn't a problem.
But it is still good to fix such lockdep warning, even no one running
bcache on single core system.
The fix is simple. This patch solves the above potential deadlock by,
- Do not destroy workqueue dc->writeback_write_wq in cached_dev_free().
- Flush and destroy dc->writeback_write_wq in writebach kthread routine
bch_writeback_thread(), where after quit the thread main while-loop
and before cached_dev_put() is called.
By this fix, dc->writeback_write_wq will be stopped and destroy before
the writeback kthread stopped, so the chance for a A-A locking on
wq->lockdep_map is disappeared, such A-A deadlock won't happen
any more.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit b387e9b58679c60f5b1e4313939bd4878204fc37 ]
When system memory is in heavy pressure, bch_gc_thread_start() from
run_cache_set() may fail due to out of memory. In such condition,
c->gc_thread is assigned to -ENOMEM, not NULL pointer. Then in following
failure code path bch_cache_set_error(), when cache_set_flush() gets
called, the code piece to stop c->gc_thread is broken,
if (!IS_ERR_OR_NULL(c->gc_thread))
kthread_stop(c->gc_thread);
And KASAN catches such NULL pointer deference problem, with the warning
information:
[ 561.207881] ==================================================================
[ 561.207900] BUG: KASAN: null-ptr-deref in kthread_stop+0x3b/0x440
[ 561.207904] Write of size 4 at addr 000000000000001c by task kworker/15:1/313
[ 561.207913] CPU: 15 PID: 313 Comm: kworker/15:1 Tainted: G W 5.0.0-vanilla+ #3
[ 561.207916] Hardware name: Lenovo ThinkSystem SR650 -[7X05CTO1WW]-/-[7X05CTO1WW]-, BIOS -[IVE136T-2.10]- 03/22/2019
[ 561.207935] Workqueue: events cache_set_flush [bcache]
[ 561.207940] Call Trace:
[ 561.207948] dump_stack+0x9a/0xeb
[ 561.207955] ? kthread_stop+0x3b/0x440
[ 561.207960] ? kthread_stop+0x3b/0x440
[ 561.207965] kasan_report+0x176/0x192
[ 561.207973] ? kthread_stop+0x3b/0x440
[ 561.207981] kthread_stop+0x3b/0x440
[ 561.207995] cache_set_flush+0xd4/0x6d0 [bcache]
[ 561.208008] process_one_work+0x856/0x1620
[ 561.208015] ? find_held_lock+0x39/0x1d0
[ 561.208028] ? drain_workqueue+0x380/0x380
[ 561.208048] worker_thread+0x87/0xb80
[ 561.208058] ? __kthread_parkme+0xb6/0x180
[ 561.208067] ? process_one_work+0x1620/0x1620
[ 561.208072] kthread+0x326/0x3e0
[ 561.208079] ? kthread_create_worker_on_cpu+0xc0/0xc0
[ 561.208090] ret_from_fork+0x3a/0x50
[ 561.208110] ==================================================================
[ 561.208113] Disabling lock debugging due to kernel taint
[ 561.208115] irq event stamp: 11800231
[ 561.208126] hardirqs last enabled at (11800231): [<ffffffff83008538>] do_syscall_64+0x18/0x410
[ 561.208127] BUG: unable to handle kernel NULL pointer dereference at 000000000000001c
[ 561.208129] #PF error: [WRITE]
[ 561.312253] hardirqs last disabled at (11800230): [<ffffffff830052ff>] trace_hardirqs_off_thunk+0x1a/0x1c
[ 561.312259] softirqs last enabled at (11799832): [<ffffffff850005c7>] __do_softirq+0x5c7/0x8c3
[ 561.405975] PGD 0 P4D 0
[ 561.442494] softirqs last disabled at (11799821): [<ffffffff831add2c>] irq_exit+0x1ac/0x1e0
[ 561.791359] Oops: 0002 [#1] SMP KASAN NOPTI
[ 561.791362] CPU: 15 PID: 313 Comm: kworker/15:1 Tainted: G B W 5.0.0-vanilla+ #3
[ 561.791363] Hardware name: Lenovo ThinkSystem SR650 -[7X05CTO1WW]-/-[7X05CTO1WW]-, BIOS -[IVE136T-2.10]- 03/22/2019
[ 561.791371] Workqueue: events cache_set_flush [bcache]
[ 561.791374] RIP: 0010:kthread_stop+0x3b/0x440
[ 561.791376] Code: 00 00 65 8b 05 26 d5 e0 7c 89 c0 48 0f a3 05 ec aa df 02 0f 82 dc 02 00 00 4c 8d 63 20 be 04 00 00 00 4c 89 e7 e8 65 c5 53 00 <f0> ff 43 20 48 8d 7b 24 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48
[ 561.791377] RSP: 0018:ffff88872fc8fd10 EFLAGS: 00010286
[ 561.838895] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[ 561.838916] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[ 561.838934] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[ 561.838948] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[ 561.838966] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[ 561.838979] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[ 561.838996] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[ 563.067028] RAX: 0000000000000000 RBX: fffffffffffffffc RCX: ffffffff832dd314
[ 563.067030] RDX: 0000000000000000 RSI: 0000000000000004 RDI: 0000000000000297
[ 563.067032] RBP: ffff88872fc8fe88 R08: fffffbfff0b8213d R09: fffffbfff0b8213d
[ 563.067034] R10: 0000000000000001 R11: fffffbfff0b8213c R12: 000000000000001c
[ 563.408618] R13: ffff88dc61cc0f68 R14: ffff888102b94900 R15: ffff88dc61cc0f68
[ 563.408620] FS: 0000000000000000(0000) GS:ffff888f7dc00000(0000) knlGS:0000000000000000
[ 563.408622] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 563.408623] CR2: 000000000000001c CR3: 0000000f48a1a004 CR4: 00000000007606e0
[ 563.408625] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 563.408627] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 563.904795] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[ 563.915796] PKRU: 55555554
[ 563.915797] Call Trace:
[ 563.915807] cache_set_flush+0xd4/0x6d0 [bcache]
[ 563.915812] process_one_work+0x856/0x1620
[ 564.001226] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[ 564.033563] ? find_held_lock+0x39/0x1d0
[ 564.033567] ? drain_workqueue+0x380/0x380
[ 564.033574] worker_thread+0x87/0xb80
[ 564.062823] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[ 564.118042] ? __kthread_parkme+0xb6/0x180
[ 564.118046] ? process_one_work+0x1620/0x1620
[ 564.118048] kthread+0x326/0x3e0
[ 564.118050] ? kthread_create_worker_on_cpu+0xc0/0xc0
[ 564.167066] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[ 564.252441] ret_from_fork+0x3a/0x50
[ 564.252447] Modules linked in: msr rpcrdma sunrpc rdma_ucm ib_iser ib_umad rdma_cm ib_ipoib i40iw configfs iw_cm ib_cm libiscsi scsi_transport_iscsi mlx4_ib ib_uverbs mlx4_en ib_core nls_iso8859_1 nls_cp437 vfat fat intel_rapl skx_edac x86_pkg_temp_thermal coretemp iTCO_wdt iTCO_vendor_support crct10dif_pclmul crc32_pclmul crc32c_intel ghash_clmulni_intel ses raid0 aesni_intel cdc_ether enclosure usbnet ipmi_ssif joydev aes_x86_64 i40e scsi_transport_sas mii bcache md_mod crypto_simd mei_me ioatdma crc64 ptp cryptd pcspkr i2c_i801 mlx4_core glue_helper pps_core mei lpc_ich dca wmi ipmi_si ipmi_devintf nd_pmem dax_pmem nd_btt ipmi_msghandler device_dax pcc_cpufreq button hid_generic usbhid mgag200 i2c_algo_bit drm_kms_helper syscopyarea sysfillrect xhci_pci sysimgblt fb_sys_fops xhci_hcd ttm megaraid_sas drm usbcore nfit libnvdimm sg dm_multipath dm_mod scsi_dh_rdac scsi_dh_emc scsi_dh_alua efivarfs
[ 564.299390] bcache: bch_count_io_errors() nvme0n1: IO error on writing btree.
[ 564.348360] CR2: 000000000000001c
[ 564.348362] ---[ end trace b7f0e5cc7b2103b0 ]---
Therefore, it is not enough to only check whether c->gc_thread is NULL,
we should use IS_ERR_OR_NULL() to check both NULL pointer and error
value.
This patch changes the above buggy code piece in this way,
if (!IS_ERR_OR_NULL(c->gc_thread))
kthread_stop(c->gc_thread);
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 80265d8dfd77792e133793cef44a21323aac2908 ]
When enable lockdep engine, a lockdep warning can be observed when
reboot or shutdown system,
[ 3142.764557][ T1] bcache: bcache_reboot() Stopping all devices:
[ 3142.776265][ T2649]
[ 3142.777159][ T2649] ======================================================
[ 3142.780039][ T2649] WARNING: possible circular locking dependency detected
[ 3142.782869][ T2649] 5.2.0-rc4-lp151.20-default+ #1 Tainted: G W
[ 3142.785684][ T2649] ------------------------------------------------------
[ 3142.788479][ T2649] kworker/3:67/2649 is trying to acquire lock:
[ 3142.790738][ T2649] 00000000aaf02291 ((wq_completion)bcache_writeback_wq){+.+.}, at: flush_workqueue+0x87/0x4c0
[ 3142.794678][ T2649]
[ 3142.794678][ T2649] but task is already holding lock:
[ 3142.797402][ T2649] 000000004fcf89c5 (&bch_register_lock){+.+.}, at: cached_dev_free+0x17/0x120 [bcache]
[ 3142.801462][ T2649]
[ 3142.801462][ T2649] which lock already depends on the new lock.
[ 3142.801462][ T2649]
[ 3142.805277][ T2649]
[ 3142.805277][ T2649] the existing dependency chain (in reverse order) is:
[ 3142.808902][ T2649]
[ 3142.808902][ T2649] -> #2 (&bch_register_lock){+.+.}:
[ 3142.812396][ T2649] __mutex_lock+0x7a/0x9d0
[ 3142.814184][ T2649] cached_dev_free+0x17/0x120 [bcache]
[ 3142.816415][ T2649] process_one_work+0x2a4/0x640
[ 3142.818413][ T2649] worker_thread+0x39/0x3f0
[ 3142.820276][ T2649] kthread+0x125/0x140
[ 3142.822061][ T2649] ret_from_fork+0x3a/0x50
[ 3142.823965][ T2649]
[ 3142.823965][ T2649] -> #1 ((work_completion)(&cl->work)#2){+.+.}:
[ 3142.827244][ T2649] process_one_work+0x277/0x640
[ 3142.829160][ T2649] worker_thread+0x39/0x3f0
[ 3142.830958][ T2649] kthread+0x125/0x140
[ 3142.832674][ T2649] ret_from_fork+0x3a/0x50
[ 3142.834915][ T2649]
[ 3142.834915][ T2649] -> #0 ((wq_completion)bcache_writeback_wq){+.+.}:
[ 3142.838121][ T2649] lock_acquire+0xb4/0x1c0
[ 3142.840025][ T2649] flush_workqueue+0xae/0x4c0
[ 3142.842035][ T2649] drain_workqueue+0xa9/0x180
[ 3142.844042][ T2649] destroy_workqueue+0x17/0x250
[ 3142.846142][ T2649] cached_dev_free+0x52/0x120 [bcache]
[ 3142.848530][ T2649] process_one_work+0x2a4/0x640
[ 3142.850663][ T2649] worker_thread+0x39/0x3f0
[ 3142.852464][ T2649] kthread+0x125/0x140
[ 3142.854106][ T2649] ret_from_fork+0x3a/0x50
[ 3142.855880][ T2649]
[ 3142.855880][ T2649] other info that might help us debug this:
[ 3142.855880][ T2649]
[ 3142.859663][ T2649] Chain exists of:
[ 3142.859663][ T2649] (wq_completion)bcache_writeback_wq --> (work_completion)(&cl->work)#2 --> &bch_register_lock
[ 3142.859663][ T2649]
[ 3142.865424][ T2649] Possible unsafe locking scenario:
[ 3142.865424][ T2649]
[ 3142.868022][ T2649] CPU0 CPU1
[ 3142.869885][ T2649] ---- ----
[ 3142.871751][ T2649] lock(&bch_register_lock);
[ 3142.873379][ T2649] lock((work_completion)(&cl->work)#2);
[ 3142.876399][ T2649] lock(&bch_register_lock);
[ 3142.879727][ T2649] lock((wq_completion)bcache_writeback_wq);
[ 3142.882064][ T2649]
[ 3142.882064][ T2649] *** DEADLOCK ***
[ 3142.882064][ T2649]
[ 3142.885060][ T2649] 3 locks held by kworker/3:67/2649:
[ 3142.887245][ T2649] #0: 00000000e774cdd0 ((wq_completion)events){+.+.}, at: process_one_work+0x21e/0x640
[ 3142.890815][ T2649] #1: 00000000f7df89da ((work_completion)(&cl->work)#2){+.+.}, at: process_one_work+0x21e/0x640
[ 3142.894884][ T2649] #2: 000000004fcf89c5 (&bch_register_lock){+.+.}, at: cached_dev_free+0x17/0x120 [bcache]
[ 3142.898797][ T2649]
[ 3142.898797][ T2649] stack backtrace:
[ 3142.900961][ T2649] CPU: 3 PID: 2649 Comm: kworker/3:67 Tainted: G W 5.2.0-rc4-lp151.20-default+ #1
[ 3142.904789][ T2649] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/13/2018
[ 3142.909168][ T2649] Workqueue: events cached_dev_free [bcache]
[ 3142.911422][ T2649] Call Trace:
[ 3142.912656][ T2649] dump_stack+0x85/0xcb
[ 3142.914181][ T2649] print_circular_bug+0x19a/0x1f0
[ 3142.916193][ T2649] __lock_acquire+0x16cd/0x1850
[ 3142.917936][ T2649] ? __lock_acquire+0x6a8/0x1850
[ 3142.919704][ T2649] ? lock_acquire+0xb4/0x1c0
[ 3142.921335][ T2649] ? find_held_lock+0x34/0xa0
[ 3142.923052][ T2649] lock_acquire+0xb4/0x1c0
[ 3142.924635][ T2649] ? flush_workqueue+0x87/0x4c0
[ 3142.926375][ T2649] flush_workqueue+0xae/0x4c0
[ 3142.928047][ T2649] ? flush_workqueue+0x87/0x4c0
[ 3142.929824][ T2649] ? drain_workqueue+0xa9/0x180
[ 3142.931686][ T2649] drain_workqueue+0xa9/0x180
[ 3142.933534][ T2649] destroy_workqueue+0x17/0x250
[ 3142.935787][ T2649] cached_dev_free+0x52/0x120 [bcache]
[ 3142.937795][ T2649] process_one_work+0x2a4/0x640
[ 3142.939803][ T2649] worker_thread+0x39/0x3f0
[ 3142.941487][ T2649] ? process_one_work+0x640/0x640
[ 3142.943389][ T2649] kthread+0x125/0x140
[ 3142.944894][ T2649] ? kthread_create_worker_on_cpu+0x70/0x70
[ 3142.947744][ T2649] ret_from_fork+0x3a/0x50
[ 3142.970358][ T2649] bcache: bcache_device_free() bcache0 stopped
Here is how the deadlock happens.
1) bcache_reboot() calls bcache_device_stop(), then inside
bcache_device_stop() BCACHE_DEV_CLOSING bit is set on d->flags.
Then closure_queue(&d->cl) is called to invoke cached_dev_flush().
2) In cached_dev_flush(), cached_dev_free() is called by continu_at().
3) In cached_dev_free(), when stopping the writeback kthread of the
cached device by kthread_stop(), dc->writeback_thread will be waken
up to quite the kthread while-loop, then cached_dev_put() is called
in bch_writeback_thread().
4) Calling cached_dev_put() in writeback kthread may drop dc->count to
0, then dc->detach kworker is scheduled, which is initialized as
cached_dev_detach_finish().
5) Inside cached_dev_detach_finish(), the last line of code is to call
closure_put(&dc->disk.cl), which drops the last reference counter of
closrure dc->disk.cl, then the callback cached_dev_flush() gets
called.
Now cached_dev_flush() is called for second time in the code path, the
first time is in step 2). And again bch_register_lock will be acquired
again, and a A-A lock (lockdep terminology) is happening.
The root cause of the above A-A lock is in cached_dev_free(), mutex
bch_register_lock is held before stopping writeback kthread and other
kworkers. Fortunately now we have variable 'bcache_is_reboot', which may
prevent device registration or unregistration during reboot/shutdown
time, so it is unncessary to hold bch_register_lock such early now.
This is how this patch fixes the reboot/shutdown time A-A lock issue:
After moving mutex_lock(&bch_register_lock) to a later location where
before atomic_read(&dc->running) in cached_dev_free(), such A-A lock
problem can be solved without any reboot time registration race.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 383ff2183ad16a8842d1fbd9dd3e1cbd66813e64 ]
When too many I/O errors happen on cache set and CACHE_SET_IO_DISABLE
bit is set, bch_journal() may continue to work because the journaling
bkey might be still in write set yet. The caller of bch_journal() may
believe the journal still work but the truth is in-memory journal write
set won't be written into cache device any more. This behavior may
introduce potential inconsistent metadata status.
This patch checks CACHE_SET_IO_DISABLE bit at the head of bch_journal(),
if the bit is set, bch_journal() returns NULL immediately to notice
caller to know journal does not work.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit e775339e1ae1205b47d94881db124c11385e597c ]
If CACHE_SET_IO_DISABLE of a cache set flag is set by too many I/O
errors, currently allocator routines can still continue allocate
space which may introduce inconsistent metadata state.
This patch checkes CACHE_SET_IO_DISABLE bit in following allocator
routines,
- bch_bucket_alloc()
- __bch_bucket_alloc_set()
Once CACHE_SET_IO_DISABLE is set on cache set, the allocator routines
may reject allocation request earlier to avoid potential inconsistent
metadata.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 2eba4e640b2c4161e31ae20090a53ee02a518657 ]
DM verity should also use DMERR_LIMIT to limit repeat data block
corruption messages.
Signed-off-by: Milan Broz <gmazyland@gmail.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit a0651926553cfe7992166432e418987760882652 ]
For the first call to realloc_argv() in dm_split_args(), old_argv is
NULL and size is zero. Then memcpy is called, with the NULL old_argv
as the source argument and a zero size argument. AFAIK, this is
undefined behavior and generates the following warning when compiled
with UBSAN on ppc64le:
In file included from ./arch/powerpc/include/asm/paca.h:19,
from ./arch/powerpc/include/asm/current.h:16,
from ./include/linux/sched.h:12,
from ./include/linux/kthread.h:6,
from drivers/md/dm-core.h:12,
from drivers/md/dm-table.c:8:
In function 'memcpy',
inlined from 'realloc_argv' at drivers/md/dm-table.c:565:3,
inlined from 'dm_split_args' at drivers/md/dm-table.c:588:9:
./include/linux/string.h:345:9: error: argument 2 null where non-null expected [-Werror=nonnull]
return __builtin_memcpy(p, q, size);
^~~~~~~~~~~~~~~~~~~~~~~~~~~~
drivers/md/dm-table.c: In function 'dm_split_args':
./include/linux/string.h:345:9: note: in a call to built-in function '__builtin_memcpy'
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 9642fa73d073527b0cbc337cc17a47d545d82cd2 ]
Stopping external metadata arrays during resync/recovery causes
retries, loop of interrupting and starting reconstruction, until it
hit at good moment to stop completely. While these retries
curr_mark_cnt can be small- especially on HDD drives, so subtraction
result can be smaller than 0. However it is casted to uint without
checking. As a result of it the status bar in /proc/mdstat while stopping
is strange (it jumps between 0% and 99%).
The real problem occurs here after commit 72deb455b5ec ("block: remove
CONFIG_LBDAF"). Sector_div() macro has been changed, now the
divisor is casted to uint32. For db = -8 the divisior(db/32-1) becomes 0.
Check if db value can be really counted and replace these macro by
div64_u64() inline.
Signed-off-by: Mariusz Tkaczyk <mariusz.tkaczyk@intel.com>
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
-----------------------------------------------------------------
This patch is not on mainline and is meant to 4.19 stable *only*.
After the patch description there's a reasoning about that.
-----------------------------------------------------------------
Commit cd4a4ae4683d ("block: don't use blocking queue entered for
recursive bio submits") introduced the flag BIO_QUEUE_ENTERED in order
split bios bypass the blocking queue entering routine and use the live
non-blocking version. It was a result of an extensive discussion in
a linux-block thread[0], and the purpose of this change was to prevent
a hung task waiting on a reference to drop.
Happens that md raid0 split bios all the time, and more important,
it changes their underlying device to the raid member. After the change
introduced by this flag's usage, we experience various crashes if a raid0
member is removed during a large write. This happens because the bio
reaches the live queue entering function when the queue of the raid0
member is dying.
A simple reproducer of this behavior is presented below:
a) Build kernel v4.19.56-stable with CONFIG_BLK_DEV_THROTTLING=y.
b) Create a raid0 md array with 2 NVMe devices as members, and mount
it with an ext4 filesystem.
c) Run the following oneliner (supposing the raid0 is mounted in /mnt):
(dd of=/mnt/tmp if=/dev/zero bs=1M count=999 &); sleep 0.3;
echo 1 > /sys/block/nvme1n1/device/device/remove
(whereas nvme1n1 is the 2nd array member)
This will trigger the following warning/oops:
------------[ cut here ]------------
BUG: unable to handle kernel NULL pointer dereference at 0000000000000155
PGD 0 P4D 0
Oops: 0000 [#1] SMP PTI
RIP: 0010:blk_throtl_bio+0x45/0x970
[...]
Call Trace:
generic_make_request_checks+0x1bf/0x690
generic_make_request+0x64/0x3f0
raid0_make_request+0x184/0x620 [raid0]
? raid0_make_request+0x184/0x620 [raid0]
md_handle_request+0x126/0x1a0
md_make_request+0x7b/0x180
generic_make_request+0x19e/0x3f0
submit_bio+0x73/0x140
[...]
This patch changes raid0 driver to fallback to the "old" blocking queue
entering procedure, by clearing the BIO_QUEUE_ENTERED from raid0 bios.
This prevents the crashes and restores the regular behavior of raid0
arrays when a member is removed during a large write.
[0] lore.kernel.org/linux-block/343bbbf6-64eb-879e-d19e-96aebb037d47@I-love.SAKURA.ne.jp
----------------------------
Why this is not on mainline?
----------------------------
The patch was originally submitted upstream in linux-raid and
linux-block mailing-lists - it was initially accepted by Song Liu,
but Christoph Hellwig[1] observed that there was a clean-up series
ready to be accepted from Ming Lei[2] that fixed the same issue.
The accepted patches from Ming's series in upstream are: commit
47cdee29ef9d ("block: move blk_exit_queue into __blk_release_queue") and
commit fe2008640ae3 ("block: don't protect generic_make_request_checks
with blk_queue_enter"). Those patches basically do a clean-up in the
block layer involving:
1) Putting back blk_exit_queue() logic into __blk_release_queue(); that
path was changed in the past and the logic from blk_exit_queue() was
added to blk_cleanup_queue().
2) Removing the guard/protection in generic_make_request_checks() with
blk_queue_enter().
The problem with Ming's series for -stable is that it relies in the
legacy request IO path removal. So it's "backport-able" to v5.0+,
but doing that for early versions (like 4.19) would incur in complex
code changes. Hence, it was suggested by Christoph and Song Liu that
this patch was submitted to stable only; otherwise merging it upstream
would add code to fix a path removed in a subsequent commit.
[1] lore.kernel.org/linux-block/20190521172258.GA32702@infradead.org
[2] lore.kernel.org/linux-block/20190515030310.20393-1-ming.lei@redhat.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Fixes: cd4a4ae4683d ("block: don't use blocking queue entered for recursive bio submits")
Signed-off-by: Guilherme G. Piccoli <gpiccoli@canonical.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 211ad4b733037f66f9be0a79eade3da7ab11cbb8 upstream.
Currently, although we submit super bios in order (and super.nr_entries
is incremented by each logged entry), submit_bio() is async so each
super sector may not be written to log device in order and then the
final nr_entries may be smaller than it should be.
This problem can be reproduced by the xfstests generic/455 with ext4:
QA output created by 455
-Silence is golden
+mark 'end' does not exist
Fix this by serializing submission of super sectors to make sure each
is written to the log disk in order.
Fixes: 0e9cebe724597 ("dm: add log writes target")
Cc: stable@vger.kernel.org
Signed-off-by: zhangyi (F) <yi.zhang@huawei.com>
Suggested-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1f0ffa67349c56ea54c03ccfd1e073c990e7411e upstream.
When people set a writeback percent via sysfs file,
/sys/block/bcache<N>/bcache/writeback_percent
current code directly sets BCACHE_DEV_WB_RUNNING to dc->disk.flags
and schedules kworker dc->writeback_rate_update.
If there is no cache set attached to, the writeback kernel thread is
not running indeed, running dc->writeback_rate_update does not make
sense and may cause NULL pointer deference when reference cache set
pointer inside update_writeback_rate().
This patch checks whether the cache set point (dc->disk.c) is NULL in
sysfs interface handler, and only set BCACHE_DEV_WB_RUNNING and
sche |