Age | Commit message (Collapse) | Author | Files | Lines |
|
[ Upstream commit 77a5b9e3d14cbce49ceed2766b2003c034c066dc ]
Currently inode_in_dir() ignores errors returned from
btrfs_lookup_dir_index_item() and from btrfs_lookup_dir_item(), treating
any errors as if the directory entry does not exists in the fs/subvolume
tree, which is obviously not correct, as we can get errors such as -EIO
when reading extent buffers while searching the fs/subvolume's tree.
Fix that by making inode_in_dir() return the errors and making its only
caller, add_inode_ref(), deal with returned errors as well.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 4afb912f439c4bc4e6a4f3e7547f2e69e354108f upstream.
Error injection testing uncovered a case where we'd end up with a
corrupt file system with a missing extent in the middle of a file. This
occurs because the if statement to decide if we should abort is wrong.
The only way we would abort in this case is if we got a ret !=
-EOPNOTSUPP and we called from the file clone code. However the
prealloc code uses this path too. Instead we need to abort if there is
an error, and the only error we _don't_ abort on is -EOPNOTSUPP and only
if we came from the clone file code.
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d175209be04d7d263fa1a54cde7608c706c9d0d7 upstream.
I hit a stuck relocation on btrfs/061 during my overnight testing. This
turned out to be because we had left over extent entries in our extent
root for a data reloc inode that no longer existed. This happened
because in btrfs_drop_extents() we only update refs if we have SHAREABLE
set or we are the tree_root. This regression was introduced by
aeb935a45581 ("btrfs: don't set SHAREABLE flag for data reloc tree")
where we stopped setting SHAREABLE for the data reloc tree.
The problem here is we actually do want to update extent references for
data extents in the data reloc tree, in fact we only don't want to
update extent references if the file extents are in the log tree.
Update this check to only skip updating references in the case of the
log tree.
This is relatively rare, because you have to be running scrub at the
same time, which is what btrfs/061 does. The data reloc inode has its
extents pre-allocated, and then we copy the extent into the
pre-allocated chunks. We theoretically should never be calling
btrfs_drop_extents() on a data reloc inode. The exception of course is
with scrub, if our pre-allocated extent falls inside of the block group
we are scrubbing, then the block group will be marked read only and we
will be forced to cow that extent. This means we will call
btrfs_drop_extents() on that range when we COW that file extent.
This isn't really problematic if we do this, the data reloc inode
requires that our extent lengths match exactly with the extent we are
copying, thankfully we validate the extent is correct with
get_new_location(), so if we happen to COW only part of the extent we
won't link it in when we do the relocation, so we are safe from any
other shenanigans that arise because of this interaction with scrub.
Fixes: aeb935a45581 ("btrfs: don't set SHAREABLE flag for data reloc tree")
CC: stable@vger.kernel.org # 5.8+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit cfd312695b71df04c3a2597859ff12c470d1e2e4 upstream.
At replay_one_name(), we are treating any error from btrfs_lookup_inode()
as if the inode does not exists. Fix this by checking for an error and
returning it to the caller.
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 52db77791fe24538c8aa2a183248399715f6b380 upstream.
At __inode_add_ref(), we treating any error returned from
btrfs_lookup_dir_item() or from btrfs_lookup_dir_index_item() as meaning
that there is no existing directory entry in the fs/subvolume tree.
This is not correct since we can get errors such as, for example, -EIO
when reading extent buffers while searching the fs/subvolume's btree.
So fix that and return the error to the caller when it is not -ENOENT.
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e15ac6413745e3def00e663de00aea5a717311c1 upstream.
At replay_one_one(), we are treating any error returned from
btrfs_lookup_dir_item() or from btrfs_lookup_dir_index_item() as meaning
that there is no existing directory entry in the fs/subvolume tree.
This is not correct since we can get errors such as, for example, -EIO
when reading extent buffers while searching the fs/subvolume's btree.
So fix that and return the error to the caller when it is not -ENOENT.
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 19ea40dddf1833db868533958ca066f368862211 upstream.
[BUG]
There is a bug report that injected ENOMEM error could leave a tree
block locked while we return to user-space:
BTRFS info (device loop0): enabling ssd optimizations
FAULT_INJECTION: forcing a failure.
name failslab, interval 1, probability 0, space 0, times 0
CPU: 0 PID: 7579 Comm: syz-executor Not tainted 5.15.0-rc1 #16
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
Call Trace:
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x8d/0xcf lib/dump_stack.c:106
fail_dump lib/fault-inject.c:52 [inline]
should_fail+0x13c/0x160 lib/fault-inject.c:146
should_failslab+0x5/0x10 mm/slab_common.c:1328
slab_pre_alloc_hook.constprop.99+0x4e/0xc0 mm/slab.h:494
slab_alloc_node mm/slub.c:3120 [inline]
slab_alloc mm/slub.c:3214 [inline]
kmem_cache_alloc+0x44/0x280 mm/slub.c:3219
btrfs_alloc_delayed_extent_op fs/btrfs/delayed-ref.h:299 [inline]
btrfs_alloc_tree_block+0x38c/0x670 fs/btrfs/extent-tree.c:4833
__btrfs_cow_block+0x16f/0x7d0 fs/btrfs/ctree.c:415
btrfs_cow_block+0x12a/0x300 fs/btrfs/ctree.c:570
btrfs_search_slot+0x6b0/0xee0 fs/btrfs/ctree.c:1768
btrfs_insert_empty_items+0x80/0xf0 fs/btrfs/ctree.c:3905
btrfs_new_inode+0x311/0xa60 fs/btrfs/inode.c:6530
btrfs_create+0x12b/0x270 fs/btrfs/inode.c:6783
lookup_open+0x660/0x780 fs/namei.c:3282
open_last_lookups fs/namei.c:3352 [inline]
path_openat+0x465/0xe20 fs/namei.c:3557
do_filp_open+0xe3/0x170 fs/namei.c:3588
do_sys_openat2+0x357/0x4a0 fs/open.c:1200
do_sys_open+0x87/0xd0 fs/open.c:1216
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x34/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x46ae99
Code: f7 d8 64 89 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 48 89 f8 48
89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d
01 f0 ff ff 73 01 c3 48 c7 c1 bc ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f46711b9c48 EFLAGS: 00000246 ORIG_RAX: 0000000000000055
RAX: ffffffffffffffda RBX: 000000000078c0a0 RCX: 000000000046ae99
RDX: 0000000000000000 RSI: 00000000000000a1 RDI: 0000000020005800
RBP: 00007f46711b9c80 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000017
R13: 0000000000000000 R14: 000000000078c0a0 R15: 00007ffc129da6e0
================================================
WARNING: lock held when returning to user space!
5.15.0-rc1 #16 Not tainted
------------------------------------------------
syz-executor/7579 is leaving the kernel with locks still held!
1 lock held by syz-executor/7579:
#0: ffff888104b73da8 (btrfs-tree-01/1){+.+.}-{3:3}, at:
__btrfs_tree_lock+0x2e/0x1a0 fs/btrfs/locking.c:112
[CAUSE]
In btrfs_alloc_tree_block(), after btrfs_init_new_buffer(), the new
extent buffer @buf is locked, but if later operations like adding
delayed tree ref fail, we just free @buf without unlocking it,
resulting above warning.
[FIX]
Unlock @buf in out_free_buf: label.
Reported-by: Hao Sun <sunhao.th@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CACkBjsZ9O6Zr0KK1yGn=1rQi6Crh1yeCRdTSBxx9R99L4xdn-Q@mail.gmail.com/
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 6b225baababf1e3d41a4250e802cbd193e1343fb ]
When we get an error flushing one device, during a super block commit, we
record the error in the device structure, in the field 'last_flush_error'.
This is used to later check if we should error out the super block commit,
depending on whether the number of flush errors is greater than or equals
to the maximum tolerated device failures for a raid profile.
However if we get a transient device flush error, unmount the filesystem
and later try to mount it, we can fail the mount because we treat that
past error as critical and consider the device is missing. Even if it's
very likely that the error will happen again, as it's probably due to a
hardware related problem, there may be cases where the error might not
happen again. One example is during testing, and a test case like the
new generic/648 from fstests always triggers this. The test cases
generic/019 and generic/475 also trigger this scenario, but very
sporadically.
When this happens we get an error like this:
$ mount /dev/sdc /mnt
mount: /mnt wrong fs type, bad option, bad superblock on /dev/sdc, missing codepage or helper program, or other error.
$ dmesg
(...)
[12918.886926] BTRFS warning (device sdc): chunk 13631488 missing 1 devices, max tolerance is 0 for writable mount
[12918.888293] BTRFS warning (device sdc): writable mount is not allowed due to too many missing devices
[12918.890853] BTRFS error (device sdc): open_ctree failed
The failure happens because when btrfs_check_rw_degradable() is called at
mount time, or at remount from RO to RW time, is sees a non zero value in
a device's ->last_flush_error attribute, and therefore considers that the
device is 'missing'.
Fix this by setting a device's ->last_flush_error to zero when we close a
device, making sure the error is not seen on the next mount attempt. We
only need to track flush errors during the current mount, so that we never
commit a super block if such errors happened.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit bbc9a6eb5eec03dcafee266b19f56295e3b2aa8f ]
There is a BUG_ON() in btrfs_csum_one_bio() to catch code logic error.
It has indeed caught several bugs during subpage development.
But the BUG_ON() itself will bring down the whole system which is
an overkill.
Replace it with a WARN() and exit gracefully, so that it won't crash the
whole system while we can still catch the code logic error.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 4f0f586bf0c898233d8f316f471a21db2abd522d ]
list_sort() internally casts the comparison function passed to it
to a different type with constant struct list_head pointers, and
uses this pointer to call the functions, which trips indirect call
Control-Flow Integrity (CFI) checking.
Instead of removing the consts, this change defines the
list_cmp_func_t type and changes the comparison function types of
all list_sort() callers to use const pointers, thus avoiding type
mismatches.
Suggested-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20210408182843.1754385-10-samitolvanen@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 0619b7901473c380abc05d45cf9c70bee0707db3 upstream.
It's not uncommon where __btrfs_dump_space_info() gets called
under over-commit situations.
In that case free space would underflow as total allocated space is not
enough to handle all the over-committed space.
Such underflow values can sometimes cause confusion for users enabled
enospc_debug mount option, and takes some seconds for developers to
convert the underflow value to signed result.
Just output the free space as s64 to avoid such problem.
Reported-by: Eli V <eliventer@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CAJtFHUSy4zgyhf-4d9T+KdJp9w=UgzC2A0V=VtmaeEpcGgm1-Q@mail.gmail.com/
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit c124706900c20dee70f921bb3a90492431561a0a ]
Following test case reproduces lockdep warning.
Test case:
$ mkfs.btrfs -f <dev1>
$ btrfstune -S 1 <dev1>
$ mount <dev1> <mnt>
$ btrfs device add <dev2> <mnt> -f
$ umount <mnt>
$ mount <dev2> <mnt>
$ umount <mnt>
The warning claims a possible ABBA deadlock between the threads
initiated by [#1] btrfs device add and [#0] the mount.
[ 540.743122] WARNING: possible circular locking dependency detected
[ 540.743129] 5.11.0-rc7+ #5 Not tainted
[ 540.743135] ------------------------------------------------------
[ 540.743142] mount/2515 is trying to acquire lock:
[ 540.743149] ffffa0c5544c2ce0 (&fs_devs->device_list_mutex){+.+.}-{4:4}, at: clone_fs_devices+0x6d/0x210 [btrfs]
[ 540.743458] but task is already holding lock:
[ 540.743461] ffffa0c54a7932b8 (btrfs-chunk-00){++++}-{4:4}, at: __btrfs_tree_read_lock+0x32/0x200 [btrfs]
[ 540.743541] which lock already depends on the new lock.
[ 540.743543] the existing dependency chain (in reverse order) is:
[ 540.743546] -> #1 (btrfs-chunk-00){++++}-{4:4}:
[ 540.743566] down_read_nested+0x48/0x2b0
[ 540.743585] __btrfs_tree_read_lock+0x32/0x200 [btrfs]
[ 540.743650] btrfs_read_lock_root_node+0x70/0x200 [btrfs]
[ 540.743733] btrfs_search_slot+0x6c6/0xe00 [btrfs]
[ 540.743785] btrfs_update_device+0x83/0x260 [btrfs]
[ 540.743849] btrfs_finish_chunk_alloc+0x13f/0x660 [btrfs] <--- device_list_mutex
[ 540.743911] btrfs_create_pending_block_groups+0x18d/0x3f0 [btrfs]
[ 540.743982] btrfs_commit_transaction+0x86/0x1260 [btrfs]
[ 540.744037] btrfs_init_new_device+0x1600/0x1dd0 [btrfs]
[ 540.744101] btrfs_ioctl+0x1c77/0x24c0 [btrfs]
[ 540.744166] __x64_sys_ioctl+0xe4/0x140
[ 540.744170] do_syscall_64+0x4b/0x80
[ 540.744174] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[ 540.744180] -> #0 (&fs_devs->device_list_mutex){+.+.}-{4:4}:
[ 540.744184] __lock_acquire+0x155f/0x2360
[ 540.744188] lock_acquire+0x10b/0x5c0
[ 540.744190] __mutex_lock+0xb1/0xf80
[ 540.744193] mutex_lock_nested+0x27/0x30
[ 540.744196] clone_fs_devices+0x6d/0x210 [btrfs]
[ 540.744270] btrfs_read_chunk_tree+0x3c7/0xbb0 [btrfs]
[ 540.744336] open_ctree+0xf6e/0x2074 [btrfs]
[ 540.744406] btrfs_mount_root.cold.72+0x16/0x127 [btrfs]
[ 540.744472] legacy_get_tree+0x38/0x90
[ 540.744475] vfs_get_tree+0x30/0x140
[ 540.744478] fc_mount+0x16/0x60
[ 540.744482] vfs_kern_mount+0x91/0x100
[ 540.744484] btrfs_mount+0x1e6/0x670 [btrfs]
[ 540.744536] legacy_get_tree+0x38/0x90
[ 540.744537] vfs_get_tree+0x30/0x140
[ 540.744539] path_mount+0x8d8/0x1070
[ 540.744541] do_mount+0x8d/0xc0
[ 540.744543] __x64_sys_mount+0x125/0x160
[ 540.744545] do_syscall_64+0x4b/0x80
[ 540.744547] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[ 540.744551] other info that might help us debug this:
[ 540.744552] Possible unsafe locking scenario:
[ 540.744553] CPU0 CPU1
[ 540.744554] ---- ----
[ 540.744555] lock(btrfs-chunk-00);
[ 540.744557] lock(&fs_devs->device_list_mutex);
[ 540.744560] lock(btrfs-chunk-00);
[ 540.744562] lock(&fs_devs->device_list_mutex);
[ 540.744564]
*** DEADLOCK ***
[ 540.744565] 3 locks held by mount/2515:
[ 540.744567] #0: ffffa0c56bf7a0e0 (&type->s_umount_key#42/1){+.+.}-{4:4}, at: alloc_super.isra.16+0xdf/0x450
[ 540.744574] #1: ffffffffc05a9628 (uuid_mutex){+.+.}-{4:4}, at: btrfs_read_chunk_tree+0x63/0xbb0 [btrfs]
[ 540.744640] #2: ffffa0c54a7932b8 (btrfs-chunk-00){++++}-{4:4}, at: __btrfs_tree_read_lock+0x32/0x200 [btrfs]
[ 540.744708]
stack backtrace:
[ 540.744712] CPU: 2 PID: 2515 Comm: mount Not tainted 5.11.0-rc7+ #5
But the device_list_mutex in clone_fs_devices() is redundant, as
explained below. Two threads [1] and [2] (below) could lead to
clone_fs_device().
[1]
open_ctree <== mount sprout fs
btrfs_read_chunk_tree()
mutex_lock(&uuid_mutex) <== global lock
read_one_dev()
open_seed_devices()
clone_fs_devices() <== seed fs_devices
mutex_lock(&orig->device_list_mutex) <== seed fs_devices
[2]
btrfs_init_new_device() <== sprouting
mutex_lock(&uuid_mutex); <== global lock
btrfs_prepare_sprout()
lockdep_assert_held(&uuid_mutex)
clone_fs_devices(seed_fs_device) <== seed fs_devices
Both of these threads hold uuid_mutex which is sufficient to protect
getting the seed device(s) freed while we are trying to clone it for
sprouting [2] or mounting a sprout [1] (as above). A mounted seed device
can not free/write/replace because it is read-only. An unmounted seed
device can be freed by btrfs_free_stale_devices(), but it needs
uuid_mutex. So this patch removes the unnecessary device_list_mutex in
clone_fs_devices(). And adds a lockdep_assert_held(&uuid_mutex) in
clone_fs_devices().
Reported-by: Su Yue <l@damenly.su>
Tested-by: Su Yue <l@damenly.su>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 8f96a5bfa1503e0a5f3c78d51e993a1794d4aff1 ]
We update the ctime/mtime of a block device when we remove it so that
blkid knows the device changed. However we do this by re-opening the
block device and calling filp_update_time. This is more correct because
it'll call the inode->i_op->update_time if it exists, but the block dev
inodes do not do this. Instead call generic_update_time() on the
bd_inode in order to avoid the blkdev_open path and get rid of the
following lockdep splat:
======================================================
WARNING: possible circular locking dependency detected
5.14.0-rc2+ #406 Not tainted
------------------------------------------------------
losetup/11596 is trying to acquire lock:
ffff939640d2f538 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0
but task is already holding lock:
ffff939655510c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #4 (&lo->lo_mutex){+.+.}-{3:3}:
__mutex_lock+0x7d/0x750
lo_open+0x28/0x60 [loop]
blkdev_get_whole+0x25/0xf0
blkdev_get_by_dev.part.0+0x168/0x3c0
blkdev_open+0xd2/0xe0
do_dentry_open+0x161/0x390
path_openat+0x3cc/0xa20
do_filp_open+0x96/0x120
do_sys_openat2+0x7b/0x130
__x64_sys_openat+0x46/0x70
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
-> #3 (&disk->open_mutex){+.+.}-{3:3}:
__mutex_lock+0x7d/0x750
blkdev_get_by_dev.part.0+0x56/0x3c0
blkdev_open+0xd2/0xe0
do_dentry_open+0x161/0x390
path_openat+0x3cc/0xa20
do_filp_open+0x96/0x120
file_open_name+0xc7/0x170
filp_open+0x2c/0x50
btrfs_scratch_superblocks.part.0+0x10f/0x170
btrfs_rm_device.cold+0xe8/0xed
btrfs_ioctl+0x2a31/0x2e70
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
-> #2 (sb_writers#12){.+.+}-{0:0}:
lo_write_bvec+0xc2/0x240 [loop]
loop_process_work+0x238/0xd00 [loop]
process_one_work+0x26b/0x560
worker_thread+0x55/0x3c0
kthread+0x140/0x160
ret_from_fork+0x1f/0x30
-> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}:
process_one_work+0x245/0x560
worker_thread+0x55/0x3c0
kthread+0x140/0x160
ret_from_fork+0x1f/0x30
-> #0 ((wq_completion)loop0){+.+.}-{0:0}:
__lock_acquire+0x10ea/0x1d90
lock_acquire+0xb5/0x2b0
flush_workqueue+0x91/0x5e0
drain_workqueue+0xa0/0x110
destroy_workqueue+0x36/0x250
__loop_clr_fd+0x9a/0x660 [loop]
block_ioctl+0x3f/0x50
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
other info that might help us debug this:
Chain exists of:
(wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&lo->lo_mutex);
lock(&disk->open_mutex);
lock(&lo->lo_mutex);
lock((wq_completion)loop0);
*** DEADLOCK ***
1 lock held by losetup/11596:
#0: ffff939655510c68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop]
stack backtrace:
CPU: 1 PID: 11596 Comm: losetup Not tainted 5.14.0-rc2+ #406
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:
dump_stack_lvl+0x57/0x72
check_noncircular+0xcf/0xf0
? stack_trace_save+0x3b/0x50
__lock_acquire+0x10ea/0x1d90
lock_acquire+0xb5/0x2b0
? flush_workqueue+0x67/0x5e0
? lockdep_init_map_type+0x47/0x220
flush_workqueue+0x91/0x5e0
? flush_workqueue+0x67/0x5e0
? verify_cpu+0xf0/0x100
drain_workqueue+0xa0/0x110
destroy_workqueue+0x36/0x250
__loop_clr_fd+0x9a/0x660 [loop]
? blkdev_ioctl+0x8d/0x2a0
block_ioctl+0x3f/0x50
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 6f93e834fa7c5faa0372e46828b4b2a966ac61d7 upstream.
The mount option max_inline ranges from 0 to the sectorsize (which is
now equal to page size). But we parse the mount options too early and
before the actual sectorsize is read from the superblock. So the upper
limit of max_inline is unaware of the actual sectorsize and is limited
by the temporary sectorsize 4096, even on a system where the default
sectorsize is 64K.
Fix this by reading the superblock sectorsize before the mount option
parse.
Reported-by: Alexander Tsvetkov <alexander.tsvetkov@oracle.com>
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 3736127a3aa805602b7a2ad60ec9cfce68065fbb ]
Function btrfs_lookup_data_extent calls btrfs_search_slot to verify if
the EXTENT_ITEM exists in the extent tree. btrfs_search_slot can return
values bellow zero if an error happened.
Function replay_one_extent currently checks if the search found
something (0 returned) and increments the reference, and if not, it
seems to evaluate as 'not found'.
Fix the condition by checking if the value was bellow zero and return
early.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 0d977e0eba234e01a60bdde27314dc21374201b3 upstream.
This crash was observed with a failed assertion on device close:
BTRFS: Transaction aborted (error -28)
WARNING: CPU: 1 PID: 3902 at fs/btrfs/extent-tree.c:2150 btrfs_run_delayed_refs+0x1d2/0x1e0 [btrfs]
Modules linked in: btrfs blake2b_generic libcrc32c crc32c_intel xor zstd_decompress zstd_compress xxhash lzo_compress lzo_decompress raid6_pq loop
CPU: 1 PID: 3902 Comm: kworker/u8:4 Not tainted 5.14.0-rc5-default+ #1532
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014
Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs]
RIP: 0010:btrfs_run_delayed_refs+0x1d2/0x1e0 [btrfs]
RSP: 0018:ffffb7a5452d7d80 EFLAGS: 00010282
RAX: 0000000000000000 RBX: 0000000000000003 RCX: 0000000000000000
RDX: 0000000000000001 RSI: ffffffffabee13c4 RDI: 00000000ffffffff
RBP: ffff97834176a378 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000000 R11: 0000000000000001 R12: ffff97835195d388
R13: 0000000005b08000 R14: ffff978385484000 R15: 000000000000016c
FS: 0000000000000000(0000) GS:ffff9783bd800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000056190d003fe8 CR3: 000000002a81e005 CR4: 0000000000170ea0
Call Trace:
flush_space+0x197/0x2f0 [btrfs]
btrfs_async_reclaim_metadata_space+0x139/0x300 [btrfs]
process_one_work+0x262/0x5e0
worker_thread+0x4c/0x320
? process_one_work+0x5e0/0x5e0
kthread+0x144/0x170
? set_kthread_struct+0x40/0x40
ret_from_fork+0x1f/0x30
irq event stamp: 19334989
hardirqs last enabled at (19334997): [<ffffffffab0e0c87>] console_unlock+0x2b7/0x400
hardirqs last disabled at (19335006): [<ffffffffab0e0d0d>] console_unlock+0x33d/0x400
softirqs last enabled at (19334900): [<ffffffffaba0030d>] __do_softirq+0x30d/0x574
softirqs last disabled at (19334893): [<ffffffffab0721ec>] irq_exit_rcu+0x12c/0x140
---[ end trace 45939e308e0dd3c7 ]---
BTRFS: error (device vdd) in btrfs_run_delayed_refs:2150: errno=-28 No space left
BTRFS info (device vdd): forced readonly
BTRFS warning (device vdd): failed setting block group ro: -30
BTRFS info (device vdd): suspending dev_replace for unmount
assertion failed: !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state), in fs/btrfs/volumes.c:1150
------------[ cut here ]------------
kernel BUG at fs/btrfs/ctree.h:3431!
invalid opcode: 0000 [#1] PREEMPT SMP
CPU: 1 PID: 3982 Comm: umount Tainted: G W 5.14.0-rc5-default+ #1532
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014
RIP: 0010:assertfail.constprop.0+0x18/0x1a [btrfs]
RSP: 0018:ffffb7a5454c7db8 EFLAGS: 00010246
RAX: 0000000000000068 RBX: ffff978364b91c00 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffffabee13c4 RDI: 00000000ffffffff
RBP: ffff9783523a4c00 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000000 R11: 0000000000000001 R12: ffff9783523a4d18
R13: 0000000000000000 R14: 0000000000000004 R15: 0000000000000003
FS: 00007f61c8f42800(0000) GS:ffff9783bd800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000056190cffa810 CR3: 0000000030b96002 CR4: 0000000000170ea0
Call Trace:
btrfs_close_one_device.cold+0x11/0x55 [btrfs]
close_fs_devices+0x44/0xb0 [btrfs]
btrfs_close_devices+0x48/0x160 [btrfs]
generic_shutdown_super+0x69/0x100
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x2c/0xa0
cleanup_mnt+0x144/0x1b0
task_work_run+0x59/0xa0
exit_to_user_mode_loop+0xe7/0xf0
exit_to_user_mode_prepare+0xaf/0xf0
syscall_exit_to_user_mode+0x19/0x50
do_syscall_64+0x4a/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
This happens when close_ctree is called while a dev_replace hasn't
completed. In close_ctree, we suspend the dev_replace, but keep the
replace target around so that we can resume the dev_replace procedure
when we mount the root again. This is the call trace:
close_ctree():
btrfs_dev_replace_suspend_for_unmount();
btrfs_close_devices():
btrfs_close_fs_devices():
btrfs_close_one_device():
ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
&device->dev_state));
However, since the replace target sticks around, there is a device
with BTRFS_DEV_STATE_REPLACE_TGT set on close, and we fail the
assertion in btrfs_close_one_device.
To fix this, if we come across the replace target device when
closing, we should properly reset it back to allocation state. This
fix also ensures that if a non-target device has a corrupted state and
has the BTRFS_DEV_STATE_REPLACE_TGT bit set, the assertion will still
catch the error.
Reported-by: David Sterba <dsterba@suse.com>
Fixes: b2a616676839 ("btrfs: fix rw device counting in __btrfs_free_extra_devids")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Desmond Cheong Zhi Xi <desmondcheongzx@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ac98141d140444fe93e26471d3074c603b70e2ca upstream.
We use the async_delalloc_pages mechanism to make sure that we've
completed our async work before trying to continue our delalloc
flushing. The reason for this is we need to see any ordered extents
that were created by our delalloc flushing. However we're waking up
before we do the submit work, which is before we create the ordered
extents. This is a pretty wide race window where we could potentially
think there are no ordered extents and thus exit shrink_delalloc
prematurely. Fix this by waking us up after we've done the work to
create ordered extents.
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e4571b8c5e9ffa1e85c0c671995bd4dcc5c75091 upstream.
[BUG]
It's easy to trigger NULL pointer dereference, just by removing a
non-existing device id:
# mkfs.btrfs -f -m single -d single /dev/test/scratch1 \
/dev/test/scratch2
# mount /dev/test/scratch1 /mnt/btrfs
# btrfs device remove 3 /mnt/btrfs
Then we have the following kernel NULL pointer dereference:
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 9 PID: 649 Comm: btrfs Not tainted 5.14.0-rc3-custom+ #35
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:btrfs_rm_device+0x4de/0x6b0 [btrfs]
btrfs_ioctl+0x18bb/0x3190 [btrfs]
? lock_is_held_type+0xa5/0x120
? find_held_lock.constprop.0+0x2b/0x80
? do_user_addr_fault+0x201/0x6a0
? lock_release+0xd2/0x2d0
? __x64_sys_ioctl+0x83/0xb0
__x64_sys_ioctl+0x83/0xb0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
[CAUSE]
Commit a27a94c2b0c7 ("btrfs: Make btrfs_find_device_by_devspec return
btrfs_device directly") moves the "missing" device path check into
btrfs_rm_device().
But btrfs_rm_device() itself can have case where it only receives
@devid, with NULL as @device_path.
In that case, calling strcmp() on NULL will trigger the NULL pointer
dereference.
Before that commit, we handle the "missing" case inside
btrfs_find_device_by_devspec(), which will not check @device_path at all
if @devid is provided, thus no way to trigger the bug.
[FIX]
Before calling strcmp(), also make sure @device_path is not NULL.
Fixes: a27a94c2b0c7 ("btrfs: Make btrfs_find_device_by_devspec return btrfs_device directly")
CC: stable@vger.kernel.org # 5.4+
Reported-by: butt3rflyh4ck <butterflyhuangxx@gmail.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bc0939fcfab0d7efb2ed12896b1af3d819954a14 upstream.
We have a race between marking that an inode needs to be logged, either
at btrfs_set_inode_last_trans() or at btrfs_page_mkwrite(), and between
btrfs_sync_log(). The following steps describe how the race happens.
1) We are at transaction N;
2) Inode I was previously fsynced in the current transaction so it has:
inode->logged_trans set to N;
3) The inode's root currently has:
root->log_transid set to 1
root->last_log_commit set to 0
Which means only one log transaction was committed to far, log
transaction 0. When a log tree is created we set ->log_transid and
->last_log_commit of its parent root to 0 (at btrfs_add_log_tree());
4) One more range of pages is dirtied in inode I;
5) Some task A starts an fsync against some other inode J (same root), and
so it joins log transaction 1.
Before task A calls btrfs_sync_log()...
6) Task B starts an fsync against inode I, which currently has the full
sync flag set, so it starts delalloc and waits for the ordered extent
to complete before calling btrfs_inode_in_log() at btrfs_sync_file();
7) During ordered extent completion we have btrfs_update_inode() called
against inode I, which in turn calls btrfs_set_inode_last_trans(),
which does the following:
spin_lock(&inode->lock);
inode->last_trans = trans->transaction->transid;
inode->last_sub_trans = inode->root->log_transid;
inode->last_log_commit = inode->root->last_log_commit;
spin_unlock(&inode->lock);
So ->last_trans is set to N and ->last_sub_trans set to 1.
But before setting ->last_log_commit...
8) Task A is at btrfs_sync_log():
- it increments root->log_transid to 2
- starts writeback for all log tree extent buffers
- waits for the writeback to complete
- writes the super blocks
- updates root->last_log_commit to 1
It's a lot of slow steps between updating root->log_transid and
root->last_log_commit;
9) The task doing the ordered extent completion, currently at
btrfs_set_inode_last_trans(), then finally runs:
inode->last_log_commit = inode->root->last_log_commit;
spin_unlock(&inode->lock);
Which results in inode->last_log_commit being set to 1.
The ordered extent completes;
10) Task B is resumed, and it calls btrfs_inode_in_log() which returns
true because we have all the following conditions met:
inode->logged_trans == N which matches fs_info->generation &&
inode->last_subtrans (1) <= inode->last_log_commit (1) &&
inode->last_subtrans (1) <= root->last_log_commit (1) &&
list inode->extent_tree.modified_extents is empty
And as a consequence we return without logging the inode, so the
existing logged version of the inode does not point to the extent
that was written after the previous fsync.
It should be impossible in practice for one task be able to do so much
progress in btrfs_sync_log() while another task is at
btrfs_set_inode_last_trans() right after it reads root->log_transid and
before it reads root->last_log_commit. Even if kernel preemption is enabled
we know the task at btrfs_set_inode_last_trans() can not be preempted
because it is holding the inode's spinlock.
However there is another place where we do the same without holding the
spinlock, which is in the memory mapped write path at:
vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
{
(...)
BTRFS_I(inode)->last_trans = fs_info->generation;
BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
(...)
So with preemption happening after setting ->last_sub_trans and before
setting ->last_log_commit, it is less of a stretch to have another task
do enough progress at btrfs_sync_log() such that the task doing the memory
mapped write ends up with ->last_sub_trans and ->last_log_commit set to
the same value. It is still a big stretch to get there, as the task doing
btrfs_sync_log() has to start writeback, wait for its completion and write
the super blocks.
So fix this in two different ways:
1) For btrfs_set_inode_last_trans(), simply set ->last_log_commit to the
value of ->last_sub_trans minus 1;
2) For btrfs_page_mkwrite() only set the inode's ->last_sub_trans, just
like we do for buffered and direct writes at btrfs_file_write_iter(),
which is all we need to make sure multiple writes and fsyncs to an
inode in the same transaction never result in an fsync missing that
the inode changed and needs to be logged. Turn this into a helper
function and use it both at btrfs_page_mkwrite() and at
btrfs_file_write_iter() - this also fixes the problem that at
btrfs_page_mkwrite() we were setting those fields without the
protection of the inode's spinlock.
This is an extremely unlikely race to happen in practice.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 4e9655763b82a91e4c341835bb504a2b1590f984 upstream.
This reverts commit f2165627319ffd33a6217275e5690b1ab5c45763.
[BUG]
It's no longer possible to create compressed inline extent after commit
f2165627319f ("btrfs: compression: don't try to compress if we don't
have enough pages").
[CAUSE]
For compression code, there are several possible reasons we have a range
that needs to be compressed while it's no more than one page.
- Compressed inline write
The data is always smaller than one sector and the test lacks the
condition to properly recognize a non-inline extent.
- Compressed subpage write
For the incoming subpage compressed write support, we require page
alignment of the delalloc range.
And for 64K page size, we can compress just one page into smaller
sectors.
For those reasons, the requirement for the data to be more than one page
is not correct, and is already causing regression for compressed inline
data writeback. The idea of skipping one page to avoid wasting CPU time
could be revisited in the future.
[FIX]
Fix it by reverting the offending commit.
Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Link: https://lore.kernel.org/linux-btrfs/afa2742.c084f5d6.17b6b08dffc@tnonline.net
Fixes: f2165627319f ("btrfs: compression: don't try to compress if we don't have enough pages")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
different parents
[ Upstream commit 3f79f6f6247c83f448c8026c3ee16d4636ef8d4f ]
Cross-rename lacks a check when that would prevent exchanging a
directory and subvolume from different parent subvolume. This causes
data inconsistencies and is caught before commit by tree-checker,
turning the filesystem to read-only.
Calling the renameat2 with RENAME_EXCHANGE flags like
renameat2(AT_FDCWD, namesrc, AT_FDCWD, namedest, (1 << 1))
on two paths:
namesrc = dir1/subvol1/dir2
namedest = subvol2/subvol3
will cause key order problem with following write time tree-checker
report:
[1194842.307890] BTRFS critical (device loop1): corrupt leaf: root=5 block=27574272 slot=10 ino=258, invalid previous key objectid, have 257 expect 258
[1194842.322221] BTRFS info (device loop1): leaf 27574272 gen 8 total ptrs 11 free space 15444 owner 5
[1194842.331562] BTRFS info (device loop1): refs 2 lock_owner 0 current 26561
[1194842.338772] item 0 key (256 1 0) itemoff 16123 itemsize 160
[1194842.338793] inode generation 3 size 16 mode 40755
[1194842.338801] item 1 key (256 12 256) itemoff 16111 itemsize 12
[1194842.338809] item 2 key (256 84 2248503653) itemoff 16077 itemsize 34
[1194842.338817] dir oid 258 type 2
[1194842.338823] item 3 key (256 84 2363071922) itemoff 16043 itemsize 34
[1194842.338830] dir oid 257 type 2
[1194842.338836] item 4 key (256 96 2) itemoff 16009 itemsize 34
[1194842.338843] item 5 key (256 96 3) itemoff 15975 itemsize 34
[1194842.338852] item 6 key (257 1 0) itemoff 15815 itemsize 160
[1194842.338863] inode generation 6 size 8 mode 40755
[1194842.338869] item 7 key (257 12 256) itemoff 15801 itemsize 14
[1194842.338876] item 8 key (257 84 2505409169) itemoff 15767 itemsize 34
[1194842.338883] dir oid 256 type 2
[1194842.338888] item 9 key (257 96 2) itemoff 15733 itemsize 34
[1194842.338895] item 10 key (258 12 256) itemoff 15719 itemsize 14
[1194842.339163] BTRFS error (device loop1): block=27574272 write time tree block corruption detected
[1194842.339245] ------------[ cut here ]------------
[1194842.443422] WARNING: CPU: 6 PID: 26561 at fs/btrfs/disk-io.c:449 csum_one_extent_buffer+0xed/0x100 [btrfs]
[1194842.511863] CPU: 6 PID: 26561 Comm: kworker/u17:2 Not tainted 5.14.0-rc3-git+ #793
[1194842.511870] Hardware name: empty empty/S3993, BIOS PAQEX0-3 02/24/2008
[1194842.511876] Workqueue: btrfs-worker-high btrfs_work_helper [btrfs]
[1194842.511976] RIP: 0010:csum_one_extent_buffer+0xed/0x100 [btrfs]
[1194842.512068] RSP: 0018:ffffa2c284d77da0 EFLAGS: 00010282
[1194842.512074] RAX: 0000000000000000 RBX: 0000000000001000 RCX: ffff928867bd9978
[1194842.512078] RDX: 0000000000000000 RSI: 0000000000000027 RDI: ffff928867bd9970
[1194842.512081] RBP: ffff92876b958000 R08: 0000000000000001 R09: 00000000000c0003
[1194842.512085] R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000000
[1194842.512088] R13: ffff92875f989f98 R14: 0000000000000000 R15: 0000000000000000
[1194842.512092] FS: 0000000000000000(0000) GS:ffff928867a00000(0000) knlGS:0000000000000000
[1194842.512095] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[1194842.512099] CR2: 000055f5384da1f0 CR3: 0000000102fe4000 CR4: 00000000000006e0
[1194842.512103] Call Trace:
[1194842.512128] ? run_one_async_free+0x10/0x10 [btrfs]
[1194842.631729] btree_csum_one_bio+0x1ac/0x1d0 [btrfs]
[1194842.631837] run_one_async_start+0x18/0x30 [btrfs]
[1194842.631938] btrfs_work_helper+0xd5/0x1d0 [btrfs]
[1194842.647482] process_one_work+0x262/0x5e0
[1194842.647520] worker_thread+0x4c/0x320
[1194842.655935] ? process_one_work+0x5e0/0x5e0
[1194842.655946] kthread+0x135/0x160
[1194842.655953] ? set_kthread_struct+0x40/0x40
[1194842.655965] ret_from_fork+0x1f/0x30
[1194842.672465] irq event stamp: 1729
[1194842.672469] hardirqs last enabled at (1735): [<ffffffffbd1104f5>] console_trylock_spinning+0x185/0x1a0
[1194842.672477] hardirqs last disabled at (1740): [<ffffffffbd1104cc>] console_trylock_spinning+0x15c/0x1a0
[1194842.672482] softirqs last enabled at (1666): [<ffffffffbdc002e1>] __do_softirq+0x2e1/0x50a
[1194842.672491] softirqs last disabled at (1651): [<ffffffffbd08aab7>] __irq_exit_rcu+0xa7/0xd0
The corrupted data will not be written, and filesystem can be unmounted
and mounted again (all changes since the last commit will be lost).
Add the missing check for new_ino so that all non-subvolumes must reside
under the same parent subvolume. There's an exception allowing to
exchange two subvolumes from any parents as the directory representing a
subvolume is only a logical link and does not have any other structures
related to the parent subvolume, unlike files, directories etc, that
are always in the inode namespace of the parent subvolume.
Fixes: cdd1fedf8261 ("btrfs: add support for RENAME_EXCHANGE and RENAME_WHITEOUT")
CC: stable@vger.kernel.org # 4.7+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: NeilBrown <neilb@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
eviction
[ Upstream commit ecc64fab7d49c678e70bd4c35fe64d2ab3e3d212 ]
When checking if we need to log the new name of a renamed inode, we are
checking if the inode and its parent inode have been logged before, and if
not we don't log the new name. The check however is buggy, as it directly
compares the logged_trans field of the inodes versus the ID of the current
transaction. The problem is that logged_trans is a transient field, only
stored in memory and never persisted in the inode item, so if an inode
was logged before, evicted and reloaded, its logged_trans field is set to
a value of 0, meaning the check will return false and the new name of the
renamed inode is not logged. If the old parent directory was previously
fsynced and we deleted the logged directory entries corresponding to the
old name, we end up with a log that when replayed will delete the renamed
inode.
The following example triggers the problem:
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt
$ mkdir /mnt/A
$ mkdir /mnt/B
$ echo -n "hello world" > /mnt/A/foo
$ sync
# Add some new file to A and fsync directory A.
$ touch /mnt/A/bar
$ xfs_io -c "fsync" /mnt/A
# Now trigger inode eviction. We are only interested in triggering
# eviction for the inode of directory A.
$ echo 2 > /proc/sys/vm/drop_caches
# Move foo from directory A to directory B.
# This deletes the directory entries for foo in A from the log, and
# does not add the new name for foo in directory B to the log, because
# logged_trans of A is 0, which is less than the current transaction ID.
$ mv /mnt/A/foo /mnt/B/foo
# Now make an fsync to anything except A, B or any file inside them,
# like for example create a file at the root directory and fsync this
# new file. This syncs the log that contains all the changes done by
# previous rename operation.
$ touch /mnt/baz
$ xfs_io -c "fsync" /mnt/baz
<power fail>
# Mount the filesystem and replay the log.
$ mount /dev/sdc /mnt
# Check the filesystem content.
$ ls -1R /mnt
/mnt/:
A
B
baz
/mnt/A:
bar
/mnt/B:
$
# File foo is gone, it's neither in A/ nor in B/.
Fix this by using the inode_logged() helper at btrfs_log_new_name(), which
safely checks if an inode was logged before in the current transaction.
A test case for fstests will follow soon.
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit de53d892e5c51dfa0a158e812575a75a6c991f39 ]
When we are doing a rename or a link operation for an inode that was logged
in the previous transaction and that transaction is still committing, we
have a time window where we incorrectly consider that the inode was logged
previously in the current transaction and therefore decide to log it to
update it in the log. The following steps give an example on how this
happens during a link operation:
1) Inode X is logged in transaction 1000, so its logged_trans field is set
to 1000;
2) Task A starts to commit transaction 1000;
3) The state of transaction 1000 is changed to TRANS_STATE_UNBLOCKED;
4) Task B starts a link operation for inode X, and as a consequence it
starts transaction 1001;
5) Task A is still committing transaction 1000, therefore the value stored
at fs_info->last_trans_committed is still 999;
6) Task B calls btrfs_log_new_name(), it reads a value of 999 from
fs_info->last_trans_committed and because the logged_trans field of
inode X has a value of 1000, the function does not return immediately,
instead it proceeds to logging the inode, which should not happen
because the inode was logged in the previous transaction (1000) and
not in the current one (1001).
This is not a functional problem, just wasted time and space logging an
inode that does not need to be logged, contributing to higher latency
for link and rename operations.
So fix this by comparing the inodes' logged_trans field with the
generation of the current transaction instead of comparing with the value
stored in fs_info->last_trans_committed.
This case is often hit when running dbench for a long enough duration, as
it does lots of rename operations.
This patch belongs to a patch set that is comprised of the following
patches:
btrfs: fix race causing unnece |