summaryrefslogtreecommitdiff
path: root/fs/btrfs
AgeCommit message (Collapse)AuthorFilesLines
2023-12-06btrfs: free qgroup reserve when ORDERED_IOERR is setBoris Burkov1-1/+3
An ordered extent completing is a critical moment in qgroup reserve handling, as the ownership of the reservation is handed off from the ordered extent to the delayed ref. In the happy path we release (unlock) but do not free (decrement counter) the reservation, and the delayed ref drives the free. However, on an error, we don't create a delayed ref, since there is no ref to add. Therefore, free on the error path. CC: stable@vger.kernel.org # 6.1+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-28Merge tag 'for-6.7-rc3-tag' of ↵Linus Torvalds9-10/+62
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "A few fixes and message updates: - for simple quotas, handle the case when a snapshot is created and the target qgroup already exists - fix a warning when file descriptor given to send ioctl is not writable - fix off-by-one condition when checking chunk maps - free pages when page array allocation fails during compression read, other cases were handled - fix memory leak on error handling path in ref-verify debugging feature - copy missing struct member 'version' in 64/32bit compat send ioctl - tree-checker verifies inline backref ordering - print messages to syslog on first mount and last unmount - update error messages when reading chunk maps" * tag 'for-6.7-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: send: ensure send_fd is writable btrfs: free the allocated memory if btrfs_alloc_page_array() fails btrfs: fix 64bit compat send ioctl arguments not initializing version member btrfs: make error messages more clear when getting a chunk map btrfs: fix off-by-one when checking chunk map includes logical address btrfs: ref-verify: fix memory leaks in btrfs_ref_tree_mod() btrfs: add dmesg output for first mount and last unmount of a filesystem btrfs: do not abort transaction if there is already an existing qgroup btrfs: tree-checker: add type and sequence check for inline backrefs
2023-11-24btrfs: send: ensure send_fd is writableJann Horn1-1/+1
kernel_write() requires the caller to ensure that the file is writable. Let's do that directly after looking up the ->send_fd. We don't need a separate bailout path because the "out" path already does fput() if ->send_filp is non-NULL. This has no security impact for two reasons: - the ioctl requires CAP_SYS_ADMIN - __kernel_write() bails out on read-only files - but only since 5.8, see commit a01ac27be472 ("fs: check FMODE_WRITE in __kernel_write") Reported-and-tested-by: syzbot+12e098239d20385264d3@syzkaller.appspotmail.com Closes: https://syzkaller.appspot.com/bug?extid=12e098239d20385264d3 Fixes: 31db9f7c23fb ("Btrfs: introduce BTRFS_IOC_SEND for btrfs send/receive") CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Jann Horn <jannh@google.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-24btrfs: free the allocated memory if btrfs_alloc_page_array() failsQu Wenruo1-3/+8
[BUG] If btrfs_alloc_page_array() fail to allocate all pages but part of the slots, then the partially allocated pages would be leaked in function btrfs_submit_compressed_read(). [CAUSE] As explicitly stated, if btrfs_alloc_page_array() returned -ENOMEM, caller is responsible to free the partially allocated pages. For the existing call sites, most of them are fine: - btrfs_raid_bio::stripe_pages Handled by free_raid_bio(). - extent_buffer::pages[] Handled btrfs_release_extent_buffer_pages(). - scrub_stripe::pages[] Handled by release_scrub_stripe(). But there is one exception in btrfs_submit_compressed_read(), if btrfs_alloc_page_array() failed, we didn't cleanup the array and freed the array pointer directly. Initially there is still the error handling in commit dd137dd1f2d7 ("btrfs: factor out allocating an array of pages"), but later in commit 544fe4a903ce ("btrfs: embed a btrfs_bio into struct compressed_bio"), the error handling is removed, leading to the possible memory leak. [FIX] This patch would add back the error handling first, then to prevent such situation from happening again, also Make btrfs_alloc_page_array() to free the allocated pages as a extra safety net, then we don't need to add the error handling to btrfs_submit_compressed_read(). Fixes: 544fe4a903ce ("btrfs: embed a btrfs_bio into struct compressed_bio") CC: stable@vger.kernel.org # 6.4+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-24btrfs: fix 64bit compat send ioctl arguments not initializing version memberDavid Sterba1-0/+1
When the send protocol versioning was added in 5.16 e77fbf990316 ("btrfs: send: prepare for v2 protocol"), the 32/64bit compat code was not updated (added by 2351f431f727 ("btrfs: fix send ioctl on 32bit with 64bit kernel")), missing the version struct member. The compat code is probably rarely used, nobody reported any bugs. Found by tool https://github.com/jirislaby/clang-struct . Fixes: e77fbf990316 ("btrfs: send: prepare for v2 protocol") CC: stable@vger.kernel.org # 6.1+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-24btrfs: move file_start_write() to after permission hookAmir Goldstein1-6/+6
In vfs code, file_start_write() is usually called after the permission hook in rw_verify_area(). btrfs_ioctl_encoded_write() in an exception to this rule. Move file_start_write() to after the rw_verify_area() check in encoded write to make the permission hook "start-write-safe". This is needed for fanotify "pre content" events. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Amir Goldstein <amir73il@gmail.com> Link: https://lore.kernel.org/r/20231122122715.2561213-9-amir73il@gmail.com Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-11-23btrfs: make error messages more clear when getting a chunk mapFilipe Manana1-3/+4
When getting a chunk map, at btrfs_get_chunk_map(), we do some sanity checks to verify we found a chunk map and that map found covers the logical address the caller passed in. However the messages aren't very clear in the sense that don't mention the issue is with a chunk map and one of them prints the 'length' argument as if it were the end offset of the requested range (while the in the string format we use %llu-%llu which suggests a range, and the second %llu-%llu is actually a range for the chunk map). So improve these two details in the error messages. CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-23btrfs: fix off-by-one when checking chunk map includes logical addressFilipe Manana1-1/+1
At btrfs_get_chunk_map() we get the extent map for the chunk that contains the given logical address stored in the 'logical' argument. Then we do sanity checks to verify the extent map contains the logical address. One of these checks verifies if the extent map covers a range with an end offset behind the target logical address - however this check has an off-by-one error since it will consider an extent map whose start offset plus its length matches the target logical address as inclusive, while the fact is that the last byte it covers is behind the target logical address (by 1). So fix this condition by using '<=' rather than '<' when comparing the extent map's "start + length" against the target logical address. CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-23btrfs: ref-verify: fix memory leaks in btrfs_ref_tree_mod()Bragatheswaran Manickavel1-0/+2
In btrfs_ref_tree_mod(), when !parent 're' was allocated through kmalloc(). In the following code, if an error occurs, the execution will be redirected to 'out' or 'out_unlock' and the function will be exited. However, on some of the paths, 're' are not deallocated and may lead to memory leaks. For example: lookup_block_entry() for 'be' returns NULL, the out label will be invoked. During that flow ref and 'ra' are freed but not 're', which can potentially lead to a memory leak. CC: stable@vger.kernel.org # 5.10+ Reported-and-tested-by: syzbot+d66de4cbf532749df35f@syzkaller.appspotmail.com Closes: https://syzkaller.appspot.com/bug?extid=d66de4cbf532749df35f Signed-off-by: Bragatheswaran Manickavel <bragathemanick0908@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-23btrfs: add dmesg output for first mount and last unmount of a filesystemQu Wenruo2-1/+5
There is a feature request to add dmesg output when unmounting a btrfs. There are several alternative methods to do the same thing, but with their own problems: - Use eBPF to watch btrfs_put_super()/open_ctree() Not end user friendly, they have to dip their head into the source code. - Watch for directory /sys/fs/<uuid>/ This is way more simple, but still requires some simple device -> uuid lookups. And a script needs to use inotify to watch /sys/fs/. Compared to all these, directly outputting the information into dmesg would be the most simple one, with both device and UUID included. And since we're here, also add the output when mounting a filesystem for the first time for parity. A more fine grained monitoring of subvolume mounts should be done by another layer, like audit. Now mounting a btrfs with all default mkfs options would look like this: [81.906566] BTRFS info (device dm-8): first mount of filesystem 633b5c16-afe3-4b79-b195-138fe145e4f2 [81.907494] BTRFS info (device dm-8): using crc32c (crc32c-intel) checksum algorithm [81.908258] BTRFS info (device dm-8): using free space tree [81.912644] BTRFS info (device dm-8): auto enabling async discard [81.913277] BTRFS info (device dm-8): checking UUID tree [91.668256] BTRFS info (device dm-8): last unmount of filesystem 633b5c16-afe3-4b79-b195-138fe145e4f2 CC: stable@vger.kernel.org # 5.4+ Link: https://github.com/kdave/btrfs-progs/issues/689 Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-21fs: Rename mapping private membersMatthew Wilcox (Oracle)2-28/+28
It is hard to find where mapping->private_lock, mapping->private_list and mapping->private_data are used, due to private_XXX being a relatively common name for variables and structure members in the kernel. To fit with other members of struct address_space, rename them all to have an i_ prefix. Tested with an allmodconfig build. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Link: https://lore.kernel.org/r/20231117215823.2821906-1-willy@infradead.org Acked-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-11-18btrfs: Do not restrict writes to btrfs devicesJan Kara1-0/+2
Btrfs device probing code needs adaptation so that it works when writes are restricted to its mounted devices. Since btrfs maintainer wants to merge these changes through btrfs tree and there are review bandwidth issues with that, let's not block all other filesystems and just not restrict writes to btrfs devices for now. CC: <linux-btrfs@vger.kernel.org> CC: David Sterba <dsterba@suse.com> CC: Josef Bacik <josef@toxicpanda.com> CC: Chris Mason <clm@fb.com> Signed-off-by: Jan Kara <jack@suse.cz> Link: https://lore.kernel.org/r/20231101174325.10596-4-jack@suse.cz Acked-by: David Sterba <dsterba@suse.com> Reviewed-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-11-15btrfs: do not abort transaction if there is already an existing qgroupQu Wenruo1-1/+1
[BUG] Syzbot reported a regression that after commit 6ed05643ddb1 ("btrfs: create qgroup earlier in snapshot creation") we can trigger transaction abort during snapshot creation: BTRFS: Transaction aborted (error -17) WARNING: CPU: 0 PID: 5057 at fs/btrfs/transaction.c:1778 create_pending_snapshot+0x25f4/0x2b70 fs/btrfs/transaction.c:1778 Modules linked in: CPU: 0 PID: 5057 Comm: syz-executor225 Not tainted 6.6.0-syzkaller-15365-g305230142ae0 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/09/2023 RIP: 0010:create_pending_snapshot+0x25f4/0x2b70 fs/btrfs/transaction.c:1778 Call Trace: <TASK> create_pending_snapshots+0x195/0x1d0 fs/btrfs/transaction.c:1967 btrfs_commit_transaction+0xf1c/0x3730 fs/btrfs/transaction.c:2440 create_snapshot+0x4a5/0x7e0 fs/btrfs/ioctl.c:845 btrfs_mksubvol+0x5d0/0x750 fs/btrfs/ioctl.c:995 btrfs_mksnapshot+0xb5/0xf0 fs/btrfs/ioctl.c:1041 __btrfs_ioctl_snap_create+0x344/0x460 fs/btrfs/ioctl.c:1294 btrfs_ioctl_snap_create+0x13c/0x190 fs/btrfs/ioctl.c:1321 btrfs_ioctl+0xbbf/0xd40 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:871 [inline] __se_sys_ioctl+0xf8/0x170 fs/ioctl.c:857 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x44/0x110 arch/x86/entry/common.c:82 entry_SYSCALL_64_after_hwframe+0x63/0x6b RIP: 0033:0x7f2f791127b9 </TASK> [CAUSE] The error number is -EEXIST, which can happen for qgroup if there is already an existing qgroup and then we're trying to create a snapshot for it. [FIX] In that case, we can continue creating the snapshot, although it may lead to qgroup inconsistency, it's not so critical to abort the current transaction. So in this case, we can just ignore the non-critical errors, mostly -EEXIST (there is already a qgroup). Reported-by: syzbot+4d81015bc10889fd12ea@syzkaller.appspotmail.com Fixes: 6ed05643ddb1 ("btrfs: create qgroup earlier in snapshot creation") Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-15btrfs: tree-checker: add type and sequence check for inline backrefsQu Wenruo1-0/+39
[BUG] There is a bug report that ntfs2btrfs had a bug that it can lead to transaction abort and the filesystem flips to read-only. [CAUSE] For inline backref items, kernel has a strict requirement for their ordered, they must follow the following rules: - All btrfs_extent_inline_ref::type should be in an ascending order - Within the same type, the items should follow a descending order by their sequence number For EXTENT_DATA_REF type, the sequence number is result from hash_extent_data_ref(). For other types, their sequence numbers are btrfs_extent_inline_ref::offset. Thus if there is any code not following above rules, the resulted inline backrefs can prevent the kernel to locate the needed inline backref and lead to transaction abort. [FIX] Ntrfs2btrfs has already fixed the problem, and btrfs-progs has added the ability to detect such problems. For kernel, let's be more noisy and be more specific about the order, so that the next time kernel hits such problem we would reject it in the first place, without leading to transaction abort. Link: https://github.com/kdave/btrfs-progs/pull/622 Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-13Merge tag 'for-6.7-rc1-tag' of ↵Linus Torvalds11-33/+53
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: - fix potential overflow in returned value from SEARCH_TREE_V2 ioctl on 32bit architecture - zoned mode fixes: - drop unnecessary write pointer check for RAID0/RAID1/RAID10 profiles, now it works because of raid-stripe-tree - wait for finishing the zone when direct IO needs a new allocation - simple quota fixes: - pass correct owning root pointer when cleaning up an aborted transaction - fix leaking some structures when processing delayed refs - change key type number of BTRFS_EXTENT_OWNER_REF_KEY, reorder it before inline refs that are supposed to be sorted, keeping the original number would complicate a lot of things; this change needs an updated version of btrfs-progs to work and filesystems need to be recreated - fix error pointer dereference after failure to allocate fs devices - fix race between accounting qgroup extents and removing a qgroup * tag 'for-6.7-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: make OWNER_REF_KEY type value smallest among inline refs btrfs: fix qgroup record leaks when using simple quotas btrfs: fix race between accounting qgroup extents and removing a qgroup btrfs: fix error pointer dereference after failure to allocate fs devices btrfs: make found_logical_ret parameter mandatory for function queue_scrub_stripe() btrfs: get correct owning_root when dropping snapshot btrfs: zoned: wait for data BG to be finished on direct IO allocation btrfs: zoned: drop no longer valid write pointer check btrfs: directly return 0 on no error code in btrfs_insert_raid_extent() btrfs: use u64 for buffer sizes in the tree search ioctls
2023-11-09btrfs: fix qgroup record leaks when using simple quotasFilipe Manana2-3/+3
When using simple quotas we are not supposed to allocate qgroup records when adding delayed references. However we allocate them if either mode of quotas is enabled (the new simple one or the old one), but then we never free them because running the accounting, which frees the records, is only run when using the old quotas (at btrfs_qgroup_account_extents()), resulting in a memory leak of the records allocated when adding delayed references. Fix this by allocating the records only if the old quotas mode is enabled. Also fix btrfs_qgroup_trace_extent_nolock() to return 1 if the old quotas mode is not enabled - meaning the caller has to free the record. Fixes: 182940f4f4db ("btrfs: qgroup: add new quota mode for simple quotas") Reported-by: syzbot+d3ddc6dcc6386dea398b@syzkaller.appspotmail.com Link: https://lore.kernel.org/linux-btrfs/00000000000004769106097f9a34@google.com/ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-09btrfs: fix race between accounting qgroup extents and removing a qgroupFilipe Manana1-1/+7
When doing qgroup accounting for an extent, we take the spinlock fs_info->qgroup_lock and then add qgroups to the local list (iterator) named "qgroups". These qgroups are found in the fs_info->qgroup_tree rbtree. After we're done, we unlock fs_info->qgroup_lock and then call qgroup_iterator_nested_clean(), which will iterate over all the qgroups added to the local list "qgroups" and then delete them from the list. Deleting a qgroup from the list can however result in a use-after-free if a qgroup remove operation happens after we unlock fs_info->qgroup_lock and before or while we are at qgroup_iterator_nested_clean(). Fix this by calling qgroup_iterator_nested_clean() while still holding the lock fs_info->qgroup_lock - we don't need it under the 'out' label since before taking the lock the "qgroups" list is always empty. This guarantees safety because btrfs_remove_qgroup() takes that lock before removing a qgroup from the rbtree fs_info->qgroup_tree. This was reported by syzbot with the following stack traces: BUG: KASAN: slab-use-after-free in __list_del_entry_valid_or_report+0x2f/0x130 lib/list_debug.c:49 Read of size 8 at addr ffff888027e420b0 by task kworker/u4:3/48 CPU: 1 PID: 48 Comm: kworker/u4:3 Not tainted 6.6.0-syzkaller-10396-g4652b8e4f3ff #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/09/2023 Workqueue: btrfs-qgroup-rescan btrfs_work_helper Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:364 [inline] print_report+0x163/0x540 mm/kasan/report.c:475 kasan_report+0x175/0x1b0 mm/kasan/report.c:588 __list_del_entry_valid_or_report+0x2f/0x130 lib/list_debug.c:49 __list_del_entry_valid include/linux/list.h:124 [inline] __list_del_entry include/linux/list.h:215 [inline] list_del_init include/linux/list.h:287 [inline] qgroup_iterator_nested_clean fs/btrfs/qgroup.c:2623 [inline] btrfs_qgroup_account_extent+0x18b/0x1150 fs/btrfs/qgroup.c:2883 qgroup_rescan_leaf fs/btrfs/qgroup.c:3543 [inline] btrfs_qgroup_rescan_worker+0x1078/0x1c60 fs/btrfs/qgroup.c:3604 btrfs_work_helper+0x37c/0xbd0 fs/btrfs/async-thread.c:315 process_one_work kernel/workqueue.c:2630 [inline] process_scheduled_works+0x90f/0x1400 kernel/workqueue.c:2703 worker_thread+0xa5f/0xff0 kernel/workqueue.c:2784 kthread+0x2d3/0x370 kernel/kthread.c:388 ret_from_fork+0x48/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:242 </TASK> Allocated by task 6355: kasan_save_stack mm/kasan/common.c:45 [inline] kasan_set_track+0x4f/0x70 mm/kasan/common.c:52 ____kasan_kmalloc mm/kasan/common.c:374 [inline] __kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:383 kmalloc include/linux/slab.h:600 [inline] kzalloc include/linux/slab.h:721 [inline] btrfs_quota_enable+0xee9/0x2060 fs/btrfs/qgroup.c:1209 btrfs_ioctl_quota_ctl+0x143/0x190 fs/btrfs/ioctl.c:3705 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:871 [inline] __se_sys_ioctl+0xf8/0x170 fs/ioctl.c:857 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x44/0x110 arch/x86/entry/common.c:82 entry_SYSCALL_64_after_hwframe+0x63/0x6b Freed by task 6355: kasan_save_stack mm/kasan/common.c:45 [inline] kasan_set_track+0x4f/0x70 mm/kasan/common.c:52 kasan_save_free_info+0x28/0x40 mm/kasan/generic.c:522 ____kasan_slab_free+0xd6/0x120 mm/kasan/common.c:236 kasan_slab_free include/linux/kasan.h:164 [inline] slab_free_hook mm/slub.c:1800 [inline] slab_free_freelist_hook mm/slub.c:1826 [inline] slab_free mm/slub.c:3809 [inline] __kmem_cache_free+0x263/0x3a0 mm/slub.c:3822 btrfs_remove_qgroup+0x764/0x8c0 fs/btrfs/qgroup.c:1787 btrfs_ioctl_qgroup_create+0x185/0x1e0 fs/btrfs/ioctl.c:3811 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:871 [inline] __se_sys_ioctl+0xf8/0x170 fs/ioctl.c:857 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x44/0x110 arch/x86/entry/common.c:82 entry_SYSCALL_64_after_hwframe+0x63/0x6b Last potentially related work creation: kasan_save_stack+0x3f/0x60 mm/kasan/common.c:45 __kasan_record_aux_stack+0xad/0xc0 mm/kasan/generic.c:492 __call_rcu_common kernel/rcu/tree.c:2667 [inline] call_rcu+0x167/0xa70 kernel/rcu/tree.c:2781 kthread_worker_fn+0x4ba/0xa90 kernel/kthread.c:823 kthread+0x2d3/0x370 kernel/kthread.c:388 ret_from_fork+0x48/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:242 Second to last potentially related work creation: kasan_save_stack+0x3f/0x60 mm/kasan/common.c:45 __kasan_record_aux_stack+0xad/0xc0 mm/kasan/generic.c:492 __call_rcu_common kernel/rcu/tree.c:2667 [inline] call_rcu+0x167/0xa70 kernel/rcu/tree.c:2781 kthread_worker_fn+0x4ba/0xa90 kernel/kthread.c:823 kthread+0x2d3/0x370 kernel/kthread.c:388 ret_from_fork+0x48/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:242 The buggy address belongs to the object at ffff888027e42000 which belongs to the cache kmalloc-512 of size 512 The buggy address is located 176 bytes inside of freed 512-byte region [ffff888027e42000, ffff888027e42200) The buggy address belongs to the physical page: page:ffffea00009f9000 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x27e40 head:ffffea00009f9000 order:2 entire_mapcount:0 nr_pages_mapped:0 pincount:0 flags: 0xfff00000000840(slab|head|node=0|zone=1|lastcpupid=0x7ff) page_type: 0xffffffff() raw: 00fff00000000840 ffff888012c41c80 ffffea0000a5ba00 dead000000000002 raw: 0000000000000000 0000000080100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected page_owner tracks the page as allocated page last allocated via order 2, migratetype Unmovable, gfp_mask 0xd20c0(__GFP_IO|__GFP_FS|__GFP_NOWARN|__GFP_NORETRY|__GFP_COMP|__GFP_NOMEMALLOC), pid 4514, tgid 4514 (udevadm), ts 24598439480, free_ts 23755696267 set_page_owner include/linux/page_owner.h:31 [inline] post_alloc_hook+0x1e6/0x210 mm/page_alloc.c:1536 prep_new_page mm/page_alloc.c:1543 [inline] get_page_from_freelist+0x31db/0x3360 mm/page_alloc.c:3170 __alloc_pages+0x255/0x670 mm/page_alloc.c:4426 alloc_slab_page+0x6a/0x160 mm/slub.c:1870 allocate_slab mm/slub.c:2017 [inline] new_slab+0x84/0x2f0 mm/slub.c:2070 ___slab_alloc+0xc85/0x1310 mm/slub.c:3223 __slab_alloc mm/slub.c:3322 [inline] __slab_alloc_node mm/slub.c:3375 [inline] slab_alloc_node mm/slub.c:3468 [inline] __kmem_cache_alloc_node+0x19d/0x270 mm/slub.c:3517 kmalloc_trace+0x2a/0xe0 mm/slab_common.c:1098 kmalloc include/linux/slab.h:600 [inline] kzalloc include/linux/slab.h:721 [inline] kernfs_fop_open+0x3e7/0xcc0 fs/kernfs/file.c:670 do_dentry_open+0x8fd/0x1590 fs/open.c:948 do_open fs/namei.c:3622 [inline] path_openat+0x2845/0x3280 fs/namei.c:3779 do_filp_open+0x234/0x490 fs/namei.c:3809 do_sys_openat2+0x13e/0x1d0 fs/open.c:1440 do_sys_open fs/open.c:1455 [inline] __do_sys_openat fs/open.c:1471 [inline] __se_sys_openat fs/open.c:1466 [inline] __x64_sys_openat+0x247/0x290 fs/open.c:1466 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x44/0x110 arch/x86/entry/common.c:82 entry_SYSCALL_64_after_hwframe+0x63/0x6b page last free stack trace: reset_page_owner include/linux/page_owner.h:24 [inline] free_pages_prepare mm/page_alloc.c:1136 [inline] free_unref_page_prepare+0x8c3/0x9f0 mm/page_alloc.c:2312 free_unref_page+0x37/0x3f0 mm/page_alloc.c:2405 discard_slab mm/slub.c:2116 [inline] __unfreeze_partials+0x1dc/0x220 mm/slub.c:2655 put_cpu_partial+0x17b/0x250 mm/slub.c:2731 __slab_free+0x2b6/0x390 mm/slub.c:3679 qlink_free mm/kasan/quarantine.c:166 [inline] qlist_free_all+0x75/0xe0 mm/kasan/quarantine.c:185 kasan_quarantine_reduce+0x14b/0x160 mm/kasan/quarantine.c:292 __kasan_slab_alloc+0x23/0x70 mm/kasan/common.c:305 kasan_slab_alloc include/linux/kasan.h:188 [inline] slab_post_alloc_hook+0x67/0x3d0 mm/slab.h:762 slab_alloc_node mm/slub.c:3478 [inline] slab_alloc mm/slub.c:3486 [inline] __kmem_cache_alloc_lru mm/slub.c:3493 [inline] kmem_cache_alloc+0x104/0x2c0 mm/slub.c:3502 getname_flags+0xbc/0x4f0 fs/namei.c:140 do_sys_openat2+0xd2/0x1d0 fs/open.c:1434 do_sys_open fs/open.c:1455 [inline] __do_sys_openat fs/open.c:1471 [inline] __se_sys_openat fs/open.c:1466 [inline] __x64_sys_openat+0x247/0x290 fs/open.c:1466 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x44/0x110 arch/x86/entry/common.c:82 entry_SYSCALL_64_after_hwframe+0x63/0x6b Memory state around the buggy address: ffff888027e41f80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff888027e42000: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff888027e42080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff888027e42100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff888027e42180: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb Reported-by: syzbot+e0b615318f8fcfc01ceb@syzkaller.appspotmail.com Fixes: dce28769a33a ("btrfs: qgroup: use qgroup_iterator_nested to in qgroup_update_refcnt()") CC: stable@vger.kernel.org # 6.6 Link: https://lore.kernel.org/linux-btrfs/00000000000091a5b2060936bf6d@google.com/ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-03btrfs: fix error pointer dereference after failure to allocate fs devicesFilipe Manana1-3/+3
At device_list_add() we allocate a btrfs_fs_devices structure and then before checking if the allocation failed (pointer is ERR_PTR(-ENOMEM)), we dereference the error pointer in a memcpy() argument if the feature BTRFS_FEATURE_INCOMPAT_METADATA_UUID is enabled. Fix this by checking for an allocation error before trying the memcpy(). Fixes: f7361d8c3fc3 ("btrfs: sipmlify uuid parameters of alloc_fs_devices()") Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-03btrfs: make found_logical_ret parameter mandatory for function ↵Qu Wenruo1-3/+7
queue_scrub_stripe() [BUG] There is a compilation warning reported on commit ae76d8e3e135 ("btrfs: scrub: fix grouping of read IO"), where gcc (14.0.0 20231022 experimental) is reporting the following uninitialized variable: fs/btrfs/scrub.c: In function ‘scrub_simple_mirror.isra’: fs/btrfs/scrub.c:2075:29: error: ‘found_logical’ may be used uninitialized [-Werror=maybe-uninitialized[https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wmaybe-uninitialized]] 2075 | cur_logical = found_logical + BTRFS_STRIPE_LEN; fs/btrfs/scrub.c:2040:21: note: ‘found_logical’ was declared here 2040 | u64 found_logical; | ^~~~~~~~~~~~~ [CAUSE] This is a false alert, as @found_logical is passed as parameter @found_logical_ret of function queue_scrub_stripe(). As long as queue_scrub_stripe() returned 0, we would update @found_logical_ret. And if queue_scrub_stripe() returned >0 or <0, the caller would not utilized @found_logical, thus there should be nothing wrong. Although the triggering gcc is still experimental, it looks like the extra check on "if (found_logical_ret)" can sometimes confuse the compiler. Meanwhile the only caller of queue_scrub_stripe() is always passing a valid pointer, there is no need for such check at all. [FIX] Although the report itself is a false alert, we can still make it more explicit by: - Replace the check for @found_logical_ret with ASSERT() - Initialize @found_logical to U64_MAX - Add one extra ASSERT() to make sure @found_logical got updated Link: https://lore.kernel.org/linux-btrfs/87fs1x1p93.fsf@gentoo.org/ Fixes: ae76d8e3e135 ("btrfs: scrub: fix grouping of read IO") Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-03btrfs: get correct owning_root when dropping snapshotJosef Bacik3-10/+20
Dave reported a bug where we were aborting the transaction while trying to cleanup the squota reservation for an extent. This turned out to be because we're doing btrfs_header_owner(next) in do_walk_down when we decide to free the block. However in this code block we haven't explicitly read next, so it could be stale. We would then get whatever garbage happened to be in the pages at this point. The commit that introduced that is "btrfs: track owning root in btrfs_ref". Fix this by saving the owner_root when we do the btrfs_lookup_extent_info(). We always do this in do_walk_down, it is how we make the decision of whether or not to delete the block. This is cheap because we've already done the extent item lookup at this point, so it's straightforward to just grab the owner root as well. Then we can use this when deleting the metadata block without needing to force a read of the extent buffer to find the owner. This fixes the problem that Dave reported. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-03btrfs: zoned: wait for data BG to be finished on direct IO allocationNaohiro Aota1-0/+7
Running the fio command below on a ZNS device results in "Resource temporarily unavailable" error. $ sudo fio --name=w --directory=/mnt --filesize=1GB --bs=16MB --numjobs=16 \ --rw=write --ioengine=libaio --iodepth=128 --direct=1 fio: io_u error on file /mnt/w.2.0: Resource temporarily unavailable: write offset=117440512, buflen=16777216 fio: io_u error on file /mnt/w.2.0: Resource temporarily unavailable: write offset=134217728, buflen=16777216 ... This happens because -EAGAIN error returned from btrfs_reserve_extent() called from btrfs_new_extent_direct() is spilling over to the userland. btrfs_reserve_extent() returns -EAGAIN when there is no active zone available. Then, the caller should wait for some other on-going IO to finish a zone and retry the allocation. This logic is already implemented for buffered write in cow_file_range(), but it is missing for the direct IO counterpart. Implement the same logic for it. Reported-by: Shinichiro Kawasaki <shinichiro.kawasaki@wdc.com> Fixes: 2ce543f47843 ("btrfs: zoned: wait until zone is finished when allocation didn't progress") CC: stable@vger.kernel.org # 6.1+ Tested-by: Shinichiro Kawasaki <shinichiro.kawasaki@wdc.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-03btrfs: zoned: drop no longer valid write pointer checkNaohiro Aota1-7/+0
There is a check of the write pointer vs the zone size to reject an invalid write pointer. However, as of now, we have RAID0/RAID10 on the zoned mode, we can have a block group whose size is larger than the zone size. As an equivalent check against the block group's zone_capacity is already there, we can just drop this invalid check. Fixes: 568220fa9657 ("btrfs: zoned: support RAID0/1/10 on top of raid stripe tree") Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-03btrfs: directly return 0 on no error code in btrfs_insert_raid_extent()Dan Carpenter1-1/+1
It's more obvious to return a literal zero instead of "return ret;". Plus Smatch complains that ret could be uninitialized if the ordered_extent->bioc_list list is empty and this silences that warning. Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-03btrfs: use u64 for buffer sizes in the tree search ioctlsFilipe Manana1-5/+5
In the tree search v2 ioctl we use the type size_t, which is an unsigned long, to track the buffer size in the local variable 'buf_size'. An unsigned long is 32 bits wide on a 32 bits architecture. The buffer size defined in struct btrfs_ioctl_search_args_v2 is a u64, so when we later try to copy the local variable 'buf_size' to the argument struct, when the search returns -EOVERFLOW, we copy only 32 bits which will be a problem on big endian systems. Fix this by using a u64 type for the buffer sizes, not only at btrfs_ioctl_tree_search_v2(), but also everywhere down the call chain so that we can use the u64 at btrfs_ioctl_tree_search_v2(). Fixes: cc68a8a5a433 ("btrfs: new ioctl TREE_SEARCH_V2") Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Link: https://lore.kernel.org/linux-btrfs/ce6f4bd6-9453-4ffe-ba00-cee35495e10f@moroto.mountain/ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-02Merge tag 'mm-stable-2023-11-01-14-33' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series 'Fixes and cleanups to compaction' - Joel Fernandes has a patchset ('Optimize mremap during mutual alignment within PMD') which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series 'Do not try to access unaccepted memory' Adrian Hunter provides some fixups for the recently-added 'unaccepted memory' feature. To increase the feature's checking coverage. 'Plug a few gaps where RAM is exposed without checking if it is unaccepted memory' - In the series 'cleanups for lockless slab shrink' Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series 'use refcount+RCU method to implement lockless slab shrink' - David Hildenbrand contributes some maintenance work for the rmap code in the series 'Anon rmap cleanups' - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series 'mm: migrate: more folio conversion and unification' - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series 'Add and use bdev_getblk()' - In the series 'Use nth_page() in place of direct struct page manipulation' Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames - In the series 'mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO' has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code rationalization and folio conversions in the hugetlb code - Yin Fengwei has improved mlock()'s handling of large folios in the series 'support large folio for mlock' - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named 'MDWE without inheritance' - Kefeng Wang has provided the series 'mm: convert numa balancing functions to use a folio' which does what it says - In the series 'mm/ksm: add fork-exec support for prctl' Stefan Roesch makes is possible for a process to propagate KSM treatment across exec() - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use 'high bandwidth memory' in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named 'memory tiering: calculate abstract distance based on ACPI HMAT' - In the series 'Smart scanning mode for KSM' Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series 'mm: memcg: fix tracking of pending stats updates values' - In the series 'Implement IOCTL to get and optionally clear info about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU - Hugh Dickins contributed the series 'shmem,tmpfs: general maintenance', a bunch of relatively minor maintenance tweaks to this code - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series 'Handle more faults under the VMA lock'. Some rationalizations of the fault path became possible as a result - In the series 'mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()' David Hildenbrand has implemented some cleanups and folio conversions - In the series 'various improvements to the GUP interface' Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements - Andrey Konovalov has sent along the series 'kasan: assorted fixes and improvements' which does those things - Some page allocator maintenance work from Kemeng Shi in the series 'Two minor cleanups to break_down_buddy_pages' - In thes series 'New selftest for mm' Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups and an optimization to the core pagecache code - Nhat Pham has added memcg accounting for hugetlb memory in the series 'hugetlb memcg accounting' - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series 'Abstract vma_merge() and split_vma()' - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series 'Fix page_owner's use of free timestamps' - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series 'permit write-sealed memfd read-only shared mappings' - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series 'Batch hugetlb vmemmap modification operations' - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series 'Finish the create_empty_buffers() transition' - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series 'mm: PCP high auto-tuning' - Roman Gushchin has contributed the patchset 'mm: improve performance of accounted kernel memory allocations' which improves their performance by ~30% as measured by a micro-benchmark - folio conversions from Kefeng Wang in the series 'mm: convert page cpupid functions to folios' - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about kmemleak' - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series 'handle memoryless nodes more appropriately' - khugepaged conversions from Vishal Moola in the series 'Some khugepaged folio conversions'" [ bcachefs conflicts with the dynamically allocated shrinkers have been resolved as per Stephen Rothwell in https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/ with help from Qi Zheng. The clone3 test filtering conflict was half-arsed by yours truly ] * tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits) mm/damon/sysfs: update monitoring target regions for online input commit mm/damon/sysfs: remove requested targets when online-commit inputs selftests: add a sanity check for zswap Documentation: maple_tree: fix word spelling error mm/vmalloc: fix the unchecked dereference warning in vread_iter() zswap: export compression failure stats Documentation: ubsan: drop "the" from article title mempolicy: migration attempt to match interleave nodes mempolicy: mmap_lock is not needed while migrating folios mempolicy: alloc_pages_mpol() for NUMA policy without vma mm: add page_rmappable_folio() wrapper mempolicy: remove confusing MPOL_MF_LAZY dead code mempolicy: mpol_shared_policy_init() without pseudo-vma mempolicy trivia: use pgoff_t in shared mempolicy tree mempolicy trivia: slightly more consistent naming mempolicy trivia: delete those ancient pr_debug()s mempolicy: fix migrate_pages(2) syscall return nr_failed kernfs: drop shared NUMA mempolicy hooks hugetlbfs: drop shared NUMA mempolicy pretence mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets() ...
2023-10-30Merge tag 'for-6.7-tag' of ↵Linus Torvalds80-5285/+3893
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "New features: - raid-stripe-tree New tree for logical file extent mapping where the physical mapping may not match on multiple devices. This is now used in zoned mode to implement RAID0/RAID1* profiles, but can be used in non-zoned mode as well. The support for RAID56 is in development and will eventually fix the problems with the current implementation. This is a backward incompatible feature and has to be enabled at mkfs time. - simple quota accounting (squota) A simplified mode of qgroup that accounts all space on the initial extent owners (a subvolume), the snapshots are then cheap to create and delete. The deletion of snapshots in fully accounting qgroups is a known CPU/IO performance bottleneck. The squota is not suitable for the general use case but works well for containers where the original subvolume exists for the whole time. This is a backward incompatible feature as it needs extending some structures, but can be enabled on an existing filesystem. - temporary filesystem fsid (temp_fsid) The fsid identifies a filesystem and is hard coded in the structures, which disallows mounting the same fsid found on different devices. For a single device filesystem this is not strictly necessary, a new temporary fsid can be generated on mount e.g. after a device is cloned. This will be used by Steam Deck for root partition A/B testing, or can be used for VM root images. Other user visible changes: - filesystems with partially finished metadata_uuid conversion cannot be mounted anymore and the uuid fixup has to be done by btrfs-progs (btrfstune). Performance improvements: - reduce reservations for checksum deletions (with enabled free space tree by factor of 4), on a sample workload on file with many extents the deletion time decreased by 12% - make extent state merges more efficient during insertions, reduce rb-tree iterations (run time of critical functions reduced by 5%) Core changes: - the integrity check functionality has been removed, this was a debugging feature and removal does not affect other integrity checks like checksums or tree-checker - space reservation changes: - more efficient delayed ref reservations, this avoids building up too much work or overusing or exhausting the global block reserve in some situations - move delayed refs reservation to the transaction start time, this prevents some ENOSPC corner cases related to exhaustion of global reserve - improvements in reducing excessive reservations for block group items - adjust overcommit logic in near full situations, account for one more chunk to eventually allocate metadata chunk, this is mostly relevant for small filesystems (<10GiB) - single device filesystems are scanned but not registered (except seed devices), this allows temp_fsid to work - qgroup iterations do not need GFP_ATOMIC allocations anymore - cleanups, refactoring, reduced data structure size, function parameter simplifications, error handling fixes" * tag 'for-6.7-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (156 commits) btrfs: open code timespec64 in struct btrfs_inode btrfs: remove redundant log root tree index assignment during log sync btrfs: remove redundant initialization of variable dirty in btrfs_update_time() btrfs: sysfs: show temp_fsid feature btrfs: disable the device add feature for temp-fsid btrfs: disable the seed feature for temp-fsid btrfs: update comment for temp-fsid, fsid, and metadata_uuid btrfs: remove pointless empty log context list check when syncing log btrfs: update comment for struct btrfs_inode::lock btrfs: remove pointless barrier from btrfs_sync_file() btrfs: add and use helpers for reading and writing last_trans_committed btrfs: add and use helpers for reading and writing fs_info->generation btrfs: add and use helpers for reading and writing log_transid btrfs: add and use helpers for reading and writing last_log_commit btrfs: support cloned-device mount capability btrfs: add helper function find_fsid_by_disk btrfs: stop reserving excessive space for block group item insertions btrfs: stop reserving excessive space for block group item updates btrfs: reorder btrfs_inode to fill gaps btrfs: open code btrfs_ordered_inode_tree in btrfs_inode ...
2023-10-30