Age | Commit message (Collapse) | Author | Files | Lines |
|
When configuring a hugetlb filesystem via the fsconfig() syscall, there is
a possible NULL dereference in hugetlbfs_fill_super() caused by assigning
NULL to ctx->hstate in hugetlbfs_parse_param() when the requested pagesize
is non valid.
E.g: Taking the following steps:
fd = fsopen("hugetlbfs", FSOPEN_CLOEXEC);
fsconfig(fd, FSCONFIG_SET_STRING, "pagesize", "1024", 0);
fsconfig(fd, FSCONFIG_CMD_CREATE, NULL, NULL, 0);
Given that the requested "pagesize" is invalid, ctxt->hstate will be replaced
with NULL, losing its previous value, and we will print an error:
...
...
case Opt_pagesize:
ps = memparse(param->string, &rest);
ctx->hstate = h;
if (!ctx->hstate) {
pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
return -EINVAL;
}
return 0;
...
...
This is a problem because later on, we will dereference ctxt->hstate in
hugetlbfs_fill_super()
...
...
sb->s_blocksize = huge_page_size(ctx->hstate);
...
...
Causing below Oops.
Fix this by replacing cxt->hstate value only when then pagesize is known
to be valid.
kernel: hugetlbfs: Unsupported page size 0 MB
kernel: BUG: kernel NULL pointer dereference, address: 0000000000000028
kernel: #PF: supervisor read access in kernel mode
kernel: #PF: error_code(0x0000) - not-present page
kernel: PGD 800000010f66c067 P4D 800000010f66c067 PUD 1b22f8067 PMD 0
kernel: Oops: 0000 [#1] PREEMPT SMP PTI
kernel: CPU: 4 PID: 5659 Comm: syscall Tainted: G E 6.8.0-rc2-default+ #22 5a47c3fef76212addcc6eb71344aabc35190ae8f
kernel: Hardware name: Intel Corp. GROVEPORT/GROVEPORT, BIOS GVPRCRB1.86B.0016.D04.1705030402 05/03/2017
kernel: RIP: 0010:hugetlbfs_fill_super+0xb4/0x1a0
kernel: Code: 48 8b 3b e8 3e c6 ed ff 48 85 c0 48 89 45 20 0f 84 d6 00 00 00 48 b8 ff ff ff ff ff ff ff 7f 4c 89 e7 49 89 44 24 20 48 8b 03 <8b> 48 28 b8 00 10 00 00 48 d3 e0 49 89 44 24 18 48 8b 03 8b 40 28
kernel: RSP: 0018:ffffbe9960fcbd48 EFLAGS: 00010246
kernel: RAX: 0000000000000000 RBX: ffff9af5272ae780 RCX: 0000000000372004
kernel: RDX: ffffffffffffffff RSI: ffffffffffffffff RDI: ffff9af555e9b000
kernel: RBP: ffff9af52ee66b00 R08: 0000000000000040 R09: 0000000000370004
kernel: R10: ffffbe9960fcbd48 R11: 0000000000000040 R12: ffff9af555e9b000
kernel: R13: ffffffffa66b86c0 R14: ffff9af507d2f400 R15: ffff9af507d2f400
kernel: FS: 00007ffbc0ba4740(0000) GS:ffff9b0bd7000000(0000) knlGS:0000000000000000
kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
kernel: CR2: 0000000000000028 CR3: 00000001b1ee0000 CR4: 00000000001506f0
kernel: Call Trace:
kernel: <TASK>
kernel: ? __die_body+0x1a/0x60
kernel: ? page_fault_oops+0x16f/0x4a0
kernel: ? search_bpf_extables+0x65/0x70
kernel: ? fixup_exception+0x22/0x310
kernel: ? exc_page_fault+0x69/0x150
kernel: ? asm_exc_page_fault+0x22/0x30
kernel: ? __pfx_hugetlbfs_fill_super+0x10/0x10
kernel: ? hugetlbfs_fill_super+0xb4/0x1a0
kernel: ? hugetlbfs_fill_super+0x28/0x1a0
kernel: ? __pfx_hugetlbfs_fill_super+0x10/0x10
kernel: vfs_get_super+0x40/0xa0
kernel: ? __pfx_bpf_lsm_capable+0x10/0x10
kernel: vfs_get_tree+0x25/0xd0
kernel: vfs_cmd_create+0x64/0xe0
kernel: __x64_sys_fsconfig+0x395/0x410
kernel: do_syscall_64+0x80/0x160
kernel: ? syscall_exit_to_user_mode+0x82/0x240
kernel: ? do_syscall_64+0x8d/0x160
kernel: ? syscall_exit_to_user_mode+0x82/0x240
kernel: ? do_syscall_64+0x8d/0x160
kernel: ? exc_page_fault+0x69/0x150
kernel: entry_SYSCALL_64_after_hwframe+0x6e/0x76
kernel: RIP: 0033:0x7ffbc0cb87c9
kernel: Code: 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 97 96 0d 00 f7 d8 64 89 01 48
kernel: RSP: 002b:00007ffc29d2f388 EFLAGS: 00000206 ORIG_RAX: 00000000000001af
kernel: RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007ffbc0cb87c9
kernel: RDX: 0000000000000000 RSI: 0000000000000006 RDI: 0000000000000003
kernel: RBP: 00007ffc29d2f3b0 R08: 0000000000000000 R09: 0000000000000000
kernel: R10: 0000000000000000 R11: 0000000000000206 R12: 0000000000000000
kernel: R13: 00007ffc29d2f4c0 R14: 0000000000000000 R15: 0000000000000000
kernel: </TASK>
kernel: Modules linked in: rpcsec_gss_krb5(E) auth_rpcgss(E) nfsv4(E) dns_resolver(E) nfs(E) lockd(E) grace(E) sunrpc(E) netfs(E) af_packet(E) bridge(E) stp(E) llc(E) iscsi_ibft(E) iscsi_boot_sysfs(E) intel_rapl_msr(E) intel_rapl_common(E) iTCO_wdt(E) intel_pmc_bxt(E) sb_edac(E) iTCO_vendor_support(E) x86_pkg_temp_thermal(E) intel_powerclamp(E) coretemp(E) kvm_intel(E) rfkill(E) ipmi_ssif(E) kvm(E) acpi_ipmi(E) irqbypass(E) pcspkr(E) igb(E) ipmi_si(E) mei_me(E) i2c_i801(E) joydev(E) intel_pch_thermal(E) i2c_smbus(E) dca(E) lpc_ich(E) mei(E) ipmi_devintf(E) ipmi_msghandler(E) acpi_pad(E) tiny_power_button(E) button(E) fuse(E) efi_pstore(E) configfs(E) ip_tables(E) x_tables(E) ext4(E) mbcache(E) jbd2(E) hid_generic(E) usbhid(E) sd_mod(E) t10_pi(E) crct10dif_pclmul(E) crc32_pclmul(E) crc32c_intel(E) polyval_clmulni(E) ahci(E) xhci_pci(E) polyval_generic(E) gf128mul(E) ghash_clmulni_intel(E) sha512_ssse3(E) sha256_ssse3(E) xhci_pci_renesas(E) libahci(E) ehci_pci(E) sha1_ssse3(E) xhci_hcd(E) ehci_hcd(E) libata(E)
kernel: mgag200(E) i2c_algo_bit(E) usbcore(E) wmi(E) sg(E) dm_multipath(E) dm_mod(E) scsi_dh_rdac(E) scsi_dh_emc(E) scsi_dh_alua(E) scsi_mod(E) scsi_common(E) aesni_intel(E) crypto_simd(E) cryptd(E)
kernel: Unloaded tainted modules: acpi_cpufreq(E):1 fjes(E):1
kernel: CR2: 0000000000000028
kernel: ---[ end trace 0000000000000000 ]---
kernel: RIP: 0010:hugetlbfs_fill_super+0xb4/0x1a0
kernel: Code: 48 8b 3b e8 3e c6 ed ff 48 85 c0 48 89 45 20 0f 84 d6 00 00 00 48 b8 ff ff ff ff ff ff ff 7f 4c 89 e7 49 89 44 24 20 48 8b 03 <8b> 48 28 b8 00 10 00 00 48 d3 e0 49 89 44 24 18 48 8b 03 8b 40 28
kernel: RSP: 0018:ffffbe9960fcbd48 EFLAGS: 00010246
kernel: RAX: 0000000000000000 RBX: ffff9af5272ae780 RCX: 0000000000372004
kernel: RDX: ffffffffffffffff RSI: ffffffffffffffff RDI: ffff9af555e9b000
kernel: RBP: ffff9af52ee66b00 R08: 0000000000000040 R09: 0000000000370004
kernel: R10: ffffbe9960fcbd48 R11: 0000000000000040 R12: ffff9af555e9b000
kernel: R13: ffffffffa66b86c0 R14: ffff9af507d2f400 R15: ffff9af507d2f400
kernel: FS: 00007ffbc0ba4740(0000) GS:ffff9b0bd7000000(0000) knlGS:0000000000000000
kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
kernel: CR2: 0000000000000028 CR3: 00000001b1ee0000 CR4: 00000000001506f0
Link: https://lkml.kernel.org/r/20240130210418.3771-1-osalvador@suse.de
Fixes: 32021982a324 ("hugetlbfs: Convert to fs_context")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Muchun Song <muchun.song@linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
For shared memory of type SHM_HUGETLB, hugetlb pages are reserved in
shmget() call. If SHM_NORESERVE flags is specified then the hugetlb pages
are not reserved. However when the shared memory is attached with the
shmat() call the hugetlb pages are getting reserved incorrectly for
SHM_HUGETLB shared memory created with SHM_NORESERVE which is a bug.
-------------------------------
Following test shows the issue.
$cat shmhtb.c
int main()
{
int shmflags = 0660 | IPC_CREAT | SHM_HUGETLB | SHM_NORESERVE;
int shmid;
shmid = shmget(SKEY, SHMSZ, shmflags);
if (shmid < 0)
{
printf("shmat: shmget() failed, %d\n", errno);
return 1;
}
printf("After shmget()\n");
system("cat /proc/meminfo | grep -i hugepages_");
shmat(shmid, NULL, 0);
printf("\nAfter shmat()\n");
system("cat /proc/meminfo | grep -i hugepages_");
shmctl(shmid, IPC_RMID, NULL);
return 0;
}
#sysctl -w vm.nr_hugepages=20
#./shmhtb
After shmget()
HugePages_Total: 20
HugePages_Free: 20
HugePages_Rsvd: 0
HugePages_Surp: 0
After shmat()
HugePages_Total: 20
HugePages_Free: 20
HugePages_Rsvd: 5 <--
HugePages_Surp: 0
--------------------------------
Fix is to ensure that hugetlb pages are not reserved for SHM_HUGETLB shared
memory in the shmat() call.
Link: https://lkml.kernel.org/r/1706040282-12388-1-git-send-email-prakash.sangappa@oracle.com
Signed-off-by: Prakash Sangappa <prakash.sangappa@oracle.com>
Acked-by: Muchun Song <muchun.song@linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
has_extra_refcount() makes the assumption that the page cache adds a ref
count of 1 and subtracts this in the extra_pins case. Commit a08c7193e4f1
(mm/filemap: remove hugetlb special casing in filemap.c) modifies
__filemap_add_folio() by calling folio_ref_add(folio, nr); for all cases
(including hugtetlb) where nr is the number of pages in the folio. We
should adjust the number of references coming from the page cache by
subtracing the number of pages rather than 1.
In hugetlbfs_read_iter(), folio_test_has_hwpoisoned() is testing the wrong
flag as, in the hugetlb case, memory-failure code calls
folio_test_set_hwpoison() to indicate poison. folio_test_hwpoison() is
the correct function to test for that flag.
After these fixes, the hugetlb hwpoison read selftest passes all cases.
Link: https://lkml.kernel.org/r/20240112180840.367006-1-sidhartha.kumar@oracle.com
Fixes: a08c7193e4f1 ("mm/filemap: remove hugetlb special casing in filemap.c")
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Closes: https://lore.kernel.org/linux-mm/20230713001833.3778937-1-jiaqiyan@google.com/T/#m8e1469119e5b831bbd05d495f96b842e4a1c5519
Reported-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Tested-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Acked-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Muchun Song <muchun.song@linux.dev>
Cc: James Houghton <jthoughton@google.com>
Cc: Jiaqi Yan <jiaqiyan@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: <stable@vger.kernel.org> [6.7+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Many singleton patches against the MM code. The patch series which are
included in this merge do the following:
- Peng Zhang has done some mapletree maintainance work in the series
'maple_tree: add mt_free_one() and mt_attr() helpers'
'Some cleanups of maple tree'
- In the series 'mm: use memmap_on_memory semantics for dax/kmem'
Vishal Verma has altered the interworking between memory-hotplug
and dax/kmem so that newly added 'device memory' can more easily
have its memmap placed within that newly added memory.
- Matthew Wilcox continues folio-related work (including a few fixes)
in the patch series
'Add folio_zero_tail() and folio_fill_tail()'
'Make folio_start_writeback return void'
'Fix fault handler's handling of poisoned tail pages'
'Convert aops->error_remove_page to ->error_remove_folio'
'Finish two folio conversions'
'More swap folio conversions'
- Kefeng Wang has also contributed folio-related work in the series
'mm: cleanup and use more folio in page fault'
- Jim Cromie has improved the kmemleak reporting output in the series
'tweak kmemleak report format'.
- In the series 'stackdepot: allow evicting stack traces' Andrey
Konovalov to permits clients (in this case KASAN) to cause eviction
of no longer needed stack traces.
- Charan Teja Kalla has fixed some accounting issues in the page
allocator's atomic reserve calculations in the series 'mm:
page_alloc: fixes for high atomic reserve caluculations'.
- Dmitry Rokosov has added to the samples/ dorectory some sample code
for a userspace memcg event listener application. See the series
'samples: introduce cgroup events listeners'.
- Some mapletree maintanance work from Liam Howlett in the series
'maple_tree: iterator state changes'.
- Nhat Pham has improved zswap's approach to writeback in the series
'workload-specific and memory pressure-driven zswap writeback'.
- DAMON/DAMOS feature and maintenance work from SeongJae Park in the
series
'mm/damon: let users feed and tame/auto-tune DAMOS'
'selftests/damon: add Python-written DAMON functionality tests'
'mm/damon: misc updates for 6.8'
- Yosry Ahmed has improved memcg's stats flushing in the series 'mm:
memcg: subtree stats flushing and thresholds'.
- In the series 'Multi-size THP for anonymous memory' Ryan Roberts
has added a runtime opt-in feature to transparent hugepages which
improves performance by allocating larger chunks of memory during
anonymous page faults.
- Matthew Wilcox has also contributed some cleanup and maintenance
work against eh buffer_head code int he series 'More buffer_head
cleanups'.
- Suren Baghdasaryan has done work on Andrea Arcangeli's series
'userfaultfd move option'. UFFDIO_MOVE permits userspace heap
compaction algorithms to move userspace's pages around rather than
UFFDIO_COPY'a alloc/copy/free.
- Stefan Roesch has developed a 'KSM Advisor', in the series 'mm/ksm:
Add ksm advisor'. This is a governor which tunes KSM's scanning
aggressiveness in response to userspace's current needs.
- Chengming Zhou has optimized zswap's temporary working memory use
in the series 'mm/zswap: dstmem reuse optimizations and cleanups'.
- Matthew Wilcox has performed some maintenance work on the writeback
code, both code and within filesystems. The series is 'Clean up the
writeback paths'.
- Andrey Konovalov has optimized KASAN's handling of alloc and free
stack traces for secondary-level allocators, in the series 'kasan:
save mempool stack traces'.
- Andrey also performed some KASAN maintenance work in the series
'kasan: assorted clean-ups'.
- David Hildenbrand has gone to town on the rmap code. Cleanups, more
pte batching, folio conversions and more. See the series 'mm/rmap:
interface overhaul'.
- Kinsey Ho has contributed some maintenance work on the MGLRU code
in the series 'mm/mglru: Kconfig cleanup'.
- Matthew Wilcox has contributed lruvec page accounting code cleanups
in the series 'Remove some lruvec page accounting functions'"
* tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (361 commits)
mm, treewide: rename MAX_ORDER to MAX_PAGE_ORDER
mm, treewide: introduce NR_PAGE_ORDERS
selftests/mm: add separate UFFDIO_MOVE test for PMD splitting
selftests/mm: skip test if application doesn't has root privileges
selftests/mm: conform test to TAP format output
selftests: mm: hugepage-mmap: conform to TAP format output
selftests/mm: gup_test: conform test to TAP format output
mm/selftests: hugepage-mremap: conform test to TAP format output
mm/vmstat: move pgdemote_* out of CONFIG_NUMA_BALANCING
mm: zsmalloc: return -ENOSPC rather than -EINVAL in zs_malloc while size is too large
mm/memcontrol: remove __mod_lruvec_page_state()
mm/khugepaged: use a folio more in collapse_file()
slub: use a folio in __kmalloc_large_node
slub: use folio APIs in free_large_kmalloc()
slub: use alloc_pages_node() in alloc_slab_page()
mm: remove inc/dec lruvec page state functions
mm: ratelimit stat flush from workingset shrinker
kasan: stop leaking stack trace handles
mm/mglru: remove CONFIG_TRANSPARENT_HUGEPAGE
mm/mglru: add dummy pmd_dirty()
...
|
|
There were already assertions that we were not passing a tail page to
error_remove_page(), so make the compiler enforce that by converting
everything to pass and use a folio.
Link: https://lkml.kernel.org/r/20231117161447.2461643-7-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
It is hard to find where mapping->private_lock, mapping->private_list and
mapping->private_data are used, due to private_XXX being a relatively
common name for variables and structure members in the kernel. To fit
with other members of struct address_space, rename them all to have an
i_ prefix. Tested with an allmodconfig build.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: https://lore.kernel.org/r/20231117215823.2821906-1-willy@infradead.org
Acked-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull vfs fanotify fsid updates from Christian Brauner:
"This work is part of the plan to enable fanotify to serve as a drop-in
replacement for inotify. While inotify is availabe on all filesystems,
fanotify currently isn't.
In order to support fanotify on all filesystems two things are needed:
(1) all filesystems need to support AT_HANDLE_FID
(2) all filesystems need to report a non-zero f_fsid
This contains (1) and allows filesystems to encode non-decodable file
handlers for fanotify without implementing any exportfs operations by
encoding a file id of type FILEID_INO64_GEN from i_ino and
i_generation.
Filesystems that want to opt out of encoding non-decodable file ids
for fanotify that don't support NFS export can do so by providing an
empty export_operations struct.
This also partially addresses (2) by generating f_fsid for simple
filesystems as well as freevxfs. Remaining filesystems will be dealt
with by separate patches.
Finally, this contains the patch from the current exportfs maintainers
which moves exportfs under vfs with Chuck, Jeff, and Amir as
maintainers and vfs.git as tree"
* tag 'vfs-6.7.fsid' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
MAINTAINERS: create an entry for exportfs
fs: fix build error with CONFIG_EXPORTFS=m or not defined
freevxfs: derive f_fsid from bdev->bd_dev
fs: report f_fsid from s_dev for "simple" filesystems
exportfs: support encoding non-decodeable file handles by default
exportfs: define FILEID_INO64_GEN* file handle types
exportfs: make ->encode_fh() a mandatory method for NFS export
exportfs: add helpers to check if filesystem can encode/decode file handles
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Many singleton patches against the MM code. The patch series which are
included in this merge do the following:
- Kemeng Shi has contributed some compation maintenance work in the
series 'Fixes and cleanups to compaction'
- Joel Fernandes has a patchset ('Optimize mremap during mutual
alignment within PMD') which fixes an obscure issue with mremap()'s
pagetable handling during a subsequent exec(), based upon an
implementation which Linus suggested
- More DAMON/DAMOS maintenance and feature work from SeongJae Park i
the following patch series:
mm/damon: misc fixups for documents, comments and its tracepoint
mm/damon: add a tracepoint for damos apply target regions
mm/damon: provide pseudo-moving sum based access rate
mm/damon: implement DAMOS apply intervals
mm/damon/core-test: Fix memory leaks in core-test
mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval
- In the series 'Do not try to access unaccepted memory' Adrian
Hunter provides some fixups for the recently-added 'unaccepted
memory' feature. To increase the feature's checking coverage. 'Plug
a few gaps where RAM is exposed without checking if it is
unaccepted memory'
- In the series 'cleanups for lockless slab shrink' Qi Zheng has done
some maintenance work which is preparation for the lockless slab
shrinking code
- Qi Zheng has redone the earlier (and reverted) attempt to make slab
shrinking lockless in the series 'use refcount+RCU method to
implement lockless slab shrink'
- David Hildenbrand contributes some maintenance work for the rmap
code in the series 'Anon rmap cleanups'
- Kefeng Wang does more folio conversions and some maintenance work
in the migration code. Series 'mm: migrate: more folio conversion
and unification'
- Matthew Wilcox has fixed an issue in the buffer_head code which was
causing long stalls under some heavy memory/IO loads. Some cleanups
were added on the way. Series 'Add and use bdev_getblk()'
- In the series 'Use nth_page() in place of direct struct page
manipulation' Zi Yan has fixed a potential issue with the direct
manipulation of hugetlb page frames
- In the series 'mm: hugetlb: Skip initialization of gigantic tail
struct pages if freed by HVO' has improved our handling of gigantic
pages in the hugetlb vmmemmep optimizaton code. This provides
significant boot time improvements when significant amounts of
gigantic pages are in use
- Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code
rationalization and folio conversions in the hugetlb code
- Yin Fengwei has improved mlock()'s handling of large folios in the
series 'support large folio for mlock'
- In the series 'Expose swapcache stat for memcg v1' Liu Shixin has
added statistics for memcg v1 users which are available (and
useful) under memcg v2
- Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
prctl so that userspace may direct the kernel to not automatically
propagate the denial to child processes. The series is named 'MDWE
without inheritance'
- Kefeng Wang has provided the series 'mm: convert numa balancing
functions to use a folio' which does what it says
- In the series 'mm/ksm: add fork-exec support for prctl' Stefan
Roesch makes is possible for a process to propagate KSM treatment
across exec()
- Huang Ying has enhanced memory tiering's calculation of memory
distances. This is used to permit the dax/kmem driver to use 'high
bandwidth memory' in addition to Optane Data Center Persistent
Memory Modules (DCPMM). The series is named 'memory tiering:
calculate abstract distance based on ACPI HMAT'
- In the series 'Smart scanning mode for KSM' Stefan Roesch has
optimized KSM by teaching it to retain and use some historical
information from previous scans
- Yosry Ahmed has fixed some inconsistencies in memcg statistics in
the series 'mm: memcg: fix tracking of pending stats updates
values'
- In the series 'Implement IOCTL to get and optionally clear info
about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap
which permits us to atomically read-then-clear page softdirty
state. This is mainly used by CRIU
- Hugh Dickins contributed the series 'shmem,tmpfs: general
maintenance', a bunch of relatively minor maintenance tweaks to
this code
- Matthew Wilcox has increased the use of the VMA lock over
file-backed page faults in the series 'Handle more faults under the
VMA lock'. Some rationalizations of the fault path became possible
as a result
- In the series 'mm/rmap: convert page_move_anon_rmap() to
folio_move_anon_rmap()' David Hildenbrand has implemented some
cleanups and folio conversions
- In the series 'various improvements to the GUP interface' Lorenzo
Stoakes has simplified and improved the GUP interface with an eye
to providing groundwork for future improvements
- Andrey Konovalov has sent along the series 'kasan: assorted fixes
and improvements' which does those things
- Some page allocator maintenance work from Kemeng Shi in the series
'Two minor cleanups to break_down_buddy_pages'
- In thes series 'New selftest for mm' Breno Leitao has developed
another MM self test which tickles a race we had between madvise()
and page faults
- In the series 'Add folio_end_read' Matthew Wilcox provides cleanups
and an optimization to the core pagecache code
- Nhat Pham has added memcg accounting for hugetlb memory in the
series 'hugetlb memcg accounting'
- Cleanups and rationalizations to the pagemap code from Lorenzo
Stoakes, in the series 'Abstract vma_merge() and split_vma()'
- Audra Mitchell has fixed issues in the procfs page_owner code's new
timestamping feature which was causing some misbehaviours. In the
series 'Fix page_owner's use of free timestamps'
- Lorenzo Stoakes has fixed the handling of new mappings of sealed
files in the series 'permit write-sealed memfd read-only shared
mappings'
- Mike Kravetz has optimized the hugetlb vmemmap optimization in the
series 'Batch hugetlb vmemmap modification operations'
- Some buffer_head folio conversions and cleanups from Matthew Wilcox
in the series 'Finish the create_empty_buffers() transition'
- As a page allocator performance optimization Huang Ying has added
automatic tuning to the allocator's per-cpu-pages feature, in the
series 'mm: PCP high auto-tuning'
- Roman Gushchin has contributed the patchset 'mm: improve
performance of accounted kernel memory allocations' which improves
their performance by ~30% as measured by a micro-benchmark
- folio conversions from Kefeng Wang in the series 'mm: convert page
cpupid functions to folios'
- Some kmemleak fixups in Liu Shixin's series 'Some bugfix about
kmemleak'
- Qi Zheng has improved our handling of memoryless nodes by keeping
them off the allocation fallback list. This is done in the series
'handle memoryless nodes more appropriately'
- khugepaged conversions from Vishal Moola in the series 'Some
khugepaged folio conversions'"
[ bcachefs conflicts with the dynamically allocated shrinkers have been
resolved as per Stephen Rothwell in
https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/
with help from Qi Zheng.
The clone3 test filtering conflict was half-arsed by yours truly ]
* tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits)
mm/damon/sysfs: update monitoring target regions for online input commit
mm/damon/sysfs: remove requested targets when online-commit inputs
selftests: add a sanity check for zswap
Documentation: maple_tree: fix word spelling error
mm/vmalloc: fix the unchecked dereference warning in vread_iter()
zswap: export compression failure stats
Documentation: ubsan: drop "the" from article title
mempolicy: migration attempt to match interleave nodes
mempolicy: mmap_lock is not needed while migrating folios
mempolicy: alloc_pages_mpol() for NUMA policy without vma
mm: add page_rmappable_folio() wrapper
mempolicy: remove confusing MPOL_MF_LAZY dead code
mempolicy: mpol_shared_policy_init() without pseudo-vma
mempolicy trivia: use pgoff_t in shared mempolicy tree
mempolicy trivia: slightly more consistent naming
mempolicy trivia: delete those ancient pr_debug()s
mempolicy: fix migrate_pages(2) syscall return nr_failed
kernfs: drop shared NUMA mempolicy hooks
hugetlbfs: drop shared NUMA mempolicy pretence
mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets()
...
|
|
There are many "simple" filesystems (*) that report null f_fsid in
statfs(2). Those "simple" filesystems report sb->s_dev as the st_dev
field of the stat syscalls for all inodes of the filesystem (**).
In order to enable fanotify reporting of events with fsid on those
"simple" filesystems, report the sb->s_dev number in f_fsid field of
statfs(2).
(*) For most of the "simple" filesystem refered to in this commit, the
->statfs() operation is simple_statfs(). Some of those fs assign the
simple_statfs() method directly in their ->s_op struct and some assign it
indirectly via a call to simple_fill_super() or to pseudo_fs_fill_super()
with either custom or "simple" s_op.
We also make the same change to efivarfs and hugetlbfs, although they do
not use simple_statfs(), because they use the simple_* inode opreations
(e.g. simple_lookup()).
(**) For most of the "simple" filesystems, the ->getattr() method is not
assigned, so stat() is implemented by generic_fillattr(). A few "simple"
filesystem use the simple_getattr() method which also calls
generic_fillattr() to fill most of the stat struct.
The two exceptions are procfs and 9p. procfs implements several different
->getattr() methods, but they all end up calling generic_fillattr() to
fill the st_dev field from sb->s_dev.
9p has more complicated ->getattr() methods, but they too, end up calling
generic_fillattr() to fill the st_dev field from sb->s_dev.
Note that 9p and kernfs also call simple_statfs() from custom ->statfs()
methods which already fill the f_fsid field, but v9fs_statfs() calls
simple_statfs() only in case f_fsid was not filled and kenrfs_statfs()
overwrites f_fsid after calling simple_statfs().
Link: https://lore.kernel.org/r/20230919094820.g5bwharbmy2dq46w@quack3/
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Link: https://lore.kernel.org/r/20231023143049.2944970-1-amir73il@gmail.com
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
Patch series "mempolicy: cleanups leading to NUMA mpol without vma", v2.
Mostly cleanups in mm/mempolicy.c, but finally removing the pseudo-vma
from shmem folio allocation, and removing the mmap_lock around folio
migration for mbind and migrate_pages syscalls.
This patch (of 12):
hugetlbfs_fallocate() goes through the motions of pasting a shared NUMA
mempolicy onto its pseudo-vma, but how could there ever be a shared NUMA
mempolicy for this file? hugetlb_vm_ops has never offered a set_policy
method, and hugetlbfs_parse_param() has never supported any mpol options
for a mount-wide default policy.
It's just an illusion: clean it away so as not to confuse others, giving
us more freedom to adjust shmem's set_policy/get_policy implementation.
But hugetlbfs_inode_info is still required, just to accommodate seals.
Yes, shared NUMA mempolicy support could be added to hugetlbfs, with a
set_policy method and/or mpol mount option (Andi's first posting did
include an admitted-unsatisfactory hugetlb_set_policy()); but it seems
that nobody has bothered to add that in the nineteen years since v2.6.7
made it possible, and there is at least one company that has invested
enough into hugetlbfs, that I guess they have learnt well enough how to
manage its NUMA, without needing shared mempolicy.
Remove linux/mempolicy.h from linux/hugetlb.h: include linux/pagemap.h in
its place, because hugetlb.h's recently added use of filemap_lock_folio()
requires that (although most .configs and .c's get it in some other way).
Link: https://lkml.kernel.org/r/ebc0987e-beff-8bfb-9283-234c2cbd17c5@google.com
Link: https://lkml.kernel.org/r/cae82d4b-904a-faaf-282a-34fcc188c81f@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tejun heo <tj@kernel.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The seal_check_future_write() function is called by shmem_mmap() or
hugetlbfs_file_mmap() to disallow any future writable mappings of an memfd
sealed this way.
The F_SEAL_WRITE flag is not checked here, as that is handled via the
mapping->i_mmap_writable mechanism and so any attempt at a mapping would
fail before this could be run.
However we intend to change this, meaning this check can be performed for
F_SEAL_WRITE mappings also.
The logic here is equally applicable to both flags, so update this
function to accommodate both and rename it accordingly.
Link: https://lkml.kernel.org/r/913628168ce6cce77df7d13a63970bae06a526e0.1697116581.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Convert to using the new inode timestamp accessor functions.
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20231004185347.80880-43-jlayton@kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
Remove special cased hugetlb handling code within the page cache by
changing the granularity of ->index to the base page size rather than the
huge page size. The motivation of this patch is to reduce complexity
within the filemap code while also increasing performance by removing
branches that are evaluated on every page cache lookup.
To support the change in index, new wrappers for hugetlb page cache
interactions are added. These wrappers perform the conversion to a linear
index which is now expected by the page cache for huge pages.
========================= PERFORMANCE ======================================
Perf was used to check the performance differences after the patch.
Overall the performance is similar to mainline with a very small larger
overhead that occurs in __filemap_add_folio() and
hugetlb_add_to_page_cache(). This is because of the larger overhead that
occurs in xa_load() and xa_store() as the xarray is now using more entries
to store hugetlb folios in the page cache.
Timing
aarch64
2MB Page Size
6.5-rc3 + this patch:
[root@sidhakum-ol9-1 hugepages]# time fallocate -l 700GB test.txt
real 1m49.568s
user 0m0.000s
sys 1m49.461s
6.5-rc3:
[root]# time fallocate -l 700GB test.txt
real 1m47.495s
user 0m0.000s
sys 1m47.370s
1GB Page Size
6.5-rc3 + this patch:
[root@sidhakum-ol9-1 hugepages1G]# time fallocate -l 700GB test.txt
real 1m47.024s
user 0m0.000s
sys 1m46.921s
6.5-rc3:
[root@sidhakum-ol9-1 hugepages1G]# time fallocate -l 700GB test.txt
real 1m44.551s
user 0m0.000s
sys 1m44.438s
x86
2MB Page Size
6.5-rc3 + this patch:
[root@sidhakum-ol9-2 hugepages]# time fallocate -l 100GB test.txt
real 0m22.383s
user 0m0.000s
sys 0m22.255s
6.5-rc3:
[opc@sidhakum-ol9-2 hugepages]$ time sudo fallocate -l 100GB /dev/hugepages/test.txt
real 0m22.735s
user 0m0.038s
sys 0m22.567s
1GB Page Size
6.5-rc3 + this patch:
[root@sidhakum-ol9-2 hugepages1GB]# time fallocate -l 100GB test.txt
real 0m25.786s
user 0m0.001s
sys 0m25.589s
6.5-rc3:
[root@sidhakum-ol9-2 hugepages1G]# time fallocate -l 100GB test.txt
real 0m33.454s
user 0m0.001s
sys 0m33.193s
aarch64:
workload - fallocate a 700GB file backed by huge pages
6.5-rc3 + this patch:
2MB Page Size:
--100.00%--__arm64_sys_fallocate
ksys_fallocate
vfs_fallocate
hugetlbfs_fallocate
|
|--95.04%--__pi_clear_page
|
|--3.57%--clear_huge_page
| |
| |--2.63%--rcu_all_qs
| |
| --0.91%--__cond_resched
|
--0.67%--__cond_resched
0.17% 0.00% 0 fallocate [kernel.vmlinux] [k] hugetlb_add_to_page_cache
0.14% 0.10% 11 fallocate [kernel.vmlinux] [k] __filemap_add_folio
6.5-rc3
2MB Page Size:
--100.00%--__arm64_sys_fallocate
ksys_fallocate
vfs_fallocate
hugetlbfs_fallocate
|
|--94.91%--__pi_clear_page
|
|--4.11%--clear_huge_page
| |
| |--3.00%--rcu_all_qs
| |
| --1.10%--__cond_resched
|
--0.59%--__cond_resched
0.08% 0.01% 1 fallocate [kernel.kallsyms] [k] hugetlb_add_to_page_cache
0.05% 0.03% 3 fallocate [kernel.kallsyms] [k] __filemap_add_folio
x86
workload - fallocate a 100GB file backed by huge pages
6.5-rc3 + this patch:
2MB Page Size:
hugetlbfs_fallocate
|
--99.57%--clear_huge_page
|
--98.47%--clear_page_erms
|
--0.53%--asm_sysvec_apic_timer_interrupt
0.04% 0.04% 1 fallocate [kernel.kallsyms] [k] xa_load
0.04% 0.00% 0 fallocate [kernel.kallsyms] [k] hugetlb_add_to_page_cache
0.04% 0.00% 0 fallocate [kernel.kallsyms] [k] __filemap_add_folio
0.04% 0.00% 0 fallocate [kernel.kallsyms] [k] xas_store
6.5-rc3
2MB Page Size:
--99.93%--__x64_sys_fallocate
vfs_fallocate
hugetlbfs_fallocate
|
--99.38%--clear_huge_page
|
|--98.40%--clear_page_erms
|
--0.59%--__cond_resched
0.03% 0.03% 1 fallocate [kernel.kallsyms] [k] __filemap_add_folio
========================= TESTING ======================================
This patch passes libhugetlbfs tests and LTP hugetlb tests
********** TEST SUMMARY
* 2M
* 32-bit 64-bit
* Total testcases: 110 113
* Skipped: 0 0
* PASS: 107 113
* FAIL: 0 0
* Killed by signal: 3 0
* Bad configuration: 0 0
* Expected FAIL: 0 0
* Unexpected PASS: 0 0
* Test not present: 0 0
* Strange test result: 0 0
**********
Done executing testcases.
LTP Version: 20220527-178-g2761a81c4
page migration was also tested using Mike Kravetz's test program.[8]
[dan.carpenter@linaro.org: fix an NULL vs IS_ERR() bug]
Link: https://lkml.kernel.org/r/1772c296-1417-486f-8eef-171af2192681@moroto.mountain
Link: https://lkml.kernel.org/r/20230926192017.98183-1-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Reported-and-tested-by: syzbot+c225dea486da4d5592bd@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=c225dea486da4d5592bd
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When dealing with hugetlb pages, struct page is not guaranteed to be
contiguous on SPARSEMEM without VMEMMAP. Use nth_page() to handle it
properly.
Without the fix, a wrong subpage might be checked for HWPoison, causing wrong
number of bytes of a page copied to user space. No bug is reported. The fix
comes from code inspection.
Link: https://lkml.kernel.org/r/20230913201248.452081-5-zi.yan@sent.com
Fixes: 38c1ddbde6c6 ("hugetlbfs: improve read HWPOISON hugepage")
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Some swap cleanups from Ma Wupeng ("fix WARN_ON in
add_to_avail_list")
- Peter Xu has a series (mm/gup: Unify hugetlb, speed up thp") which
reduces the special-case code for handling hugetlb pages in GUP. It
also speeds up GUP handling of transparent hugepages.
- Peng Zhang provides some maple tree speedups ("Optimize the fast path
of mas_store()").
- Sergey Senozhatsky has improved te performance of zsmalloc during
compaction (zsmalloc: small compaction improvements").
- Domenico Cerasuolo has developed additional selftest code for zswap
("selftests: cgroup: add zswap test program").
- xu xin has doe some work on KSM's handling of zero pages. These
changes are mainly to enable the user to better understand the
effectiveness of KSM's treatment of zero pages ("ksm: support
tracking KSM-placed zero-pages").
- Jeff Xu has fixes the behaviour of memfd's
MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED sysctl ("mm/memfd: fix sysctl
MEMFD_NOEXEC_SCOPE_NOEXEC_ENFORCED").
- David Howells has fixed an fscache optimization ("mm, netfs, fscache:
Stop read optimisation when folio removed from pagecache").
- Axel Rasmussen has given userfaultfd the ability to simulate memory
poisoning ("add UFFDIO_POISON to simulate memory poisoning with
UFFD").
- Miaohe Lin has contributed some routine maintenance work on the
memory-failure code ("mm: memory-failure: remove unneeded PageHuge()
check").
- Peng Zhang has contributed some maintenance work on the maple tree
code ("Improve the validation for maple tree and some cleanup").
- Hugh Dickins has optimized the collapsing of shmem or file pages into
THPs ("mm: free retracted page table by RCU").
- Jiaqi Yan has a patch series which permits us to use the healthy
subpages within a hardware poisoned huge page for general purposes
("Improve hugetlbfs read on HWPOISON hugepages").
- Kemeng Shi has done some maintenance work on the pagetable-check code
("Remove unused parameters in page_table_check").
- More folioification work from Matthew Wilcox ("More filesystem folio
conversions for 6.6"), ("Followup folio conversions for zswap"). And
from ZhangPeng ("Convert several functions in page_io.c to use a
folio").
- page_ext cleanups from Kemeng Shi ("minor cleanups for page_ext").
- Baoquan He has converted some architectures to use the
GENERIC_IOREMAP ioremap()/iounmap() code ("mm: ioremap: Convert
architectures to take GENERIC_IOREMAP way").
- Anshuman Khandual has optimized arm64 tlb shootdown ("arm64: support
batched/deferred tlb shootdown during page reclamation/migration").
- Better maple tree lockdep checking from Liam Howlett ("More strict
maple tree lockdep"). Liam also developed some efficiency
improvements ("Reduce preallocations for maple tree").
- Cleanup and optimization to the secondary IOMMU TLB invalidation,
from Alistair Popple ("Invalidate secondary IOMMU TLB on permission
upgrade").
- Ryan Roberts fixes some arm64 MM selftest issues ("selftests/mm fixes
for arm64").
- Kemeng Shi provides some maintenance work on the compaction code
("Two minor cleanups for compaction").
- Some reduction in mmap_lock pressure from Matthew Wilcox ("Handle
most file-backed faults under the VMA lock").
- Aneesh Kumar contributes code to use the vmemmap optimization for DAX
on ppc64, under some circumstances ("Add support for DAX vmemmap
optimization for ppc64").
- page-ext cleanups from Kemeng Shi ("add page_ext_data to get client
data in page_ext"), ("minor cleanups to page_ext header").
- Some zswap cleanups from Johannes Weiner ("mm: zswap: three
cleanups").
- kmsan cleanups from ZhangPeng ("minor cleanups for kmsan").
- VMA handling cleanups from Kefeng Wang ("mm: convert to
vma_is_initial_heap/stack()").
- DAMON feature work from SeongJae Park ("mm/damon/sysfs-schemes:
implement DAMOS tried total bytes file"), ("Extend DAMOS filters for
address ranges and DAMON monitoring targets").
- Compaction work from Kemeng Shi ("Fixes and cleanups to compaction").
- Liam Howlett has improved the maple tree node replacement code
("maple_tree: Change replacement strategy").
- ZhangPeng has a general code cleanup - use the K() macro more widely
("cleanup with helper macro K()").
- Aneesh Kumar brings memmap-on-memory to ppc64 ("Add support for
memmap on memory feature on ppc64").
- pagealloc cleanups from Kemeng Shi ("Two minor cleanups for pcp list
in page_alloc"), ("Two minor cleanups for get pageblock
migratetype").
- Vishal Moola introduces a memory descriptor for page table tracking,
"struct ptdesc" ("Split ptdesc from struct page").
- memfd selftest maintenance work from Aleksa Sarai ("memfd: cleanups
for vm.memfd_noexec").
- MM include file rationalization from Hugh Dickins ("arch: include
asm/cacheflush.h in asm/hugetlb.h").
- THP debug output fixes from Hugh Dickins ("mm,thp: fix sloppy text
output").
- kmemleak improvements from Xiaolei Wang ("mm/kmemleak: use
object_cache instead of kmemleak_initialized").
- More folio-related cleanups from Matthew Wilcox ("Remove _folio_dtor
and _folio_order").
- A VMA locking scalability improvement from Suren Baghdasaryan
("Per-VMA lock support for swap and userfaults").
- pagetable handling cleanups from Matthew Wilcox ("New page table
range API").
- A batch of swap/thp cleanups from David Hildenbrand ("mm/swap: stop
using page->private on tail pages for THP_SWAP + cleanups").
- Cleanups and speedups to the hugetlb fault handling from Matthew
Wilcox ("Change calling convention for ->huge_fault").
- Matthew Wilcox has also done some maintenance work on the MM
subsystem documentation ("Improve mm documentation").
* tag 'mm-stable-2023-08-28-18-26' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (489 commits)
maple_tree: shrink struct maple_tree
maple_tree: clean up mas_wr_append()
secretmem: convert page_is_secretmem() to folio_is_secretmem()
nios2: fix flush_dcache_page() for usage from irq context
hugetlb: add documentation for vma_kernel_pagesize()
mm: add orphaned kernel-doc to the rst files.
mm: fix clean_record_shared_mapping_range kernel-doc
mm: fix get_mctgt_type() kernel-doc
mm: fix kernel-doc warning from tlb_flush_rmaps()
mm: remove enum page_entry_size
mm: allow ->huge_fault() to be called without the mmap_lock held
mm: move PMD_ORDER to pgtable.h
mm: remove checks for pte_index
memcg: remove duplication detection for mem_cgroup_uncharge_swap
mm/huge_memory: work on folio->swap instead of page->private when splitting folio
mm/swap: inline folio_set_swap_entry() and folio_swap_entry()
mm/swap: use dedicated entry for swap in folio
mm/swap: stop using page->private on tail pages for THP_SWAP
selftests/mm: fix WARNING comparing pointer to 0
selftests: cgroup: fix test_kmem_memcg_deletion kernel mem check
...
|
|
When a hugepage contains HWPOISON pages, read() fails to read any byte of
the hugepage and returns -EIO, although many bytes in the HWPOISON
hugepage are readable.
Improve this by allowing hugetlbfs_read_iter returns as many bytes as
possible. For a requested range [offset, offset + len) that contains
HWPOISON page, return [offset, first HWPOISON page addr); the next read
attempt will fail and return -EIO.
Link: https://lkml.kernel.org/r/20230713001833.3778937-4-jiaqiyan@google.com
Signed-off-by: Jiaqi Yan <jiaqiyan@google.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In later patches, we're going to change how the inode's ctime field is
used. Switch to using accessor functions instead of raw accesses of
inode->i_ctime.
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Message-Id: <20230705190309.579783-50-jlayton@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
Ackerley Tng reported an issue with hugetlbfs fallocate as noted in the
Closes tag. The issue showed up after the conversion of hugetlb page
cache lookup code to use page_cache_next_miss. User visible effects are:
- hugetlbfs fallocate incorrectly returns -EEXIST if pages are presnet
in the file.
- hugetlb pages will not be included in core dumps if they need to be
brought in via GUP.
- userfaultfd UFFDIO_COPY will not notice pages already present in the
cache. It may try to allocate a new page and potentially return
ENOMEM as opposed to EEXIST.
Revert the use page_cache_next_miss() in hugetlb code.
IMPORTANT NOTE FOR STABLE BACKPORTS:
This patch will apply cleanly to v6.3. However, due to the change of
filemap_get_folio() return values, it will not function correctly. This
patch must be modified for stable backports.
[dan.carpenter@linaro.org: fix hugetlbfs_pagecache_present()]
Link: https://lkml.kernel.org/r/efa86091-6a2c-4064-8f55-9b44e1313015@moroto.mountain
Link: https://lkml.kernel.org/r/20230621212403.174710-2-mike.kravetz@oracle.com
Fixes: d0ce0e47b323 ("mm/hugetlb: convert hugetlb fault paths to use alloc_hugetlb_folio()")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Reported-by: Ackerley Tng <ackerleytng@google.com>
Closes: https://lore.kernel.org/linux-mm/cover.1683069252.git.ackerleytng@google.com
Reviewed-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Erdem Aktas <erdemaktas@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Vishal Annapurve <vannapurve@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Calling hugetlb_set_vma_policy() later avoids setting the vma policy
and then dropping it on a page cache hit.
Link: https://lkml.kernel.org/r/20230502235622.3652586-1-ackerleytng@goog |