summaryrefslogtreecommitdiff
path: root/drivers/md
AgeCommit message (Collapse)AuthorFilesLines
2019-04-05bcache: improve sysfs_strtoul_clamp()Coly Li1-3/+10
[ Upstream commit 596b5a5dd1bc2fa019fdaaae522ef331deef927f ] Currently sysfs_strtoul_clamp() is defined as, 82 #define sysfs_strtoul_clamp(file, var, min, max) \ 83 do { \ 84 if (attr == &sysfs_ ## file) \ 85 return strtoul_safe_clamp(buf, var, min, max) \ 86 ?: (ssize_t) size; \ 87 } while (0) The problem is, if bit width of var is less then unsigned long, min and max may not protect var from integer overflow, because overflow happens in strtoul_safe_clamp() before checking min and max. To fix such overflow in sysfs_strtoul_clamp(), to make min and max take effect, this patch adds an unsigned long variable, and uses it to macro strtoul_safe_clamp() to convert an unsigned long value in range defined by [min, max]. Then assign this value to var. By this method, if bit width of var is less than unsigned long, integer overflow won't happen before min and max are checking. Now sysfs_strtoul_clamp() can properly handle smaller data type like unsigned int, of cause min and max should be defined in range of unsigned int too. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-04-05bcache: fix input overflow to sequential_cutoffColy Li1-1/+3
[ Upstream commit 8c27a3953e92eb0b22dbb03d599f543a05f9574e ] People may set sequential_cutoff of a cached device via sysfs file, but current code does not check input value overflow. E.g. if value 4294967295 (UINT_MAX) is written to file sequential_cutoff, its value is 4GB, but if 4294967296 (UINT_MAX + 1) is written into, its value will be 0. This is an unexpected behavior. This patch replaces d_strtoi_h() by sysfs_strtoul_clamp() to convert input string to unsigned integer value, and limit its range in [0, UINT_MAX]. Then the input overflow can be fixed. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-04-05bcache: fix input overflow to cache set sysfs file io_error_halflifeColy Li1-2/+11
[ Upstream commit a91fbda49f746119828f7e8ad0f0aa2ab0578f65 ] Cache set sysfs entry io_error_halflife is used to set c->error_decay. c->error_decay is in type unsigned int, and it is converted by strtoul_or_return(), therefore overflow to c->error_decay is possible for a large input value. This patch fixes the overflow by using strtoul_safe_clamp() to convert input string to an unsigned long value in range [0, UINT_MAX], then divides by 88 and set it to c->error_decay. Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-04-05dm thin: add sanity checks to thin-pool and external snapshot creationJason Cai (Xiang Feng)1-0/+13
[ Upstream commit 70de2cbda8a5d788284469e755f8b097d339c240 ] Invoking dm_get_device() twice on the same device path with different modes is dangerous. Because in that case, upgrade_mode() will alloc a new 'dm_dev' and free the old one, which may be referenced by a previous caller. Dereferencing the dangling pointer will trigger kernel NULL pointer dereference. The following two cases can reproduce this issue. Actually, they are invalid setups that must be disallowed, e.g.: 1. Creating a thin-pool with read_only mode, and the same device as both metadata and data. dmsetup create thinp --table \ "0 41943040 thin-pool /dev/vdb /dev/vdb 128 0 1 read_only" BUG: unable to handle kernel NULL pointer dereference at 0000000000000080 ... Call Trace: new_read+0xfb/0x110 [dm_bufio] dm_bm_read_lock+0x43/0x190 [dm_persistent_data] ? kmem_cache_alloc_trace+0x15c/0x1e0 __create_persistent_data_objects+0x65/0x3e0 [dm_thin_pool] dm_pool_metadata_open+0x8c/0xf0 [dm_thin_pool] pool_ctr.cold.79+0x213/0x913 [dm_thin_pool] ? realloc_argv+0x50/0x70 [dm_mod] dm_table_add_target+0x14e/0x330 [dm_mod] table_load+0x122/0x2e0 [dm_mod] ? dev_status+0x40/0x40 [dm_mod] ctl_ioctl+0x1aa/0x3e0 [dm_mod] dm_ctl_ioctl+0xa/0x10 [dm_mod] do_vfs_ioctl+0xa2/0x600 ? handle_mm_fault+0xda/0x200 ? __do_page_fault+0x26c/0x4f0 ksys_ioctl+0x60/0x90 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x55/0x150 entry_SYSCALL_64_after_hwframe+0x44/0xa9 2. Creating a external snapshot using the same thin-pool device. dmsetup create thinp --table \ "0 41943040 thin-pool /dev/vdc /dev/vdb 128 0 2 ignore_discard" dmsetup message /dev/mapper/thinp 0 "create_thin 0" dmsetup create snap --table \ "0 204800 thin /dev/mapper/thinp 0 /dev/mapper/thinp" BUG: unable to handle kernel NULL pointer dereference at 0000000000000000 ... Call Trace: ? __alloc_pages_nodemask+0x13c/0x2e0 retrieve_status+0xa5/0x1f0 [dm_mod] ? dm_get_live_or_inactive_table.isra.7+0x20/0x20 [dm_mod] table_status+0x61/0xa0 [dm_mod] ctl_ioctl+0x1aa/0x3e0 [dm_mod] dm_ctl_ioctl+0xa/0x10 [dm_mod] do_vfs_ioctl+0xa2/0x600 ksys_ioctl+0x60/0x90 ? ksys_write+0x4f/0xb0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x55/0x150 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Signed-off-by: Jason Cai (Xiang Feng) <jason.cai@linux.alibaba.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-03-23md: Fix failed allocation of md_register_threadAditya Pakki2-0/+4
commit e406f12dde1a8375d77ea02d91f313fb1a9c6aec upstream. mddev->sync_thread can be set to NULL on kzalloc failure downstream. The patch checks for such a scenario and frees allocated resources. Committer node: Added similar fix to raid5.c, as suggested by Guoqing. Cc: stable@vger.kernel.org # v3.16+ Acked-by: Guoqing Jiang <gqjiang@suse.com> Signed-off-by: Aditya Pakki <pakki001@umn.edu> Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-23bcache: never writeback a discard operationDaniel Axtens1-0/+3
commit 9951379b0ca88c95876ad9778b9099e19a95d566 upstream. Some users see panics like the following when performing fstrim on a bcached volume: [ 529.803060] BUG: unable to handle kernel NULL pointer dereference at 0000000000000008 [ 530.183928] #PF error: [normal kernel read fault] [ 530.412392] PGD 8000001f42163067 P4D 8000001f42163067 PUD 1f42168067 PMD 0 [ 530.750887] Oops: 0000 [#1] SMP PTI [ 530.920869] CPU: 10 PID: 4167 Comm: fstrim Kdump: loaded Not tainted 5.0.0-rc1+ #3 [ 531.290204] Hardware name: HP ProLiant DL360 Gen9/ProLiant DL360 Gen9, BIOS P89 12/27/2015 [ 531.693137] RIP: 0010:blk_queue_split+0x148/0x620 [ 531.922205] Code: 60 38 89 55 a0 45 31 db 45 31 f6 45 31 c9 31 ff 89 4d 98 85 db 0f 84 7f 04 00 00 44 8b 6d 98 4c 89 ee 48 c1 e6 04 49 03 70 78 <8b> 46 08 44 8b 56 0c 48 8b 16 44 29 e0 39 d8 48 89 55 a8 0f 47 c3 [ 532.838634] RSP: 0018:ffffb9b708df39b0 EFLAGS: 00010246 [ 533.093571] RAX: 00000000ffffffff RBX: 0000000000046000 RCX: 0000000000000000 [ 533.441865] RDX: 0000000000000200 RSI: 0000000000000000 RDI: 0000000000000000 [ 533.789922] RBP: ffffb9b708df3a48 R08: ffff940d3b3fdd20 R09: 0000000000000000 [ 534.137512] R10: ffffb9b708df3958 R11: 0000000000000000 R12: 0000000000000000 [ 534.485329] R13: 0000000000000000 R14: 0000000000000000 R15: ffff940d39212020 [ 534.833319] FS: 00007efec26e3840(0000) GS:ffff940d1f480000(0000) knlGS:0000000000000000 [ 535.224098] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 535.504318] CR2: 0000000000000008 CR3: 0000001f4e256004 CR4: 00000000001606e0 [ 535.851759] Call Trace: [ 535.970308] ? mempool_alloc_slab+0x15/0x20 [ 536.174152] ? bch_data_insert+0x42/0xd0 [bcache] [ 536.403399] blk_mq_make_request+0x97/0x4f0 [ 536.607036] generic_make_request+0x1e2/0x410 [ 536.819164] submit_bio+0x73/0x150 [ 536.980168] ? submit_bio+0x73/0x150 [ 537.149731] ? bio_associate_blkg_from_css+0x3b/0x60 [ 537.391595] ? _cond_resched+0x1a/0x50 [ 537.573774] submit_bio_wait+0x59/0x90 [ 537.756105] blkdev_issue_discard+0x80/0xd0 [ 537.959590] ext4_trim_fs+0x4a9/0x9e0 [ 538.137636] ? ext4_trim_fs+0x4a9/0x9e0 [ 538.324087] ext4_ioctl+0xea4/0x1530 [ 538.497712] ? _copy_to_user+0x2a/0x40 [ 538.679632] do_vfs_ioctl+0xa6/0x600 [ 538.853127] ? __do_sys_newfstat+0x44/0x70 [ 539.051951] ksys_ioctl+0x6d/0x80 [ 539.212785] __x64_sys_ioctl+0x1a/0x20 [ 539.394918] do_syscall_64+0x5a/0x110 [ 539.568674] entry_SYSCALL_64_after_hwframe+0x44/0xa9 We have observed it where both: 1) LVM/devmapper is involved (bcache backing device is LVM volume) and 2) writeback cache is involved (bcache cache_mode is writeback) On one machine, we can reliably reproduce it with: # echo writeback > /sys/block/bcache0/bcache/cache_mode (not sure whether above line is required) # mount /dev/bcache0 /test # for i in {0..10}; do file="$(mktemp /test/zero.XXX)" dd if=/dev/zero of="$file" bs=1M count=256 sync rm $file done # fstrim -v /test Observing this with tracepoints on, we see the following writes: fstrim-18019 [022] .... 91107.302026: bcache_write: 73f95583-561c-408f-a93a-4cbd2498f5c8 inode 0 DS 4260112 + 196352 hit 0 bypass 1 fstrim-18019 [022] .... 91107.302050: bcache_write: 73f95583-561c-408f-a93a-4cbd2498f5c8 inode 0 DS 4456464 + 262144 hit 0 bypass 1 fstrim-18019 [022] .... 91107.302075: bcache_write: 73f95583-561c-408f-a93a-4cbd2498f5c8 inode 0 DS 4718608 + 81920 hit 0 bypass 1 fstrim-18019 [022] .... 91107.302094: bcache_write: 73f95583-561c-408f-a93a-4cbd2498f5c8 inode 0 DS 5324816 + 180224 hit 0 bypass 1 fstrim-18019 [022] .... 91107.302121: bcache_write: 73f95583-561c-408f-a93a-4cbd2498f5c8 inode 0 DS 5505040 + 262144 hit 0 bypass 1 fstrim-18019 [022] .... 91107.302145: bcache_write: 73f95583-561c-408f-a93a-4cbd2498f5c8 inode 0 DS 5767184 + 81920 hit 0 bypass 1 fstrim-18019 [022] .... 91107.308777: bcache_write: 73f95583-561c-408f-a93a-4cbd2498f5c8 inode 0 DS 6373392 + 180224 hit 1 bypass 0 <crash> Note the final one has different hit/bypass flags. This is because in should_writeback(), we were hitting a case where the partial stripe condition was returning true and so should_writeback() was returning true early. If that hadn't been the case, it would have hit the would_skip test, and as would_skip == s->iop.bypass == true, should_writeback() would have returned false. Looking at the git history from 'commit 72c270612bd3 ("bcache: Write out full stripes")', it looks like the idea was to optimise for raid5/6: * If a stripe is already dirty, force writes to that stripe to writeback mode - to help build up full stripes of dirty data To fix this issue, make sure that should_writeback() on a discard op never returns true. More details of debugging: https://www.spinics.net/lists/linux-bcache/msg06996.html Previous reports: - https://bugzilla.kernel.org/show_bug.cgi?id=201051 - https://bugzilla.kernel.org/show_bug.cgi?id=196103 - https://www.spinics.net/lists/linux-bcache/msg06885.html (Coly Li: minor modification to follow maximum 75 chars per line rule) Cc: Kent Overstreet <koverstreet@google.com> Cc: stable@vger.kernel.org Fixes: 72c270612bd3 ("bcache: Write out full stripes") Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-19It's wrong to add len to sector_nr in raid10 reshape twiceXiao Ni1-1/+0
commit b761dcf1217760a42f7897c31dcb649f59b2333e upstream. In reshape_request it already adds len to sector_nr already. It's wrong to add len to sector_nr again after adding pages to bio. If there is bad block it can't copy one chunk at a time, it needs to goto read_more. Now the sector_nr is wrong. It can cause data corruption. Cc: stable@vger.kernel.org # v3.16+ Signed-off-by: Xiao Ni <xni@redhat.com> Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-20dm thin: fix bug where bio that overwrites thin block ignores FUANikos Tsironis1-5/+50
commit 4ae280b4ee3463fa57bbe6eede26b97daff8a0f1 upstream. When provisioning a new data block for a virtual block, either because the block was previously unallocated or because we are breaking sharing, if the whole block of data is being overwritten the bio that triggered the provisioning is issued immediately, skipping copying or zeroing of the data block. When this bio completes the new mapping is inserted in to the pool's metadata by process_prepared_mapping(), where the bio completion is signaled to the upper layers. This completion is signaled without first committing the metadata. If the bio in question has the REQ_FUA flag set and the system crashes right after its completion and before the next metadata commit, then the write is lost despite the REQ_FUA flag requiring that I/O completion for this request must only be signaled after the data has been committed to non-volatile storage. Fix this by deferring the completion of overwrite bios, with the REQ_FUA flag set, until after the metadata has been committed. Cc: stable@vger.kernel.org Signed-off-by: Nikos Tsironis <ntsironis@arrikto.com> Acked-by: Joe Thornber <ejt@redhat.com> Acked-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-01-31dm thin: fix passdown_double_checking_shared_status()Joe Thornber3-8/+8
commit d445bd9cec1a850c2100fcf53684c13b3fd934f2 upstream. Commit 00a0ea33b495 ("dm thin: do not queue freed thin mapping for next stage processing") changed process_prepared_discard_passdown_pt1() to increment all the blocks being discarded until after the passdown had completed to avoid them being prematurely reused. IO issued to a thin device that breaks sharing with a snapshot, followed by a discard issued to snapshot(s) that previously shared the block(s), results in passdown_double_checking_shared_status() being called to iterate through the blocks double checking their reference count is zero and issuing the passdown if so. So a side effect of commit 00a0ea33b495 is passdown_double_checking_shared_status() was broken. Fix this by checking if the block reference count is greater than 1. Also, rename dm_pool_block_is_used() to dm_pool_block_is_shared(). Fixes: 00a0ea33b495 ("dm thin: do not queue freed thin mapping for next stage processing") Cc: stable@vger.kernel.org # 4.9+ Reported-by: ryan.p.norwood@gmail.com Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-01-26dm snapshot: Fix excessive memory usage and workqueue stallsNikos Tsironis1-0/+22
[ Upstream commit 721b1d98fb517ae99ab3b757021cf81db41e67be ] kcopyd has no upper limit to the number of jobs one can allocate and issue. Under certain workloads this can lead to excessive memory usage and workqueue stalls. For example, when creating multiple dm-snapshot targets with a 4K chunk size and then writing to the origin through the page cache. Syncing the page cache causes a large number of BIOs to be issued to the dm-snapshot origin target, which itself issues an even larger (because of the BIO splitting taking place) number of kcopyd jobs. Running the following test, from the device mapper test suite [1], dmtest run --suite snapshot -n many_snapshots_of_same_volume_N , with 8 active snapshots, results in the kcopyd job slab cache growing to 10G. Depending on the available system RAM this can lead to the OOM killer killing user processes: [463.492878] kthreadd invoked oom-killer: gfp_mask=0x6040c0(GFP_KERNEL|__GFP_COMP), nodemask=(null), order=1, oom_score_adj=0 [463.492894] kthreadd cpuset=/ mems_allowed=0 [463.492948] CPU: 7 PID: 2 Comm: kthreadd Not tainted 4.19.0-rc7 #3 [463.492950] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014 [463.492952] Call Trace: [463.492964] dump_stack+0x7d/0xbb [463.492973] dump_header+0x6b/0x2fc [463.492987] ? lockdep_hardirqs_on+0xee/0x190 [463.493012] oom_kill_process+0x302/0x370 [463.493021] out_of_memory+0x113/0x560 [463.493030] __alloc_pages_slowpath+0xf40/0x1020 [463.493055] __alloc_pages_nodemask+0x348/0x3c0 [463.493067] cache_grow_begin+0x81/0x8b0 [463.493072] ? cache_grow_begin+0x874/0x8b0 [463.493078] fallback_alloc+0x1e4/0x280 [463.493092] kmem_cache_alloc_node+0xd6/0x370 [463.493098] ? copy_process.part.31+0x1c5/0x20d0 [463.493105] copy_process.part.31+0x1c5/0x20d0 [463.493115] ? __lock_acquire+0x3cc/0x1550 [463.493121] ? __switch_to_asm+0x34/0x70 [463.493129] ? kthread_create_worker_on_cpu+0x70/0x70 [463.493135] ? finish_task_switch+0x90/0x280 [463.493165] _do_fork+0xe0/0x6d0 [463.493191] ? kthreadd+0x19f/0x220 [463.493233] kernel_thread+0x25/0x30 [463.493235] kthreadd+0x1bf/0x220 [463.493242] ? kthread_create_on_cpu+0x90/0x90 [463.493248] ret_from_fork+0x3a/0x50 [463.493279] Mem-Info: [463.493285] active_anon:20631 inactive_anon:4831 isolated_anon:0 [463.493285] active_file:80216 inactive_file:80107 isolated_file:435 [463.493285] unevictable:0 dirty:51266 writeback:109372 unstable:0 [463.493285] slab_reclaimable:31191 slab_unreclaimable:3483521 [463.493285] mapped:526 shmem:4903 pagetables:1759 bounce:0 [463.493285] free:33623 free_pcp:2392 free_cma:0 ... [463.493489] Unreclaimable slab info: [463.493513] Name Used Total [463.493522] bio-6 1028KB 1028KB [463.493525] bio-5 1028KB 1028KB [463.493528] dm_snap_pending_exception 236783KB 243789KB [463.493531] dm_exception 41KB 42KB [463.493534] bio-4 1216KB 1216KB [463.493537] bio-3 439396KB 439396KB [463.493539] kcopyd_job 6973427KB 6973427KB ... [463.494340] Out of memory: Kill process 1298 (ruby2.3) score 1 or sacrifice child [463.494673] Killed process 1298 (ruby2.3) total-vm:435740kB, anon-rss:20180kB, file-rss:4kB, shmem-rss:0kB [463.506437] oom_reaper: reaped process 1298 (ruby2.3), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB Moreover, issuing a large number of kcopyd jobs results in kcopyd hogging the CPU, while processing them. As a result, processing of work items, queued for execution on the same CPU as the currently running kcopyd thread, is stalled for long periods of time, hurting performance. Running the aforementioned test we get, in dmesg, messages like the following: [67501.194592] BUG: workqueue lockup - pool cpus=4 node=0 flags=0x0 nice=0 stuck for 27s! [67501.195586] Showing busy workqueues and worker pools: [67501.195591] workqueue events: flags=0x0 [67501.195597] pwq 8: cpus=4 node=0 flags=0x0 nice=0 active=1/256 [67501.195611] pending: cache_reap [67501.195641] workqueue mm_percpu_wq: flags=0x8 [67501.195645] pwq 8: cpus=4 node=0 flags=0x0 nice=0 active=1/256 [67501.195656] pending: vmstat_update [67501.195682] workqueue kblockd: flags=0x18 [67501.195687] pwq 5: cpus=2 node=0 flags=0x0 nice=-20 active=1/256 [67501.195698] pending: blk_timeout_work [67501.195753] workqueue kcopyd: flags=0x8 [67501.195757] pwq 8: cpus=4 node=0 flags=0x0 nice=0 active=1/256 [67501.195768] pending: do_work [dm_mod] [67501.195802] workqueue kcopyd: flags=0x8 [67501.195806] pwq 8: cpus=4 node=0 flags=0x0 nice=0 active=1/256 [67501.195817] pending: do_work [dm_mod] [67501.195834] workqueue kcopyd: flags=0x8 [67501.195838] pwq 8: cpus=4 node=0 flags=0x0 nice=0 active=1/256 [67501.195848] pending: do_work [dm_mod] [67501.195881] workqueue kcopyd: flags=0x8 [67501.195885] pwq 8: cpus=4 node=0 flags=0x0 nice=0 active=1/256 [67501.195896] pending: do_work [dm_mod] [67501.195920] workqueue kcopyd: flags=0x8 [67501.195924] pwq 8: cpus=4 node=0 flags=0x0 nice=0 active=2/256 [67501.195935] in-flight: 67:do_work [dm_mod] [67501.195945] pending: do_work [dm_mod] [67501.195961] pool 8: cpus=4 node=0 flags=0x0 nice=0 hung=27s workers=3 idle: 129 23765 The root cause for these issues is the way dm-snapshot uses kcopyd. In particular, the lack of an explicit or implicit limit to the maximum number of in-flight COW jobs. The merging path is not affected because it implicitly limits the in-flight kcopyd jobs to one. Fix these issues by using a semaphore to limit the maximum number of in-flight kcopyd jobs. We grab the semaphore before allocating a new kcopyd job in start_copy() and start_full_bio() and release it after the job finishes in copy_callback(). The initial semaphore value is configurable through a module parameter, to allow fine tuning the maximum number of in-flight COW jobs. Setting this parameter to zero initializes the semaphore to INT_MAX. A default value of 2048 maximum in-flight kcopyd jobs was chosen. This value was decided experimentally as a trade-off between memory consumption, stalling the kernel's workqueues and maintaining a high enough throughput. Re-running the aforementioned test: * Workqueue stalls are eliminated * kcopyd's job slab cache uses a maximum of 130MB * The time taken by the test to write to the snapshot-origin target is reduced from 05m20.48s to 03m26.38s [1] https://github.com/jthornber/device-mapper-test-suite Signed-off-by: Nikos Tsironis <ntsironis@arrikto.com> Signed-off-by: Ilias Tsitsimpis <iliastsi@arrikto.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-26dm kcopyd: Fix bug causing workqueue stallsNikos Tsironis1-5/+14
[ Upstream commit d7e6b8dfc7bcb3f4f3a18313581f67486a725b52 ] When using kcopyd to run callbacks through dm_kcopyd_do_callback() or submitting copy jobs with a source size of 0, the jobs are pushed directly to the complete_jobs list, which could be under processing by the kcopyd thread. As a result, the kcopyd thread can continue running completed jobs indefinitely, without releasing the CPU, as long as someone keeps submitting new completed jobs through the aforementioned paths. Processing of work items, queued for execution on the same CPU as the currently running kcopyd thread, is thus stalled for excessive amounts of time, hurting performance. Running the following test, from the device mapper test suite [1], dmtest run --suite snapshot -n parallel_io_to_many_snaps_N , with 8 active snapshots, we get, in dmesg, messages like the following: [68899.948523] BUG: workqueue lockup - pool cpus=0 node=0 flags=0x0 nice=0 stuck for 95s! [68899.949282] Showing busy workqueues and worker pools: [68899.949288] workqueue events: flags=0x0 [68899.949295] pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=2/256 [68899.949306] pending: vmstat_shepherd, cache_reap [68899.949331] workqueue mm_percpu_wq: flags=0x8 [68899.949337] pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=1/256 [68899.949345] pending: vmstat_update [68899.949387] workqueue dm_bufio_cache: flags=0x8 [68899.949392] pwq 4: cpus=2 node=0 flags=0x0 nice=0 active=1/256 [68899.949400] pending: work_fn [dm_bufio] [68899.949423] workqueue kcopyd: flags=0x8 [68899.949429] pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=1/256 [68899.949437] pending: do_work [dm_mod] [68899.949452] workqueue kcopyd: flags=0x8 [68899.949458] pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=2/256 [68899.949466] in-flight: 13:do_work [dm_mod] [68899.949474] pending: do_work [dm_mod] [68899.949487] workqueue kcopyd: flags=0x8 [68899.949493] pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=1/256 [68899.949501] pending: do_work [dm_mod] [68899.949515] workqueue kcopyd: flags=0x8 [68899.949521] pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=1/256 [68899.949529] pending: do_work [dm_mod] [68899.949541] workqueue kcopyd: flags=0x8 [68899.949547] pwq 0: cpus=0 node=0 flags=0x0 nice=0 active=1/256 [68899.949555] pending: do_work [dm_mod] [68899.949568] pool 0: cpus=0 node=0 flags=0x0 nice=0 hung=95s workers=4 idle: 27130 27223 1084 Fix this by splitting the complete_jobs list into two parts: A user facing part, named callback_jobs, and one used internally by kcopyd, retaining the name complete_jobs. dm_kcopyd_do_callback() and dispatch_job() now push their jobs to the callback_jobs list, which is spliced to the complete_jobs list once, every time the kcopyd thread wakes up. This prevents kcopyd from hogging the CPU indefinitely and causing workqueue stalls. Re-running the aforementioned test: * Workqueue stalls are eliminated * The maximum writing time among all targets is reduced from 09m37.10s to 06m04.85s and the total run time of the test is reduced from 10m43.591s to 7m19.199s [1] https://github.com/jthornber/device-mapper-test-suite Signed-off-by: Nikos Tsironis <ntsironis@arrikto.com> Signed-off-by: Ilias Tsitsimpis <iliastsi@arrikto.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2018-11-13MD: fix invalid stored role for a disk - try2Shaohua Li3-4/+2
commit 9e753ba9b9b405e3902d9f08aec5f2ea58a0c317 upstream. Commit d595567dc4f0 (MD: fix invalid stored role for a disk) broke linear hotadd. Let's only fix the role for disks in raid1/10. Based on Guoqing's original patch. Reported-by: kernel test robot <rong.a.chen@intel.com> Cc: Gioh Kim <gi-oh.kim@profitbricks.com> Cc: Guoqing Jiang <gqjiang@suse.com> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-11-13dm ioctl: harden copy_params()'s copy_from_user() from malicious usersWenwen Wang1-12/+6
commit 800a7340ab7dd667edf95e74d8e4f23a17e87076 upstream. In copy_params(), the struct 'dm_ioctl' is first copied from the user space buffer 'user' to 'param_kernel' and the field 'data_size' is checked against 'minimum_data_size' (size of 'struct dm_ioctl' payload up to its 'data' member). If the check fails, an error code EINVAL will be returned. Otherwise, param_kernel->data_size is used to do a second copy, which copies from the same user-space buffer to 'dmi'. After the second copy, only 'dmi->data_size' is checked against 'param_kernel->data_size'. Given that the buffer 'user' resides in the user space, a malicious user-space process can race to change the content in the buffer between the two copies. This way, the attacker can inject inconsistent data into 'dmi' (versus previously validated 'param_kernel'). Fix redundant copying of 'minimum_data_size' from user-space buffer by using the first copy stored in 'param_kernel'. Also remove the 'data_size' check after the second copy because it is now unnecessary. Cc: stable@vger.kernel.org Signed-off-by: Wenwen Wang <wang6495@umn.edu> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-11-13MD: fix invalid stored role for a diskShaohua Li1-0/+4
[ Upstream commit d595567dc4f0c1d90685ec1e2e296e2cad2643ac ] If we change the number of array's device after device is removed from array, then add the device back to array, we can see that device is added as active role instead of spare which we expected. Please see the below link for details: https://marc.info/?l=linux-raid&m=153736982015076&w=2 This is caused by that we prefer to use device's previous role which is recorded by saved_raid_disk, but we should respect the new number of conf->raid_disks since it could be changed after device is removed. Reported-by: Gioh Kim <gi-oh.kim@profitbricks.com> Tested-by: Gioh Kim <gi-oh.kim@profitbricks.com> Acked-by: Guoqing Jiang <gqjiang@suse.com> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Sasha Levin <sashal@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-11-13bcache: fix miss key refill->end in writebackTang Junhui1-1/+1
commit 2d6cb6edd2c7fb4f40998895bda45006281b1ac5 upstream. refill->end record the last key of writeback, for example, at the first time, keys (1,128K) to (1,1024K) are flush to the backend device, but the end key (1,1024K) is not included, since the bellow code: if (bkey_cmp(k, refill->end) >= 0) { ret = MAP_DONE; goto out; } And in the next time when we refill writeback keybuf again, we searched key start from (1,1024K), and got a key bigger than it, so the key (1,1024K) missed. This patch modify the above code, and let the end key to be included to the writeback key buffer. Signed-off-by: Tang Junhui <tang.junhui.linux@gmail.com> Cc: stable@vger.kernel.org Signed-off-by: Coly Li <colyli@suse.de> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-13dm cache: fix resize crash if user doesn't reload cache tableMike Snitzer1-2/+7
commit 5d07384a666d4b2f781dc056bfeec2c27fbdf383 upstream. A reload of the cache's DM table is needed during resize because otherwise a crash will occur when attempting to access smq policy entries associated with the portion of the cache that was recently extended. The reason is cache-size based data structures in the policy will not be resized, the only way to safely extend the cache is to allow for a proper cache policy initialization that occurs when the cache table is loaded. For example the smq policy's space_init(), init_allocator(), calc_hotspot_params() must be sized based on the extended cache size. The fix for this is to disallow cache resizes of this pattern: 1) suspend "cache" target's device 2) resize the fast device used for the cache 3) resume "cache" target's device Instead, the last step must be a full reload of the cache's DM table. Fixes: 66a636356 ("dm cache: add stochastic-multi-queue (smq) policy") Cc: stable@vger.kernel.org Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-13dm cache metadata: ignore hints array being too small during resizeJoe Thornber1-2/+2
commit 4561ffca88c546f96367f94b8f1e4715a9c62314 upstream. Commit fd2fa9541 ("dm cache metadata: save in-core policy_hint_size to on-disk superblock") enabled previously written policy hints to be used after a cache is reactivated. But in doing so the cache metadata's hint array was left exposed to out of bounds access because on resize the metadata's on-disk hint array wasn't ever extended. Fix this by ignoring that there are no on-disk hints associated with the newly added cache blocks. An expanded on-disk hint array is later rewritten upon the next clean shutdown of the cache. Fixes: fd2fa9541 ("dm cache metadata: save in-core policy_hint_size to on-disk superblock") Cc: stable@vger.kernel.org Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-10dm thin metadata: fix __udivdi3 undefined on 32-bitMike Snitzer1-4/+2
commit 013ad043906b2befd4a9bfb06219ed9fedd92716 upstream. sector_div() is only viable for use with sector_t. dm_block_t is typedef'd to uint64_t -- so use div_u64() instead. Fixes: 3ab918281 ("dm thin metadata: try to avoid ever aborting transactions") Signed-off-by: Mike Snitzer <snitzer@redhat.com> Cc: Sudip Mukherjee <sudipm.mukherjee@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-10dm thin metadata: try to avoid ever aborting transactionsJoe Thornber2-9/+100
[ Upstream commit 3ab91828166895600efd9cdc3a0eb32001f7204a ] Committing a transaction can consume some metadata of it's own, we now reserve a small amount of metadata to cover this. Free metadata reported by the kernel will not include this reserve. If any of the reserve has been used after a commit we enter a new internal state PM_OUT_OF_METADATA_SPACE. This is reported as PM_READ_ONLY, so no userland changes are needed. If the metadata device is resized the pool will move back to PM_WRITE. These changes mean we never need to abort and rollback a transaction due to running out of metadata space. This is particularly important because there have been a handful of reports of data corruption against DM thin-provisioning that can all be attributed to the thin-pool having ran out of metadata space. Signed-off-by: Joe Thornber <ejt@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-10dm raid: fix rebuild of specific devices by updating superblockHeinz Mauelshagen1-0/+5
[ Upstream commit c44a5ee803d2b7ed8c2e6ce24a5c4dd60778886e ] Update superblock when particular devices are requested via rebuild (e.g. lvconvert --replace ...) to avoid spurious failure with the "New device injected into existing raid set without 'delta_disks' or 'rebuild' parameter specified" error message. Signed-off-by: Heinz Mauelshagen <heinzm@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-10RAID10 BUG_ON in raise_barrier when force is true and conf->barrier is 0Xiao Ni1-1/+4
[ Upstream commit 1d0ffd264204eba1861865560f1f7f7a92919384 ] In raid10 reshape_request it gets max_sectors in read_balance. If the underlayer disks have bad blocks, the max_sectors is less than last. It will call goto read_more many times. It calls raise_barrier(conf, sectors_done != 0) every time. In this condition sectors_done is not 0. So the value passed to the argument force of raise_barrier is true. In raise_barrier it checks conf->barrier when force is true. If force is true and conf->barrier is 0, it panic. In this case reshape_request submits bio to under layer disks. And in the callback function of the bio it calls lower_barrier. If the bio finishes before calling raise_barrier again, it can trigger the BUG_ON. Add one pair of raise_barrier/lower_barrier to fix this bug. Signed-off-by: Xiao Ni <xni@redhat.com> Suggested-by: Neil Brown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-03md-cluster: clear another node's suspend_area after the copy is finishedGuoqing Jiang1-9/+10
[ Upstream commit 010228e4a932ca1e8365e3b58c8e1e44c16ff793 ] When one node leaves cluster or stops the resyncing (resync or recovery) array, then other nodes need to call recover_bitmaps to continue the unfinished task. But we need to clear suspend_area later after other nodes copy the resync information to their bitmap (by call bitmap_copy_from_slot). Otherwise, all nodes could write to the suspend_area even the suspend_area is not handled by any node, because area_resyncing returns 0 at the beginning of raid1_write_request. Which means one node could write suspend_area while another node is resyncing the same area, then data could be inconsistent. So let's clear suspend_area later to avoid above issue with the protection of bm lock. Also it is straightforward to clear suspend_area after nodes have copied the resync info to bitmap. Signed-off-by: Guoqing Jiang <gqjiang@suse.com> Reviewed-by: NeilBrown <neilb@suse.com> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-19md/raid5: fix data corruption of replacements after originals droppedBingJing Chang1-0/+6
[ Upstream commit d63e2fc804c46e50eee825c5d3a7228e07048b47 ] During raid5 replacement, the stripes can be marked with R5_NeedReplace flag. Data can be read from being-replaced devices and written to replacing spares without reading all other devices. (It's 'replace' mode. s.replacing = 1) If a being-replaced device is dropped, the replacement progress will be interrupted and resumed with pure recovery mode. However, existing stripes before being interrupted cannot read from the dropped device anymore. It prints lots of WARN_ON messages. And it results in data corruption because existing stripes write problematic data into its replacement device and update the progress. \# Erase disks (1MB + 2GB) dd if=/dev/zero of=/dev/sda bs=1MB count=2049 dd if=/dev/zero of=/dev/sdb bs=1MB count=2049 dd if=/dev/zero of=/dev/sdc bs=1MB count=2049 dd if=/dev/zero of=/dev/sdd bs=1MB count=2049 mdadm -C /dev/md0 -amd -R -l5 -n3 -x0 /dev/sd[abc] -z 2097152 \# Ensure array stores non-zero data dd if=/root/data_4GB.iso of=/dev/md0 bs=1MB \# Start replacement mdadm /dev/md0 -a /dev/sdd mdadm /dev/md0 --replace /dev/sda Then, Hot-plug out /dev/sda during recovery, and wait for recovery done. echo check > /sys/block/md0/md/sync_action cat /sys/block/md0/md/mismatch_cnt # it will be greater than 0. Soon after you hot-plug out /dev/sda, you will see many WARN_ON messages. The replacement recovery will be interrupted shortly. After the recovery finishes, it will result in data corruption. Actually, it's just an unhandled case of replacement. In commit <f94c0b6658c7> (md/raid5: fix interaction of 'replace' and 'recovery'.), if a NeedReplace device is not UPTODATE then that is an error, the commit just simply print WARN_ON but also mark these corrupted stripes with R5_WantReplace. (it means it's ready for writes.) To fix this case, we can leverage 'sync and replace' mode mentioned in commit <9a3e1101b827> (md/raid5: detect and handle replacements during recovery.). We can add logics to detect and use 'sync and replace' mode for these stripes. Reported-by: Alex Chen <alexchen@synology.com> Reviewed-by: Alex Wu <alexwu@synology.com> Reviewed-by: Chung-Chiang Cheng <cccheng@synology.com> Signed-off-by: BingJing Chang <bingjingc@synology.com> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-15dm kcopyd: avoid softlockup in run_complete_jobJohn Pittman1-0/+2
[ Upstream commit 784c9a29e99eb40b842c29ecf1cc3a79e00fb629 ] It was reported that softlockups occur when using dm-snapshot ontop of slow (rbd) storage. E.g.: [ 4047.990647] watchdog: BUG: soft lockup - CPU#10 stuck for 22s! [kworker/10:23:26177] ... [ 4048.034151] Workqueue: kcopyd do_work [dm_mod] [ 4048.034156] RIP: 0010:copy_callback+0x41/0x160 [dm_snapshot] ... [ 4048.034190] Call Trace: [ 4048.034196] ? __chunk_is_tracked+0x70/0x70 [dm_snapshot] [ 4048.034200] run_complete_job+0x5f/0xb0 [dm_mod] [ 4048.034205] process_jobs+0x91/0x220 [dm_mod] [ 4048.034210] ? kcopyd_put_pages+0x40/0x40 [dm_mod] [ 4048.034214] do_work+0x46/0xa0 [dm_mod] [ 4048.034219] process_one_work+0x171/0x370 [ 4048.034221] worker_thread+0x1fc/0x3f0 [ 4048.034224] kthread+0xf8/0x130 [ 4048.034226] ? max_active_store+0x80/0x80 [ 4048.034227] ? kthread_bind+0x10/0x10 [ 4048.034231] ret_from_fork+0x35/0x40 [ 4048.034233] Kernel panic - not syncing: softlockup: hung tasks Fix this by calling cond_resched() after run_complete_job()'s callout to the dm_kcopyd_notify_fn (which is dm-snap.c:copy_callback in the above trace). Signed-off-by: John Pittman <jpittman@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-09bcache: release dc->writeback_lock properly in bch_writeback_thread()Shan Hai1-1/+3
commit 3943b040f11ed0cc6d4585fd286a623ca8634547 upstream. The writeback thread would exit with a lock held when the cache device is detached via sysfs interface, fix it by releasing the held lock before exiting the while-loop. Fixes: fadd94e05c02 (bcache: quit dc->writeback_thread when BCACHE_DEV_DETACHING is set) Signed-off-by: Shan Hai <shan.hai@oracle.com> Signed-off-by: Coly Li <colyli@suse.de> Tested-by: Shenghui Wang <shhuiw@foxmail.com> Cc: stable@vger.kernel.org #4.17+ Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-09dm cache metadata: save in-core policy_hint_size to on-disk superblockMike Snitzer1-1/+2
commit fd2fa95416188a767a63979296fa3e169a9ef5ec upstream. policy_hint_size starts as 0 during __write_initial_superblock(). It isn't until the policy is loaded that policy_hint_size is set in-core (cmd->policy_hint_size). But it never got recorded in the on-disk superblock because __commit_transaction() didn't deal with transfering the in-core cmd->policy_hint_size to the on-disk superblock. The in-core cmd->policy_hint_size gets initialized by metadata_open()'s __begin_transaction_flags() which re-reads all superblock fields. Because the superblock's policy_hint_size was never properly stored, when the cache was created, hints_array_available() would always return false when re-activating a previously created cache. This means __load_mappings() always considered the hints invalid and never made use of the hints (these hints served to optimize). Another detremental side-effect of this oversight is the cache_check utility would fail with: "invalid hint width: 0" Cc: stable@vger.kernel.org Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-09dm thin: stop no_space_timeout worker when switching to write-modeHou Tao1-0/+2
commit 75294442d896f2767be34f75aca7cc2b0d01301f upstream. Now both check_for_space() and do_no_space_timeout() will read & write pool->pf.error_if_no_space. If these functions run concurrently, as shown in the following case, the default setting of "queue_if_no_space" can get lost. precondition: * error_if_no_space = false (aka "queue_if_no_space") * pool is in Out-of-Data-Space (OODS) mode * no_space_timeout worker has been queued CPU 0: CPU 1: // delete a thin device process_delete_mesg() // check_for_space() invoked by commit() set_pool_mode(pool, PM_WRITE) pool->pf.error_if_no_space = \ pt->requested_pf.error_if_no_space // timeout, pool is still in OODS mode do_no_space_timeout // "queue_if_no_space" config is lost pool->pf.error_if_no_space = true pool->pf.mode = new_mode Fix it by stopping no_space_timeout worker when switching to write mode. Fixes: bcc696fac11f ("dm thin: stay in out-of-data-space mode once no_space_timeout expires") Cc: stable@vger.kernel.org Signed-off-by: Hou Tao <houtao1@huawei.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-24md/raid10: fix that replacement cannot complete recovery after reassembleBingJing Chang1-0/+7
[ Upstream commit bda3153998f3eb2cafa4a6311971143628eacdbc ] During assemble, the spare marked for replacement is not checked. conf->fullsync cannot be updated to be 1. As a result, recovery will treat it as a clean array. All recovering sectors are skipped. Original device is replaced with the not-recovered spare. mdadm -C /dev/md0 -l10 -n4 -pn2 /dev/loop[0123] mdadm /dev/md0 -a /dev/loop4 mdadm /dev/md0 --replace /dev/loop0 mdadm -S /dev/md0 # stop array during recovery mdadm -A /dev/md0 /dev/loop[01234] After reassemble, you can see recovery go on, but it completes immediately. In fact, recovery is not actually processed. To solve this problem, we just add the missing logics for replacment spares. (In raid1.c or raid5.c, they have already been checked.) Reported-by: Alex Chen <alexchen@synology.com> Reviewed-by: Alex Wu <alexwu@synology.com> Reviewed-by: Chung-Chiang Cheng <cccheng@synology.com> Signed-off-by: BingJing Chang <bingjingc@synology.com> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-03md: fix NULL dereference of mddev->pers in remove_and_add_spares()Yufen Yu1-0/+3
[ Upstream commit c42a0e2675721e1444f56e6132a07b7b1ec169ac ] We met NULL pointer BUG as follow: [ 151.760358] BUG: unable to handle kernel NULL pointer dereference at 0000000000000060 [ 151.761340] PGD 80000001011eb067 P4D 80000001011eb067 PUD 1011ea067 PMD 0 [ 151.762039] Oops: 0000 [#1] SMP PTI [ 151.762406] Modules linked in: [ 151.762723] CPU: 2 PID: 3561 Comm: mdadm-test Kdump: loaded Not tainted 4.17.0-rc1+ #238 [ 151.763542] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1.fc26 04/01/2014 [ 151.764432] RIP: 0010:remove_and_add_spares.part.56+0x13c/0x3a0 [ 151.765061] RSP: 0018:ffffc90001d7fcd8 EFLAGS: 00010246 [ 151.765590] RAX: 0000000000000000 RBX: ffff88013601d600 RCX: 0000000000000000 [ 151.766306] RDX: 0000000000000000 RSI: ffff88013601d600 RDI: ffff880136187000 [ 151.767014] RBP: ffff880136187018 R08: 0000000000000003 R09: 0000000000000051 [ 151.767728] R10: ffffc90001d7fed8 R11: 0000000000000000 R12: ffff88013601d600 [ 151.768447] R13: ffff8801298b1300 R14: ffff880136187000 R15: 0000000000000000 [ 151.769160] FS: 00007f2624276700(0000) GS:ffff88013ae80000(0000) knlGS:0000000000000000 [ 151.769971] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 151.770554] CR2: 0000000000000060 CR3: 0000000111aac000 CR4: 00000000000006e0 [ 151.771272] Call Trace: [ 151.771542] md_ioctl+0x1df2/0x1e10 [ 151.771906] ? __switch_to+0x129/0x440 [ 151.772295] ? __schedule+0x244/0x850 [ 151.772672] blkdev_ioctl+0x4bd/0x970 [ 151.773048] block_ioctl+0x39/0x40 [ 151.773402] do_vfs_ioctl+0xa4/0x610 [ 151.773770] ? dput.part.23+0x87/0x100 [ 151.774151] ksys_ioctl+0x70/0x80 [ 151.774493] __x64_sys_ioctl+0x16/0x20 [ 151.774877] do_syscall_64+0x5b/0x180 [ 151.775258] entry_SYSCALL_64_after_hwframe+0x44/0xa9 For raid6, when two disk of the array are offline, two spare disks can be added into the array. Before spare disks recovery completing, system reboot and mdadm thinks it is ok to restart the degraded array by md_ioctl(). Since disks in raid6 is not only_parity(), raid5_run() will abort, when there is no PPL feature or not setting 'start_dirty_degraded' parameter. Therefore, mddev->pers is NULL. But, mddev->raid_disks has been set and it will not be cleared when raid5_run abort. md_ioctl() can execute cmd 'HOT_REMOVE_DISK' to remove a disk by mdadm, which will cause NULL pointer dereference in remove_and_add_spares() finally. Signed-off-by: Yufen Yu <yuyufen@huawei.com> Signed-off-by: Shaohua Li <shli@fb.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-11dm bufio: don't take the lock in dm_bufio_shrink_countMikulas Patocka1-12/+4
commit d12067f428c037b4575aaeb2be00847fc214c24a upstream. dm_bufio_shrink_count() is called from do_shrink_slab to find out how many freeable objects are there. The reported value doesn't have to be precise, so we don't need to take the dm-bufio lock. Suggested-by: David Rientjes <rientjes@google.com> Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-11dm bufio: drop the lock when doing GFP_NOIO allocationMikulas Patocka1-0/+10
commit 41c73a49df31151f4ff868f28fe4f129f113fa2c upstream. If the first allocation attempt using GFP_NOWAIT fails, drop the lock and retry using GFP_NOIO allocation (lock is dropped because the allocation can take some time). Note that we won't do GFP_NOIO allocation when we loop for the second time, because the lock shouldn't be dropped between __wait_for_free_buffer and __get_unclaimed_buffer. Signed-off-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: Mike Snitzer <snitzer@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-11dm bufio: avoid sleeping while holding the dm_bufio lockDouglas Anderson1-2/+3
commit 9ea61cac0b1ad0c09022f39fd97e9b99a2cfc2dc upstream. We've seen in-field reports showing _lots_ (18 in one case, 41 in another) of tasks all sitting there blocked on: mutex_lock+0x4c/0x68 dm_bufio_shrink_count+0x38/0x78 shrink_slab.part.54.constprop.65+0x100/0x464 shrink_zone+0xa8/0x198 In the two cases analyzed, we see one task that looks like this: Workqueue: kv