summaryrefslogtreecommitdiff
path: root/fs/btrfs/inode.c
AgeCommit message (Collapse)AuthorFilesLines
2023-07-18btrfs: use irq safe locking when running and adding delayed iputsFilipe Manana1-10/+25
Running delayed iputs, which never happens in an irq context, needs to lock the spinlock fs_info->delayed_iput_lock. When finishing bios for data writes (irq context, bio.c) we call btrfs_put_ordered_extent() which needs to add a delayed iput and for that it needs to acquire the spinlock fs_info->delayed_iput_lock. Without disabling irqs when running delayed iputs we can therefore deadlock on that spinlock. The same deadlock can also happen when adding an inode to the delayed iputs list, since this can be done outside an irq context as well. Syzbot recently reported this, which results in the following trace: ================================ WARNING: inconsistent lock state 6.4.0-syzkaller-09904-ga507db1d8fdc #0 Not tainted -------------------------------- inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage. btrfs-cleaner/16079 [HC0[0]:SC0[0]:HE1:SE1] takes: ffff888107804d20 (&fs_info->delayed_iput_lock){+.?.}-{2:2}, at: spin_lock include/linux/spinlock.h:350 [inline] ffff888107804d20 (&fs_info->delayed_iput_lock){+.?.}-{2:2}, at: btrfs_run_delayed_iputs+0x28/0xe0 fs/btrfs/inode.c:3523 {IN-SOFTIRQ-W} state was registered at: lock_acquire kernel/locking/lockdep.c:5761 [inline] lock_acquire+0x1b1/0x520 kernel/locking/lockdep.c:5726 __raw_spin_lock include/linux/spinlock_api_smp.h:133 [inline] _raw_spin_lock+0x2e/0x40 kernel/locking/spinlock.c:154 spin_lock include/linux/spinlock.h:350 [inline] btrfs_add_delayed_iput+0x128/0x390 fs/btrfs/inode.c:3490 btrfs_put_ordered_extent fs/btrfs/ordered-data.c:559 [inline] btrfs_put_ordered_extent+0x2f6/0x610 fs/btrfs/ordered-data.c:547 __btrfs_bio_end_io fs/btrfs/bio.c:118 [inline] __btrfs_bio_end_io+0x136/0x180 fs/btrfs/bio.c:112 btrfs_orig_bbio_end_io+0x86/0x2b0 fs/btrfs/bio.c:163 btrfs_simple_end_io+0x105/0x380 fs/btrfs/bio.c:378 bio_endio+0x589/0x690 block/bio.c:1617 req_bio_endio block/blk-mq.c:766 [inline] blk_update_request+0x5c5/0x1620 block/blk-mq.c:911 blk_mq_end_request+0x59/0x680 block/blk-mq.c:1032 lo_complete_rq+0x1c6/0x280 drivers/block/loop.c:370 blk_complete_reqs+0xb3/0xf0 block/blk-mq.c:1110 __do_softirq+0x1d4/0x905 kernel/softirq.c:553 run_ksoftirqd kernel/softirq.c:921 [inline] run_ksoftirqd+0x31/0x60 kernel/softirq.c:913 smpboot_thread_fn+0x659/0x9e0 kernel/smpboot.c:164 kthread+0x344/0x440 kernel/kthread.c:389 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308 irq event stamp: 39 hardirqs last enabled at (39): [<ffffffff81d5ebc4>] __do_kmem_cache_free mm/slab.c:3558 [inline] hardirqs last enabled at (39): [<ffffffff81d5ebc4>] kmem_cache_free mm/slab.c:3582 [inline] hardirqs last enabled at (39): [<ffffffff81d5ebc4>] kmem_cache_free+0x244/0x370 mm/slab.c:3575 hardirqs last disabled at (38): [<ffffffff81d5eb5e>] __do_kmem_cache_free mm/slab.c:3553 [inline] hardirqs last disabled at (38): [<ffffffff81d5eb5e>] kmem_cache_free mm/slab.c:3582 [inline] hardirqs last disabled at (38): [<ffffffff81d5eb5e>] kmem_cache_free+0x1de/0x370 mm/slab.c:3575 softirqs last enabled at (0): [<ffffffff814ac99f>] copy_process+0x227f/0x75c0 kernel/fork.c:2448 softirqs last disabled at (0): [<0000000000000000>] 0x0 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&fs_info->delayed_iput_lock); <Interrupt> lock(&fs_info->delayed_iput_lock); *** DEADLOCK *** 1 lock held by btrfs-cleaner/16079: #0: ffff888107804860 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: cleaner_kthread+0x103/0x4b0 fs/btrfs/disk-io.c:1463 stack backtrace: CPU: 3 PID: 16079 Comm: btrfs-cleaner Not tainted 6.4.0-syzkaller-09904-ga507db1d8fdc #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-2 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xd9/0x150 lib/dump_stack.c:106 print_usage_bug kernel/locking/lockdep.c:3978 [inline] valid_state kernel/locking/lockdep.c:4020 [inline] mark_lock_irq kernel/locking/lockdep.c:4223 [inline] mark_lock.part.0+0x1102/0x1960 kernel/locking/lockdep.c:4685 mark_lock kernel/locking/lockdep.c:4649 [inline] mark_usage kernel/locking/lockdep.c:4598 [inline] __lock_acquire+0x8e4/0x5e20 kernel/locking/lockdep.c:5098 lock_acquire kernel/locking/lockdep.c:5761 [inline] lock_acquire+0x1b1/0x520 kernel/locking/lockdep.c:5726 __raw_spin_lock include/linux/spinlock_api_smp.h:133 [inline] _raw_spin_lock+0x2e/0x40 kernel/locking/spinlock.c:154 spin_lock include/linux/spinlock.h:350 [inline] btrfs_run_delayed_iputs+0x28/0xe0 fs/btrfs/inode.c:3523 cleaner_kthread+0x2e5/0x4b0 fs/btrfs/disk-io.c:1478 kthread+0x344/0x440 kernel/kthread.c:389 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:308 </TASK> So fix this by using spin_lock_irq() and spin_unlock_irq() when running delayed iputs, and using spin_lock_irqsave() and spin_unlock_irqrestore() when adding a delayed iput(). Reported-by: syzbot+da501a04be5ff533b102@syzkaller.appspotmail.com Fixes: ec63b84d4611 ("btrfs: add an ordered_extent pointer to struct btrfs_bio") Link: https://lore.kernel.org/linux-btrfs/000000000000d5c89a05ffbd39dd@google.com/ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-07-18btrfs: fix iput() on error pointer after error during orphan cleanupFilipe Manana1-10/+10
At btrfs_orphan_cleanup(), if we can't find an inode (btrfs_iget() returns an -ENOENT error pointer), we proceed with 'ret' set to -ENOENT and the inode pointer set to ERR_PTR(-ENOENT). Later when we proceed to the body of the following if statement: if (ret == -ENOENT || inode->i_nlink) { (...) trans = btrfs_start_transaction(root, 1); if (IS_ERR(trans)) { ret = PTR_ERR(trans); iput(inode); goto out; } (...) ret = btrfs_del_orphan_item(trans, root, found_key.objectid); btrfs_end_transaction(trans); if (ret) { iput(inode); goto out; } continue; } If we get an error from btrfs_start_transaction() or from the call to btrfs_del_orphan_item() we end calling iput() against an inode pointer that has a value of ERR_PTR(-ENOENT), resulting in a crash with the following trace: [876.667] BUG: kernel NULL pointer dereference, address: 0000000000000096 [876.667] #PF: supervisor read access in kernel mode [876.667] #PF: error_code(0x0000) - not-present page [876.667] PGD 0 P4D 0 [876.668] Oops: 0000 [#1] PREEMPT SMP PTI [876.668] CPU: 0 PID: 2356187 Comm: mount Tainted: G W 6.4.0-rc6-btrfs-next-134+ #1 [876.668] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014 [876.668] RIP: 0010:iput+0xa/0x20 [876.668] Code: ff ff ff 66 (...) [876.669] RSP: 0018:ffffafa9c0c9f9d0 EFLAGS: 00010282 [876.669] RAX: ffffffffffffffe4 RBX: 000000000009453b RCX: 0000000000000000 [876.669] RDX: 0000000000000001 RSI: ffffafa9c0c9f930 RDI: fffffffffffffffe [876.669] RBP: ffff95c612f3b800 R08: 0000000000000001 R09: ffffffffffffffe4 [876.670] R10: 00018f2a71010000 R11: 000000000ead96e3 R12: ffff95cb7d6909a0 [876.670] R13: fffffffffffffffe R14: ffff95c60f477000 R15: 00000000ffffffe4 [876.670] FS: 00007f5fbe30a840(0000) GS:ffff95ccdfa00000(0000) knlGS:0000000000000000 [876.670] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [876.671] CR2: 0000000000000096 CR3: 000000055e9f6004 CR4: 0000000000370ef0 [876.671] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [876.671] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [876.672] Call Trace: [876.744] <TASK> [876.744] ? __die_body+0x1b/0x60 [876.744] ? page_fault_oops+0x15d/0x450 [876.745] ? __kmem_cache_alloc_node+0x47/0x410 [876.745] ? do_user_addr_fault+0x65/0x8a0 [876.745] ? exc_page_fault+0x74/0x170 [876.746] ? asm_exc_page_fault+0x22/0x30 [876.746] ? iput+0xa/0x20 [876.746] btrfs_orphan_cleanup+0x221/0x330 [btrfs] [876.746] btrfs_lookup_dentry+0x58f/0x5f0 [btrfs] [876.747] btrfs_lookup+0xe/0x30 [btrfs] [876.747] __lookup_slow+0x82/0x130 [876.785] walk_component+0xe5/0x160 [876.786] path_lookupat.isra.0+0x6e/0x150 [876.786] filename_lookup+0xcf/0x1a0 [876.786] ? mod_objcg_state+0xd2/0x360 [876.786] ? obj_cgroup_charge+0xf5/0x110 [876.787] ? should_failslab+0xa/0x20 [876.787] ? kmem_cache_alloc+0x47/0x450 [876.787] vfs_path_lookup+0x51/0x90 [876.788] mount_subtree+0x8d/0x130 [876.788] btrfs_mount+0x149/0x410 [btrfs] [876.788] ? __kmem_cache_alloc_node+0x47/0x410 [876.788] ? vfs_parse_fs_param+0xc0/0x110 [876.789] legacy_get_tree+0x24/0x50 [876.834] vfs_get_tree+0x22/0xd0 [876.852] path_mount+0x2d8/0x9c0 [876.852] do_mount+0x79/0x90 [876.852] __x64_sys_mount+0x8e/0xd0 [876.853] do_syscall_64+0x38/0x90 [876.899] entry_SYSCALL_64_after_hwframe+0x72/0xdc [876.958] RIP: 0033:0x7f5fbe50b76a [876.959] Code: 48 8b 0d a9 (...) [876.959] RSP: 002b:00007fff01925798 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5 [876.959] RAX: ffffffffffffffda RBX: 00007f5fbe694264 RCX: 00007f5fbe50b76a [876.960] RDX: 0000561bde6c8720 RSI: 0000561bde6bdec0 RDI: 0000561bde6c31a0 [876.960] RBP: 0000561bde6bdc70 R08: 0000000000000000 R09: 0000000000000001 [876.960] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 [876.960] R13: 0000561bde6c31a0 R14: 0000561bde6c8720 R15: 0000561bde6bdc70 [876.960] </TASK> So fix this by setting 'inode' to NULL whenever we get an error from btrfs_iget(), and to make the code simpler, stop testing for 'ret' being -ENOENT to check if we have an inode - instead test for 'inode' being NULL or not. Having a NULL 'inode' prevents any iput() call from crashing, as iput() ignores NULL inode pointers. Also, stop testing for a NULL return value from btrfs_iget() with PTR_ERR_OR_ZERO(), because btrfs_iget() never returns NULL - in case an inode is not found, it returns ERR_PTR(-ENOENT), and in case of memory allocation failure, it returns ERR_PTR(-ENOMEM). We also don't need the extra iput() calls on the error branches for the btrfs_start_transaction() and btrfs_del_orphan_item() calls, as we have already called iput() before, so remove them. Fixes: a13bb2c03848 ("btrfs: add missing iputs on orphan cleanup failure") CC: stable@vger.kernel.org # 6.4 Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-07-18btrfs: fix double iput() on inode after an error during orphan cleanupFilipe Manana1-0/+1
At btrfs_orphan_cleanup(), if we were able to find the inode, we do an iput() on the inode, then if btrfs_drop_verity_items() succeeds and then either btrfs_start_transaction() or btrfs_del_orphan_item() fail, we do another iput() in the respective error paths, resulting in an extra iput() on the inode. Fix this by setting inode to NULL after the first iput(), as iput() ignores a NULL inode pointer argument. Fixes: a13bb2c03848 ("btrfs: add missing iputs on orphan cleanup failure") CC: stable@vger.kernel.org # 6.4 Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-07-13btrfs: convert to ctime accessor functionsJeff Layton1-23/+16
In later patches, we're going to change how the inode's ctime field is used. Switch to using accessor functions instead of raw accesses of inode->i_ctime. Signed-off-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: Jan Kara <jack@suse.cz> Message-Id: <20230705190309.579783-27-jlayton@kernel.org> Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-07-10btrfs: convert to simple_rename_timestampJeff Layton1-13/+2
A rename potentially involves updating 4 different inode timestamps. Convert to the new simple_rename_timestamp helper function. Signed-off-by: Jeff Layton <jlayton@kernel.org> Message-Id: <20230705190309.579783-7-jlayton@kernel.org> Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-06-19btrfs: do not BUG_ON after failure to migrate space during truncationFilipe Manana1-3/+18
During truncation we reserve 2 metadata units when starting a transaction (reserved space goes to fs_info->trans_block_rsv) and then attempt to migrate 1 unit (min_size bytes) from fs_info->trans_block_rsv into the local block reserve. If we ever fail we trigger a BUG_ON(), which should never happen, because we reserved 2 units. However if we happen to fail for some reason, we don't need to be so dire and hit a BUG_ON(), we can just error out the truncation and, since this is highly unexpected, surround the error check with WARN_ON(), to get an informative stack trace and tag the branh as 'unlikely'. Also make the 'min_size' variable const, since it's not supposed to ever change and any accidental change could possibly make the space migration not so unlikely to fail. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: set FMODE_CAN_ODIRECT instead of a dummy direct_IO methodChristoph Hellwig1-1/+0
Since commit a2ad63daa88b ("VFS: add FMODE_CAN_ODIRECT file flag") file systems can just set the FMODE_CAN_ODIRECT flag at open time instead of wiring up a dummy direct_IO method to indicate support for direct I/O. Do that for btrfs so that noop_direct_IO can eventually be removed. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: use btrfs_finish_ordered_extent to complete direct writesChristoph Hellwig1-6/+8
Use the btrfs_finish_ordered_extent helper to complete compressed writes using the bbio->ordered pointer instead of requiring an rbtree lookup in the otherwise equivalent btrfs_mark_ordered_io_finished called from btrfs_writepage_endio_finish_ordered. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: add an ordered_extent pointer to struct btrfs_bioChristoph Hellwig1-3/+5
Add a pointer to the ordered_extent to the existing union in struct btrfs_bio, so all code dealing with data write bios can just use a pointer dereference to retrieve the ordered_extent instead of doing multiple rbtree lookups per I/O. The reference to this ordered_extent is dropped at end I/O time, which implies that an extra one must be acquired when the bio is split. This also requires moving the btrfs_extract_ordered_extent call into btrfs_split_bio so that the invariant of always having a valid ordered_extent reference for the btrfs_bio is kept. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: open code btrfs_bio_end_io in btrfs_dio_submit_ioChristoph Hellwig1-1/+2
btrfs_dio_submit_io is the only place that uses btrfs_bio_end_io to end a bio that hasn't been submitted using btrfs_submit_bio yet, and this invariant will become a problem with upcoming changes to the btrfs bio layer. Just open code the assignment of bi_status and the call to btrfs_dio_end_io. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: pass an ordered_extent to btrfs_submit_compressed_writeChristoph Hellwig1-11/+10
btrfs_submit_compressed_write always operates on a single ordered_extent. Make that explicit by using btrfs_alloc_ordered_extent in the callers and passing the ordered_extent to btrfs_submit_compressed_write. This will help with storing and ordered_extent pointer in the btrfs_bio in subsequent patches. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: pass an ordered_extent to btrfs_reloc_clone_csumsChristoph Hellwig1-11/+18
Both callers of btrfs_reloc_clone_csums allocate the ordered_extent that btrfs_reloc_clone_csums operates on. Switch them to use btrfs_alloc_ordered_extent instead of btrfs_add_ordered_extent and pass the ordered_extent to btrfs_reloc_clone_csums instead of doing an extra lookup. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: merge the two calls to btrfs_add_ordered_extent in run_delalloc_nocowChristoph Hellwig1-22/+15
Refactor run_delalloc_nocow a little bit so that there is only a single call to btrfs_add_ordered_extent instead of two. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: don't treat zoned writeback as being from an async helper threadChristoph Hellwig1-5/+15
When extent_write_locked_range was originally added, it was only used writing back compressed pages from an async helper thread. But it is now also used for writing back pages on zoned devices, where it is called directly from the ->writepage context. In this case we want to be able to pass on the writeback_control instead of creating a new one, and more importantly want to use all the normal cgroup interaction instead of potentially deferring writeback to another helper. Fixes: 898793d992c2 ("btrfs: zoned: write out partially allocated region") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: remove PAGE_SET_ERRORChristoph Hellwig1-5/+6
Now that the btrfs writeback code has stopped using PageError, using PAGE_SET_ERROR to just set the per-address_space error flag is confusing. Open code the mapping_set_error calls in the callers and remove the PAGE_SET_ERROR flag. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: stop setting PageError in the data I/O pathChristoph Hellwig1-3/+0
PageError is not used by the VFS/MM and deprecated because it uses up a page bit and has no coherent rules. Instead read errors are usually propagated by not setting or clearing the uptodate bit, and write errors are propagated through the address_space. Btrfs now only sets the flag and never clears it for data pages, so just remove all places setting it, and the subpage error bit. Note that the error propagation for superblock writes that work on the block device mapping still uses PageError for now, but that will be addressed in a separate series. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: rename cow_file_range_async to run_delalloc_compressedChristoph Hellwig1-8/+8
cow_file_range_async is only used for compressed writeback. Rename it to run_delalloc_compressed, which also fits in with run_delalloc_nocow and run_delalloc_zoned. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: don't fail writeback when allocating the compression context failsChristoph Hellwig1-46/+28
If cow_file_range_async fails to allocate the asynchronous writeback context, it currently returns an error and entirely fails the writeback. This is not a good idea as a writeback failure is a non-temporary error condition that will make the file system unusable. Just fall back to synchronous uncompressed writeback instead. This requires us to delay setting the BTRFS_INODE_HAS_ASYNC_EXTENT flag until we've committed to the async writeback. The compression checks INODE_NOCOMPRESS and FORCE_COMPRESS are moved from cow_file_range_async to the preceding checks btrfs_run_delalloc_range(). Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: pass the new logical address to split_extent_mapChristoph Hellwig1-1/+2
split_extent_map splits off the first chunk of an extent map into a new one. One of the two users is the zoned I/O completion code that wants to rewrite the logical block start address right after this split. Pass in the logical address to be set in the split off first extent_map as an argument to avoid an extra extent tree lookup for this case. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: defer splitting of ordered extents until I/O completionChristoph Hellwig1-6/+12
The btrfs zoned completion code currently needs an ordered_extent and extent_map per bio so that it can account for the non-predictable write location from Zone Append. To archive that it currently splits the ordered_extent and extent_map at I/O submission time, and then records the actual physical address in the ->physical field of the ordered_extent. This patch instead switches to record the "original" physical address that the btrfs allocator assigned in spare space in the btrfs_bio, and then rewrites the logical address in the btrfs_ordered_sum structure at I/O completion time. This allows the ordered extent completion handler to simply walk the list of ordered csums and split the ordered extent as needed. This removes an extra ordered extent and extent_map lookup and manipulation during the I/O submission path, and instead batches it in the I/O completion path where we need to touch these anyway. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: return the new ordered_extent from btrfs_split_ordered_extentChristoph Hellwig1-1/+7
Return the ordered_extent split from the passed in one. This will be needed to be able to store an ordered_extent in the btrfs_bio. Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: reorder conditions in btrfs_extract_ordered_extentChristoph Hellwig1-10/+8
There is no good reason for doing one before the other in terms of failure implications, but doing the extent_map split first will simplify some upcoming refactoring. Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: move split_extent_map to extent_map.cChristoph Hellwig1-90/+0
split_extent_map doesn't have anything to do with the other code in inode.c, so move it to extent_map.c. This also allows marking replace_extent_mapping static. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: optimize the logical to physical mapping for zoned writesChristoph Hellwig1-5/+1
The current code to store the final logical to physical mapping for a zone append write in the extent tree is rather inefficient. It first has to split the ordered extent so that there is one ordered extent per bio, so that it can look up the ordered extent on I/O completion in btrfs_record_physical_zoned and store the physical LBA returned by the block driver in the ordered extent. btrfs_rewrite_logical_zoned then has to do a lookup in the chunk tree to see what physical address the logical address for this bio / ordered extent is mapped to, and then rewrite it in the extent tree. To optimize this process, we can store the physical address assigned in the chunk tree to the original logical address and a pointer to btrfs_ordered_sum structure the in the btrfs_bio structure, and then use this information to rewrite the logical address in the btrfs_ordered_sum structure directly at I/O completion time in btrfs_record_physical_zoned. btrfs_rewrite_logical_zoned then simply updates the logical address in the extent tree and the ordered_extent itself. The code in btrfs_rewrite_logical_zoned now runs for all data I/O completions in zoned file systems, which is fine as there is no remapping to do for non-append writes to conventional zones or for relocation, and the overhead for quickly breaking out of the loop is very low. Because zoned file systems now need the ordered_sums structure to record the actual write location returned by zone append, allocate dummy structures without the csum array for them when the I/O doesn't use checksums, and free them when completing the ordered_extent. Note that the btrfs_bio doesn't grow as the new field are places into a union that is so far not used for data writes and has plenty of space left in it. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: rename the bytenr field in struct btrfs_ordered_sum to logicalChristoph Hellwig1-1/+1
btrfs_ordered_sum::bytendr stores a logical address. Make that clear by renaming it to ->logical. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: drop gfp from parameter extent state helpersDavid Sterba1-4/+3
Now that all extent state bit helpers effectively take the GFP_NOFS mask (and GFP_NOWAIT is encoded in the bits) we can remove the parameter. This reduces stack consumption in many functions and simplifies a lot of code. Net effect on module on a release build: text data bss dec hex filename 1250432 20985 16088 1287505 13a551 pre/btrfs.ko 1247074 20985 16088 1284147 139833 post/btrfs.ko DELTA: -3358 Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: open code set_extent_delallocDavid Sterba1-2/+2
The helper is used once in fs code and a few times in the self test code. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: change for_rename argument of btrfs_record_unlink_dir() to boolFilipe Manana1-4/+4
The for_rename argument of btrfs_record_unlink_dir() is defined as an integer, but the argument is in fact used as a boolean. So change it to a boolean to make its use more clear. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: handle tree backref walk error properlyQu Wenruo1-4/+12
[BUG] Smatch reports the following errors related to commit ("btrfs: output affected files when relocation fails"): fs/btrfs/inode.c:283 print_data_reloc_error() error: uninitialized symbol 'ref_level'. [CAUSE] That part of code is mostly copied from scrub, but unfortunately scrub code from the beginning is not doing the error handling properly. The offending code looks like this: do { ret = tree_backref_for_extent(); btrfs_warn_rl(); } while (ret != 1); There are several problems involved: - No error handling If that tree_backref_for_extent() failed, we would output the same error again and again, never really exit as it requires ret == 1 to exit. - Always do one extra output As tree_backref_for_extent() only return > 0 if there is no more backref item. This means after the last item we hit, we would output an invalid error message for ret > 0 case. [FIX] Fix the old code by: - Move @ref_root and @ref_level into the if branch And do not initialize them, so we can catch such uninitialized values just like what we do in the inode.c - Explicitly check the return value of tree_backref_for_extent() And handle ret < 0 and ret > 0 cases properly. - No more do {} while () loop Instead go while (true) {} loop since we will handle @ret manually. Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: output affected files when relocation failsQu Wenruo1-0/+191
[PROBLEM] When relocation fails (mostly due to checksum mismatch), we only got very cryptic error messages like: BTRFS info (device dm-4): relocating block group 13631488 flags data BTRFS warning (device dm-4): csum failed root -9 ino 257 off 0 csum 0x373e1ae3 expected csum 0x98757625 mirror 1 BTRFS error (device dm-4): bdev /dev/mapper/test-scratch1 errs: wr 0, rd 0, flush 0, corrupt 1, gen 0 BTRFS info (device dm-4): balance: ended with status: -5 The end user has to decipher the above messages and use various tools to locate the affected files and find a way to fix the problem (mostly deleting the file). This is not an easy work even for experienced developer, not to mention the end users. [SCRUB IS DOING BETTER] By contrast, scrub is providing much better error messages: BTRFS error (device dm-4): unable to fixup (regular) error at logical 13631488 on dev /dev/mapper/test-scratch1 physical 13631488 BTRFS warning (device dm-4): checksum error at logical 13631488 on dev /dev/mapper/test-scratch1, physical 13631488, root 5, inode 257, offset 0, length 4096, links 1 (path: file) BTRFS info (device dm-4): scrub: finished on devid 1 with status: 0 Which provides the affected files directly to the end user. [IMPROVEMENT] Instead of the generic data checksum error messages, which is not doing a good job for data reloc inodes, this patch introduce a scrub like backref walking based solution. When a sector fails its checksum for data reloc inode, we go the following workflow: - Get the real logical bytenr For data reloc inode, the file offset is the offset inside the block group. Thus the real logical bytenr is @file_off + @block_group->start. - Do an extent type check If it's tree blocks it's much easier to handle, just go through all the tree block backref. - Do a backref walk and inode path resolution for data extents This is mostly the same as scrub. But unfortunately we can not reuse the same function as the output format is different. Now the new output would be more user friendly: BTRFS info (device dm-4): relocating block group 13631488 flags data BTRFS warning (device dm-4): csum failed root -9 ino 257 off 0 logical 13631488 csum 0x373e1ae3 expected csum 0x98757625 mirror 1 BTRFS warning (device dm-4): checksum error at logical 13631488 mirror 1 root 5 inode 257 offset 0 length 4096 links 1 (path: file) BTRFS error (device dm-4): bdev /dev/mapper/test-scratch1 errs: wr 0, rd 0, flush 0, corrupt 2, gen 0 BTRFS info (device dm-4): balance: ended with status: -5 Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: determine synchronous writers from bio or writeback controlChristoph Hellwig1-1/+0
The writeback_control structure already passes down the information about a writeback being synchronous from the core VM code, and thus information is propagated into the bio REQ_SYNC flag through the wbc_to_write_flags helper. Use that information to decide if checksums calculation is offloaded to a workqueue instead of btrfs_inode::sync_writers field that not only bloats the inode but also has too wide scope, being inode wide instead of limited to the actual writeback request. The sync writes were set in: - btrfs_do_write_iter - regular IO, sync status is set - start_ordered_ops - ordered write start, writeback with WB_SYNC_ALL mode - btrfs_write_marked_extents - write marked extents, writeback with WB_SYNC_ALL mode Reviewed-by: Chris Mason <clm@fb.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: use SECTOR_SHIFT to convert physical offset to LBAAnand Jain1-1/+1
Use SECTOR_SHIFT while converting a physical address to an LBA, makes it more readable. Signed-off-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-13btrfs: can_nocow_file_extent should pass down args->strict from callersChris Mason1-1/+1
Commit 619104ba453ad0 ("btrfs: move common NOCOW checks against a file extent into a helper") changed our call to btrfs_cross_ref_exist() to always pass false for the 'strict' parameter. We're passing this down through the stack so that we can do a full check for cross references during swapfile activation. With strict always false, this test fails: btrfs subvol create swappy chattr +C swappy fallocate -l1G swappy/swapfile chmod 600 swappy/swapfile mkswap swappy/swapfile btrfs subvol snap swappy swapsnap btrfs subvol del -C swapsnap btrfs fi sync / sync;sync;sync swapon swappy/swapfile The fix is to just use args->strict, and everyone except swapfile activation is passing false. Fixes: 619104ba453ad0 ("btrfs: move common NOCOW checks against a file extent into a helper") CC: stable@vger.kernel.org # 6.1+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-13btrfs: fix iomap_begin length for nocow writesChristoph Hellwig1-6/+12
can_nocow_extent can reduce the len passed in, which needs to be propagated to btrfs_dio_iomap_begin so that iomap does not submit more data then is mapped. This problems exists since the btrfs_get_blocks_direct helper was added in commit c5794e51784a ("btrfs: Factor out write portion of btrfs_get_blocks_direct"), but the ordered_extent splitting added in commit b73a6fd1b1ef ("btrfs: split partial dio bios before submit") added a WARN_ON that made a syzkaller test fail. Reported-by: syzbot+ee90502d5c8fd1d0dd93@syzkaller.appspotmail.com Fixes: c5794e51784a ("btrfs: Factor out write portion of btrfs_get_blocks_direct") CC: stable@vger.kernel.org # 6.1+ Tested-by: syzbot+ee90502d5c8fd1d0dd93@syzkaller.appspotmail.com Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
2023-05-10btrfs: zoned: zone finish data relocation BG with last IONaohiro Aota1-0/+3
For data block groups, we zone finish a zone (or, just deactivate it) when seeing the last IO in btrfs_finish_ordered_io(). That is only called for IOs using ZONE_APPEND, but we use a regular WRITE command for data relocation IOs. Detect it and call btrfs_zone_finish_endio() properly. Fixes: be1a1d7a5d24 ("btrfs: zoned: finish fully written block group") CC: stable@vger.kernel.org # 6.1+ Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17btrfs: introduce btrfs_bio::fs_info memberQu Wenruo1-4/+9
Currently we're doing a lot of work for btrfs_bio: - Checksum verification for data read bios - Bio splits if it crosses stripe boundary - Read repair for data read bios However for the incoming scrub patches, we don't want this extra functionality at all, just plain logical + mirror -> physical mapping ability. Thus here we do the following changes: - Introduce btrfs_bio::fs_info This is for the new scrub specific btrfs_bio, which would not populate btrfs_bio::inode. Thus we need such new member to grab a fs_info This new member will always be populated. - Replace @inode argument with @fs_info for btrfs_bio_init() and its caller Since @inode is no longer a mandatory member, replace it with @fs_info, and let involved users populate @inode. - Skip checksum verification and generation if @bbio->inode is NULL - Add extra ASSERT()s To make sure: * bbio->inode is properly set for involved read repair path * if @file_offset is set, bbio->inode is also populated - Grab @fs_info from @bbio directly We can no longer go @bbio->inode->root->fs_info, as bbio->inode can be NULL. This involves: * btrfs_simple_end_io() * should_async_write() * btrfs_wq_submit_bio() * btrfs_use_zone_append() Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17btrfs, block: move REQ_CGROUP_PUNT to btrfsChristoph Hellwig1-1/+1
REQ_CGROUP_PUNT is a bit annoying as it is hard to follow and adds a branch to the bio submission hot path. To fix this, export blkcg_punt_bio_submit and let btrfs call it directly. Add a new REQ_FS_PRIVATE flag for btrfs to indicate to it's own low-level bio submission code that a punt to the cgroup submission helper is required. Reviewed-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17btrfs: also use kthread_associate_blkcg for uncompressible rangesChristoph Hellwig1-4/+5
submit_one_async_extent needs to use submit_one_async_extent no matter if the range it handles ends up beeing compressed or not as the deadlock risk due to cgroup thottling is the same. Call kthread_associate_blkcg earlier to cover submit_uncompressed_range case as well. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17btrfs: don't free the async_extent in submit_uncompressed_rangeChristoph Hellwig1-13/+11
Let submit_one_async_extent, which is the only caller of submit_uncompressed_range handle freeing of the async_extent in one central place. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17btrfs: move kthread_associate_blkcg out of btrfs_submit_compressed_writeChristoph Hellwig1-4/+8
btrfs_submit_compressed_write should not have to care if it is called from a helper thread or not. Move the kthread_associate_blkcg handling into submit_one_async_extent, as that is the one caller that needs it. Also move the assignment of REQ_CGROUP_PUNT into cow_file_range_async, as that is the routine that sets up the helper thread offload. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17btrfs: split partial dio bios before submitBoris Burkov1-0/+18
If an application is doing direct io to a btrfs file and experiences a page fault reading from the write buffer, iomap will issue a partial bio, and allow the fs to keep going. However, there was a subtle bug in this code path in the btrfs dio iomap implementation that led to the partial write ending up as a gap in the file's extents and to be read back as zeros. The sequence of events in a partial write, lightly summarized and trimmed down for brevity is as follows: ==== WRITING TASK ==== btrfs_direct_write __iomap_dio_write iomap_iter btrfs_dio_iomap_begin # create full ordered extent iomap_dio_bio_iter bio_iov_iter_get_pages # page fault; partial read submit_bio # partial bio iomap_iter btrfs_dio_iomap_end btrfs_mark_ordered_io_finished # sets BTRFS_ORDERED_IOERR; # submit to finish_ordered_fn wq fault_in_iov_iter_readable # btrfs_direct_write detects partial write __iomap_dio_write iomap_iter btrfs_dio_iomap_begin # create second partial ordered extent iomap_dio_bio_iter bio_iov_iter_get_pages # read all of remainder submit_bio # partial bio with all of remainder iomap_iter btrfs_dio_iomap_end # nothing exciting to do with ordered io ==== DIO ENDIO ==== == FIRST PARTIAL BIO == btrfs_dio_end_io btrfs_mark_ordered_io_finished # bytes_left > 0 # don't submit to finish_ordered_fn wq == SECOND PARTIAL BIO == btrfs_dio_end_io btrfs_mark_ordered_io_finished # bytes_left == 0 # submit to finish_ordered_fn wq ==== BTRFS FINISH ORDERED WQ ==== == FIRST PARTIAL BIO == btrfs_finish_ordered_io # called by dio_iomap_end_io, sees # BTRFS_ORDERED_IOERR, just drops the # ordered_extent ==SECOND PARTIAL BIO== btrfs_finish_ordered_io # called by btrfs_dio_end_io, writes out file # extents, csums, etc... The essence of the problem is that while btrfs_direct_write and iomap properly interact to submit all the correct bios, there is insufficient logic in the btrfs dio functions (btrfs_dio_iomap_begin, btrfs_dio_submit_io, btrfs_dio_end_io, and btrfs_dio_iomap_end) to ensure that every bio is at least a part of a completed ordered_extent. And it is completing an ordered_extent that results in crucial functionality like writing out a file extent for the range. More specifically, btrfs_dio_end_io treats the ordered extent as unfinished but btrfs_dio_iomap_end sets BTRFS_ORDERED_IOERR on it. Thus, the finish io work doesn't result in file extents, csums, etc. In the aftermath, such a file behaves as though it has a hole in it, instead of the purportedly written data. We considered a few options for fixing the bug: 1. treat the partial bio as if we had truncated the file, which would result in properly finishing it. 2. split the ordered extent when submitting a partial bio. 3. cache the ordered extent across calls to __iomap_dio_rw in iter->private, so that we could reuse it and correctly apply several bios to it. I had trouble with 1, and it felt the most like a hack, so I tried 2 and 3. Since 3 has the benefit of also not creating an extra file extent, and avoids an ordered extent lookup during bio submission, it felt like the best option. However, that turned out to re-introduce a deadlock which this code discarding the ordered_extent between faults was meant to fix in the first place. (Link to an explanation of the deadlock below.) Therefore, go with fix 2, which requires a bit more setup work but fixes the corruption without introducing the deadlock, which is fundamentally caused by the ordered extent existing when we attempt to fault in a range that overlaps with it. Put succinctly, what this patch does is: when we submit a dio bio, check if it is partial against the ordered extent stored in dio_data, and if it is, extract the ordered_extent that matches the bio exactly out of the larger ordered_extent. Keep the remaining ordered_extent around in dio_data for cancellation in iomap_end. Thanks to Josef, Christoph, and Filipe with their help figuring out the bug and the fix. Fixes: 51bd9563b678 ("btrfs: fix deadlock due to page faults during direct IO reads and writes") Link: https://bugzil