Age | Commit message (Collapse) | Author | Files | Lines |
|
If a program is watching a file on a 9p mount, it won't see any change in
size if the file being exported by the server is changed directly in the
source filesystem, presumably because 9p doesn't have change notifications,
and because netfs skips the reads if the file is empty.
Fix this by attempting to read the full size specified when a DIO read is
requested (such as when 9p is operating in unbuffered mode) and dealing
with a short read if the EOF was less than the expected read.
To make this work, filesystems using netfslib must not set
NETFS_SREQ_CLEAR_TAIL if performing a DIO read where that read hit the EOF.
I don't want to mandatorily clear this flag in netfslib for DIO because,
say, ceph might make a read from an object that is not completely filled,
but does not reside at the end of file - and so we need to clear the
excess.
This can be tested by watching an empty file over 9p within a VM (such as
in the ktest framework):
while true; do read content; if [ -n "$content" ]; then echo $content; break; fi; done < /host/tmp/foo
then writing something into the empty file. The watcher should immediately
display the file content and break out of the loop. Without this fix, it
remains in the loop indefinitely.
Fixes: 80105ed2fd27 ("9p: Use netfslib read/write_iter")
Closes: https://bugzilla.kernel.org/show_bug.cgi?id=218916
Signed-off-by: David Howells <dhowells@redhat.com>
Link: https://lore.kernel.org/r/1229195.1723211769@warthog.procyon.org.uk
cc: Eric Van Hensbergen <ericvh@kernel.org>
cc: Latchesar Ionkov <lucho@ionkov.net>
cc: Christian Schoenebeck <linux_oss@crudebyte.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: Ilya Dryomov <idryomov@gmail.com>
cc: Steve French <sfrench@samba.org>
cc: Paulo Alcantara <pc@manguebit.com>
cc: Trond Myklebust <trond.myklebust@hammerspace.com>
cc: v9fs@lists.linux.dev
cc: linux-afs@lists.infradead.org
cc: ceph-devel@vger.kernel.org
cc: linux-cifs@vger.kernel.org
cc: linux-nfs@vger.kernel.org
cc: netfs@lists.linux.dev
cc: linux-fsdevel@vger.kernel.org
Signed-off-by: Dominique Martinet <asmadeus@codewreck.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
The NETFS_RREQ_USE_PGPRIV2 and NETFS_RREQ_WRITE_TO_CACHE flags aren't used
correctly. The problem is that we try to set them up in the request
initialisation, but we the cache may be in the process of setting up still,
and so the state may not be correct. Further, we secondarily sample the
cache state and make contradictory decisions later.
The issue arises because we set up the cache resources, which allows the
cache's ->prepare_read() to switch on NETFS_SREQ_COPY_TO_CACHE - which
triggers cache writing even if we didn't set the flags when allocating.
Fix this in the following way:
(1) Drop NETFS_ICTX_USE_PGPRIV2 and instead set NETFS_RREQ_USE_PGPRIV2 in
->init_request() rather than trying to juggle that in
netfs_alloc_request().
(2) Repurpose NETFS_RREQ_USE_PGPRIV2 to merely indicate that if caching is
to be done, then PG_private_2 is to be used rather than only setting
it if we decide to cache and then having netfs_rreq_unlock_folios()
set the non-PG_private_2 writeback-to-cache if it wasn't set.
(3) Split netfs_rreq_unlock_folios() into two functions, one of which
contains the deprecated code for using PG_private_2 to avoid
accidentally doing the writeback path - and always use it if
USE_PGPRIV2 is set.
(4) As NETFS_ICTX_USE_PGPRIV2 is removed, make netfs_write_begin() always
wait for PG_private_2. This function is deprecated and only used by
ceph anyway, and so label it so.
(5) Drop the NETFS_RREQ_WRITE_TO_CACHE flag and use
fscache_operation_valid() on the cache_resources instead. This has
the advantage of picking up the result of netfs_begin_cache_read() and
fscache_begin_write_operation() - which are called after the object is
initialised and will wait for the cache to come to a usable state.
Just reverting ae678317b95e[1] isn't a sufficient fix, so this need to be
applied on top of that. Without this as well, things like:
rcu: INFO: rcu_sched detected expedited stalls on CPUs/tasks: {
and:
WARNING: CPU: 13 PID: 3621 at fs/ceph/caps.c:3386
may happen, along with some UAFs due to PG_private_2 not getting used to
wait on writeback completion.
Fixes: 2ff1e97587f4 ("netfs: Replace PG_fscache by setting folio->private and marking dirty")
Reported-by: Max Kellermann <max.kellermann@ionos.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Ilya Dryomov <idryomov@gmail.com>
cc: Xiubo Li <xiubli@redhat.com>
cc: Hristo Venev <hristo@venev.name>
cc: Jeff Layton <jlayton@kernel.org>
cc: Matthew Wilcox <willy@infradead.org>
cc: ceph-devel@vger.kernel.org
cc: netfs@lists.linux.dev
cc: linux-fsdevel@vger.kernel.org
cc: linux-mm@kvack.org
Link: https://lore.kernel.org/r/3575457.1722355300@warthog.procyon.org.uk/ [1]
Link: https://lore.kernel.org/r/1173209.1723152682@warthog.procyon.org.uk
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
Remove the code testing folio_test_swapcache either explicitly or
implicitly in pagemap.h headers, as is now handled using the direct I/O
path and not the buffered I/O path that these helpers are located in.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
The loop inside nfs_netfs_issue_read() currently does not disable
interrupts while iterating through pages in the xarray to submit
for NFS read. This is not safe though since after taking xa_lock,
another page in the mapping could be processed for writeback inside
an interrupt, and deadlock can occur. The fix is simple and clean
if we use xa_for_each_range(), which handles the iteration with RCU
while reducing code complexity.
The problem is easily reproduced with the following test:
mount -o vers=3,fsc 127.0.0.1:/export /mnt/nfs
dd if=/dev/zero of=/mnt/nfs/file1.bin bs=4096 count=1
echo 3 > /proc/sys/vm/drop_caches
dd if=/mnt/nfs/file1.bin of=/dev/null
umount /mnt/nfs
On the console with a lockdep-enabled kernel a message similar to
the following will be seen:
================================
WARNING: inconsistent lock state
6.7.0-lockdbg+ #10 Not tainted
--------------------------------
inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage.
test5/1708 [HC0[0]:SC0[0]:HE1:SE1] takes:
ffff888127baa598 (&xa->xa_lock#4){+.?.}-{3:3}, at:
nfs_netfs_issue_read+0x1b2/0x4b0 [nfs]
{IN-SOFTIRQ-W} state was registered at:
lock_acquire+0x144/0x380
_raw_spin_lock_irqsave+0x4e/0xa0
__folio_end_writeback+0x17e/0x5c0
folio_end_writeback+0x93/0x1b0
iomap_finish_ioend+0xeb/0x6a0
blk_update_request+0x204/0x7f0
blk_mq_end_request+0x30/0x1c0
blk_complete_reqs+0x7e/0xa0
__do_softirq+0x113/0x544
__irq_exit_rcu+0xfe/0x120
irq_exit_rcu+0xe/0x20
sysvec_call_function_single+0x6f/0x90
asm_sysvec_call_function_single+0x1a/0x20
pv_native_safe_halt+0xf/0x20
default_idle+0x9/0x20
default_idle_call+0x67/0xa0
do_idle+0x2b5/0x300
cpu_startup_entry+0x34/0x40
start_secondary+0x19d/0x1c0
secondary_startup_64_no_verify+0x18f/0x19b
irq event stamp: 176891
hardirqs last enabled at (176891): [<ffffffffa67a0be4>]
_raw_spin_unlock_irqrestore+0x44/0x60
hardirqs last disabled at (176890): [<ffffffffa67a0899>]
_raw_spin_lock_irqsave+0x79/0xa0
softirqs last enabled at (176646): [<ffffffffa515d91e>]
__irq_exit_rcu+0xfe/0x120
softirqs last disabled at (176633): [<ffffffffa515d91e>]
__irq_exit_rcu+0xfe/0x120
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&xa->xa_lock#4);
<Interrupt>
lock(&xa->xa_lock#4);
*** DEADLOCK ***
2 locks held by test5/1708:
#0: ffff888127baa498 (&sb->s_type->i_mutex_key#22){++++}-{4:4}, at:
nfs_start_io_read+0x28/0x90 [nfs]
#1: ffff888127baa650 (mapping.invalidate_lock#3){.+.+}-{4:4}, at:
page_cache_ra_unbounded+0xa4/0x280
stack backtrace:
CPU: 6 PID: 1708 Comm: test5 Kdump: loaded Not tainted 6.7.0-lockdbg+
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-1.fc39
04/01/2014
Call Trace:
dump_stack_lvl+0x5b/0x90
mark_lock+0xb3f/0xd20
__lock_acquire+0x77b/0x3360
_raw_spin_lock+0x34/0x80
nfs_netfs_issue_read+0x1b2/0x4b0 [nfs]
netfs_begin_read+0x77f/0x980 [netfs]
nfs_netfs_readahead+0x45/0x60 [nfs]
nfs_readahead+0x323/0x5a0 [nfs]
read_pages+0xf3/0x5c0
page_cache_ra_unbounded+0x1c8/0x280
filemap_get_pages+0x38c/0xae0
filemap_read+0x206/0x5e0
nfs_file_read+0xb7/0x140 [nfs]
vfs_read+0x2a9/0x460
ksys_read+0xb7/0x140
Fixes: 000dbe0bec05 ("NFS: Convert buffered read paths to use netfs when fscache is enabled")
Suggested-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: David Howells <dhowells@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
Remove ->begin_cache_operation() in favour of just calling fscache directly.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: Christian Brauner <christian@brauner.io>
cc: linux-fsdevel@vger.kernel.org
cc: linux-cachefs@redhat.com
|
|
Fscache has an optimisation by which reads from the cache are skipped
until we know that (a) there's data there to be read and (b) that data
isn't entirely covered by pages resident in the netfs pagecache. This is
done with two flags manipulated by fscache_note_page_release():
if (...
test_bit(FSCACHE_COOKIE_HAVE_DATA, &cookie->flags) &&
test_bit(FSCACHE_COOKIE_NO_DATA_TO_READ, &cookie->flags))
clear_bit(FSCACHE_COOKIE_NO_DATA_TO_READ, &cookie->flags);
where the NO_DATA_TO_READ flag causes cachefiles_prepare_read() to
indicate that netfslib should download from the server or clear the page
instead.
The fscache_note_page_release() function is intended to be called from
->releasepage() - but that only gets called if PG_private or PG_private_2
is set - and currently the former is at the discretion of the network
filesystem and the latter is only set whilst a page is being written to
the cache, so sometimes we miss clearing the optimisation.
Fix this by following Willy's suggestion[1] and adding an address_space
flag, AS_RELEASE_ALWAYS, that causes filemap_release_folio() to always call
->release_folio() if it's set, even if PG_private or PG_private_2 aren't
set.
Note that this would require folio_test_private() and page_has_private() to
become more complicated. To avoid that, in the places[*] where these are
used to conditionalise calls to filemap_release_folio() and
try_to_release_page(), the tests are removed the those functions just
jumped to unconditionally and the test is performed there.
[*] There are some exceptions in vmscan.c where the check guards more than
just a call to the releaser. I've added a function, folio_needs_release()
to wrap all the checks for that.
AS_RELEASE_ALWAYS should be set if a non-NULL cookie is obtained from
fscache and cleared in ->evict_inode() before truncate_inode_pages_final()
is called.
Additionally, the FSCACHE_COOKIE_NO_DATA_TO_READ flag needs to be cleared
and the optimisation cancelled if a cachefiles object already contains data
when we open it.
[dwysocha@redhat.com: call folio_mapping() inside folio_needs_release()]
Link: https://github.com/DaveWysochanskiRH/kernel/commit/902c990e311120179fa5de99d68364b2947b79ec
Link: https://lkml.kernel.org/r/20230628104852.3391651-3-dhowells@redhat.com
Fixes: 1f67e6d0b188 ("fscache: Provide a function to note the release of a page")
Fixes: 047487c947e8 ("cachefiles: Implement the I/O routines")
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Reported-by: Rohith Surabattula <rohiths.msft@gmail.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Tested-by: SeongJae Park <sj@kernel.org>
Cc: Daire Byrne <daire.byrne@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Steve French <sfrench@samba.org>
Cc: Shyam Prasad N <nspmangalore@gmail.com>
Cc: Rohith Surabattula <rohiths.msft@gmail.com>
Cc: Dave Wysochanski <dwysocha@redhat.com>
Cc: Dominique Martinet <asmadeus@codewreck.org>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Jingbo Xu <jefflexu@linux.alibaba.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Xiubo Li <xiubli@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
smatch reports
fs/nfs/fscache.c:260:10: warning: symbol
'nfs_netfs_debug_id' was not declared. Should it be static?
This variable is only used in its defining file, so it should be static
Signed-off-by: Tom Rix <trix@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Convert the NFS buffered read code paths to corresponding netfs APIs,
but only when fscache is configured and enabled.
The netfs API defines struct netfs_request_ops which must be filled
in by the network filesystem. For NFS, we only need to define 5 of
the functions, the main one being the issue_read() function.
The issue_read() function is called by the netfs layer when a read
cannot be fulfilled locally, and must be sent to the server (either
the cache is not active, or it is active but the data is not available).
Once the read from the server is complete, netfs requires a call to
netfs_subreq_terminated() which conveys either how many bytes were read
successfully, or an error. Note that issue_read() is called with a
structure, netfs_io_subrequest, which defines the IO requested, and
contains a start and a length (both in bytes), and assumes the underlying
netfs will return a either an error on the whole region, or the number
of bytes successfully read.
The NFS IO path is page based and the main APIs are the pgio APIs defined
in pagelist.c. For the pgio APIs, there is no way for the caller to
know how many RPCs will be sent and how the pages will be broken up
into underlying RPCs, each of which will have their own completion and
return code. In contrast, netfs is subrequest based, a single
subrequest may contain multiple pages, and a single subrequest is
initiated with issue_read() and terminated with netfs_subreq_terminated().
Thus, to utilze the netfs APIs, NFS needs some way to accommodate
the netfs API requirement on the single response to the whole
subrequest, while also minimizing disruptive changes to the NFS
pgio layer.
The approach taken with this patch is to allocate a small structure
for each nfs_netfs_issue_read() call, store the final error and number
of bytes successfully transferred in the structure, and update these values
as each RPC completes. The refcount on the structure is used as a marker
for the last RPC completion, is incremented in nfs_netfs_read_initiate(),
and decremented inside nfs_netfs_read_completion(), when a nfs_pgio_header
contains a valid pointer to the data. On the final put (which signals
the final outstanding RPC is complete) in nfs_netfs_read_completion(),
call netfs_subreq_terminated() with either the final error value (if
one or more READs complete with an error) or the number of bytes
successfully transferred (if all RPCs complete successfully). Note
that when all RPCs complete successfully, the number of bytes transferred
is capped to the length of the subrequest. Capping the transferred length
to the subrequest length prevents "Subreq overread" warnings from netfs.
This is due to the "aligned_len" in nfs_pageio_add_page(), and the
corner case where NFS requests a full page at the end of the file,
even when i_size reflects only a partial page (NFS overread).
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Tested-by: Daire Byrne <daire@dneg.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
As first steps for support of the netfs library when NFS_FSCACHE is
configured, add NETFS_SUPPORT to Kconfig and add the required netfs_inode
into struct nfs_inode.
Using netfs requires we move the VFS inode structure to be stored
inside struct netfs_inode, along with the fscache_cookie.
Thus, if NFS_FSCACHE is configured, place netfs_inode inside an
anonymous union so the vfs_inode memory is the same and we do
not need to modify other non-fscache areas of NFS.
In addition, inside the NFS fscache code, use the new helpers,
netfs_inode() and netfs_i_cookie() helpers, and remove our own
helper, nfs_i_fscache().
Later patches will convert NFS fscache to fully use netfs.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Tested-by: Daire Byrne <daire@dneg.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Use the bvec_set_page helper to initialize bvecs.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Link: https://lore.kernel.org/r/20230203150634.3199647-16-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
READ/WRITE proved to be actively confusing - the meanings are
"data destination, as used with read(2)" and "data source, as
used with write(2)", but people keep interpreting those as
"we read data from it" and "we write data to it", i.e. exactly
the wrong way.
Call them ITER_DEST and ITER_SOURCE - at least that is harder
to misinterpret...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Pass updated i_size in fscache_unuse_cookie() when called
from nfs_fscache_release_file(), which ensures the size of
an fscache object gets written to the cache storage. Failing
to do so results in unnessary reads from the NFS server, even
when the data is cached, due to a cachefiles object coherency
check failing with a trace similar to the following:
cachefiles_coherency: o=0000000e BAD osiz B=afbb3 c=0
This problem can be reproduced as follows:
#!/bin/bash
v=4.2; NFS_SERVER=127.0.0.1
set -e; trap cleanup EXIT; rc=1
function cleanup {
umount /mnt/nfs > /dev/null 2>&1
RC_STR="TEST PASS"
[ $rc -eq 1 ] && RC_STR="TEST FAIL"
echo "$RC_STR on $(uname -r) with NFSv$v and server $NFS_SERVER"
}
mount -o vers=$v,fsc $NFS_SERVER:/export /mnt/nfs
rm -f /mnt/nfs/file1.bin > /dev/null 2>&1
dd if=/dev/zero of=/mnt/nfs/file1.bin bs=4096 count=1 > /dev/null 2>&1
echo 3 > /proc/sys/vm/drop_caches
echo Read file 1st time from NFS server into fscache
dd if=/mnt/nfs/file1.bin of=/dev/null > /dev/null 2>&1
umount /mnt/nfs && mount -o vers=$v,fsc $NFS_SERVER:/export /mnt/nfs
echo 3 > /proc/sys/vm/drop_caches
echo Read file 2nd time from fscache
dd if=/mnt/nfs/file1.bin of=/dev/null > /dev/null 2>&1
echo Check mountstats for NFS read
grep -q "READ: 0" /proc/self/mountstats # (1st number) == 0
[ $? -eq 0 ] && rc=0
Fixes: a6b5a28eb56c "nfs: Convert to new fscache volume/cookie API"
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Tested-by: Daire Byrne <daire@dneg.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull netfs updates from David Howells:
"Netfs prep for write helpers.
Having had a go at implementing write helpers and content encryption
support in netfslib, it seems that the netfs_read_{,sub}request
structs and the equivalent write request structs were almost the same
and so should be merged, thereby requiring only one set of
alloc/get/put functions and a common set of tracepoints.
Merging the structs also has the advantage that if a bounce buffer is
added to the request struct, a read operation can be performed to fill
the bounce buffer, the contents of the buffer can be modified and then
a write operation can be performed on it to send the data wherever it
needs to go using the same request structure all the way through. The
I/O handlers would then transparently perform any required crypto.
This should make it easier to perform RMW cycles if needed.
The potentially common functions and structs, however, by their names
all proclaim themselves to be associated with the read side of things.
The bulk of these changes alter this in the following ways:
- Rename struct netfs_read_{,sub}request to netfs_io_{,sub}request.
- Rename some enums, members and flags to make them more appropriate.
- Adjust some comments to match.
- Drop "read"/"rreq" from the names of common functions. For
instance, netfs_get_read_request() becomes netfs_get_request().
- The ->init_rreq() and ->issue_op() methods become ->init_request()
and ->issue_read(). I've kept the latter as a read-specific
function and in another branch added an ->issue_write() method.
The driver source is then reorganised into a number of files:
fs/netfs/buffered_read.c Create read reqs to the pagecache
fs/netfs/io.c Dispatchers for read and write reqs
fs/netfs/main.c Some general miscellaneous bits
fs/netfs/objects.c Alloc, get and put functions
fs/netfs/stats.c Optional procfs statistics.
and future development can be fitted into this scheme, e.g.:
fs/netfs/buffered_write.c Modify the pagecache
fs/netfs/buffered_flush.c Writeback from the pagecache
fs/netfs/direct_read.c DIO read support
fs/netfs/direct_write.c DIO write support
fs/netfs/unbuffered_write.c Write modifications directly back
Beyond the above changes, there are also some changes that affect how
things work:
- Make fscache_end_operation() generally available.
- In the netfs tracing header, generate enums from the symbol ->
string mapping tables rather than manually coding them.
- Add a struct for filesystems that uses netfslib to put into their
inode wrapper structs to hold extra state that netfslib is
interested in, such as the fscache cookie. This allows netfslib
functions to be set in filesystem operation tables and jumped to
directly without having to have a filesystem wrapper.
- Add a member to the struct added above to track the remote inode
length as that may differ if local modifications are buffered. We
may need to supply an appropriate EOF pointer when storing data (in
AFS for example).
- Pass extra information to netfs_alloc_request() so that the
->init_request() hook can access it and retain information to
indicate the origin of the operation.
- Make the ->init_request() hook return an error, thereby allowing a
filesystem that isn't allowed to cache an inode (ceph or cifs, for
example) to skip readahead.
- Switch to using refcount_t for subrequests and add tracepoints to
log refcount changes for the request and subrequest structs.
- Add a function to consolidate dispatching a read request. Similar
code is used in three places and another couple are likely to be
added in the future"
Link: https://lore.kernel.org/all/2639515.1648483225@warthog.procyon.org.uk/
* tag 'netfs-prep-20220318' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
afs: Maintain netfs_i_context::remote_i_size
netfs: Keep track of the actual remote file size
netfs: Split some core bits out into their own file
netfs: Split fs/netfs/read_helper.c
netfs: Rename read_helper.c to io.c
netfs: Prepare to split read_helper.c
netfs: Add a function to consolidate beginning a read
netfs: Add a netfs inode context
ceph: Make ceph_init_request() check caps on readahead
netfs: Change ->init_request() to return an error code
netfs: Refactor arguments for netfs_alloc_read_request
netfs: Adjust the netfs_failure tracepoint to indicate non-subreq lines
netfs: Trace refcounting on the netfs_io_subrequest struct
netfs: Trace refcounting on the netfs_io_request struct
netfs: Adjust the netfs_rreq tracepoint slightly
netfs: Split netfs_io_* object handling out
netfs: Finish off rename of netfs_read_request to netfs_io_request
netfs: Rename netfs_read_*request to netfs_io_*request
netfs: Generate enums from trace symbol mapping lists
fscache: export fscache_end_operation()
|
|
Export fscache_end_operation() to avoid code duplication.
Besides, considering the paired fscache_begin_read_operation() is
already exported, it shall make sense to also export
fscache_end_operation().
Signed-off-by: Jeffle Xu <jefflexu@linux.alibaba.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/20220302125134.131039-2-jefflexu@linux.alibaba.com/ # Jeffle's v4
Link: https://lore.kernel.org/r/164622971432.3564931.12184135678781328146.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/164678190346.1200972.7453733431978569479.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/164692888334.2099075.5166283293894267365.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/20220316131723.111553-2-jefflexu@linux.alibaba.com/ # v5
|
|
The fscache cookie APIs including fscache_acquire_cookie() and
fscache_relinquish_cookie() now have very good tracing. Thus,
there is no real need for dfprintks in the NFS fscache interface.
The NFS fscache interface has removed all dfprintks so remove the
NFSDBG_FSCACHE defines.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
Most of fscache and other NFS IO paths are now using tracepoints.
Remove the dfprintks in the NFS fscache read/write page functions
and replace with tracepoints at the begin and end of the functions.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
Rename NFS fscache functions in a more consistent fashion
to better reflect when we read from and write to fscache.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
A number of places in the fscache interface used nfs_inode when inode could
be used, simplifying the code.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
Move NFS to using fscache DIO API instead of the old upstream I/O API as
that has been removed. This is a stopgap solution as the intention is that
at sometime in the future, the cache will move to using larger blocks and
won't be able to store individual pages in order to deal with the potential
for data corruption due to the backing filesystem being able insert/remove
bridging blocks of zeros into its extent list[1].
NFS then reads and writes cache pages synchronously and one page at a time.
The preferred change would be to use the netfs lib, but the new I/O API can
be used directly. It's just that as the cache now needs to track data for
itself, caching blocks may exceed page size...
This code is somewhat borrowed from my "fallback I/O" patchset[2].
Changes
=======
ver #3:
- Restore lost =n fallback for nfs_fscache_release_page()[2].
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Dave Wysochanski <dwysocha@redhat.com>
Acked-by: Jeff Layton <jlayton@kernel.org>
cc: Trond Myklebust <trond.myklebust@hammerspace.com>
cc: Anna Schumaker <anna.schumaker@netapp.com>
cc: linux-nfs@vger.kernel.org
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/YO17ZNOcq+9PajfQ@mit.edu [1]
Link: https://lore.kernel.org/r/202112100957.2oEDT20W-lkp@intel.com/ [2]
Link: https://lore.kernel.org/r/163189108292.2509237.12615909591150927232.stgit@warthog.procyon.org.uk/ [2]
Link: https://lore.kernel.org/r/163906981318.143852.17220018647843475985.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967184451.1823006.6450645559828329590.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021577632.640689.11069627070150063812.stgit@warthog.procyon.org.uk/ # v4
|
|
Change the nfs filesystem to support fscache's indexing rewrite and
reenable caching in nfs.
The following changes have been made:
(1) The fscache_netfs struct is no more, and there's no need to register
the filesystem as a whole.
(2) The session cookie is now an fscache_volume cookie, allocated with
fscache_acquire_volume(). That takes three parameters: a string
representing the "volume" in the index, a string naming the cache to
use (or NULL) and a u64 that conveys coherency metadata for the
volume.
For nfs, I've made it render the volume name string as:
"nfs,<ver>,<family>,<address>,<port>,<fsidH>,<fsidL>*<,param>[,<uniq>]"
(3) The fscache_cookie_def is no more and needed information is passed
directly to fscache_acquire_cookie(). The cache no longer calls back
into the filesystem, but rather metadata changes are indicated at
other times.
fscache_acquire_cookie() is passed the same keying and coherency
information as before.
(4) fscache_enable/disable_cookie() have been removed.
Call fscache_use_cookie() and fscache_unuse_cookie() when a file is
opened or closed to prevent a cache file from being culled and to keep
resources to hand that are needed to do I/O.
If a file is opened for writing, we invalidate it with
FSCACHE_INVAL_DIO_WRITE in lieu of doing writeback to the cache,
thereby making it cease caching until all currently open files are
closed. This should give the same behaviour as the uptream code.
Making the cache store local modifications isn't straightforward for
NFS, so that's left for future patches.
(5) fscache_invalidate() now needs to be given uptodate auxiliary data and
a file size. It also takes a flag to indicate if this was due to a
DIO write.
(6) Call nfs_fscache_invalidate() with FSCACHE_INVAL_DIO_WRITE on a file
to which a DIO write is made.
(7) Call fscache_note_page_release() from nfs_release_page().
(8) Use a killable wait in nfs_vm_page_mkwrite() when waiting for
PG_fscache to be cleared.
(9) The functions to read and write data to/from the cache are stubbed out
pending a conversion to use netfslib.
Changes
=======
ver #3:
- Added missing =n fallback for nfs_fscache_release_file()[1][2].
ver #2:
- Use gfpflags_allow_blocking() rather than using flag directly.
- fscache_acquire_volume() now returns errors.
- Remove NFS_INO_FSCACHE as it's no longer used.
- Need to unuse a cookie on file-release, not inode-clear.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Co-developed-by: David Howells <dhowells@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Dave Wysochanski <dwysocha@redhat.com>
Acked-by: Jeff Layton <jlayton@kernel.org>
cc: Trond Myklebust <trond.myklebust@hammerspace.com>
cc: Anna Schumaker <anna.schumaker@netapp.com>
cc: linux-nfs@vger.kernel.org
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/202112100804.nksO8K4u-lkp@intel.com/ [1]
Link: https://lore.kernel.org/r/202112100957.2oEDT20W-lkp@intel.com/ [2]
Link: https://lore.kernel.org/r/163819668938.215744.14448852181937731615.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906979003.143852.2601189243864854724.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967182112.1823006.7791504655391213379.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021575950.640689.12069642327533368467.stgit@warthog.procyon.org.uk/ # v4
|
|
Earlier commits refactored some NFS read code and removed
nfs_readpage_async(), but neglected to properly fixup
nfs_readpage_from_fscache_complete(). The code path is
only hit when something unusual occurs with the cachefiles
backing filesystem, such as an IO error or while a cookie
is being invalidated.
Mark page with PG_checked if fscache IO completes in error,
unlock the page, and let the VM decide to re-issue based on
PG_uptodate. When the VM reissues the readpage, PG_checked
allows us to skip over fscache and read from the server.
Link: https://marc.info/?l=linux-nfs&m=162498209518739
Fixes: 1e83b173b266 ("NFS: Add nfs_pageio_complete_read() and remove nfs_readpage_async()")
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
|
|
Add nfs_pageio_complete_read() and call this from both nfs_readpage()
and nfs_readpages(), since the submission and accounting is the same
for both functions.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Commit 402cb8dda949 ("fscache: Attach the index key and aux data to
the cookie") added the aux_data and aux_data_len to parameters to
fscache_acquire_cookie(), and updated the callers in the NFS client.
In the process it modified the aux_data to include the change_attr,
but missed adding change_attr to a couple places where aux_data was
used. Specifically, when opening a file and the change_attr is not
added, the following attempt to lookup an object will fail inside
cachefiles_check_object_xattr() = -116 due to
nfs_fscache_inode_check_aux() failing memcmp on auxdata and returning
FSCACHE_CHECKAUX_OBSOLETE.
Fix this by adding nfs_fscache_update_auxdata() to set the auxdata
from all relevant fields in the inode, including the change_attr.
Fixes: 402cb8dda949 ("fscache: Attach the index key and aux data to the cookie")
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Commit f2aedb713c28 ("NFS: Add fs_context support.") reworked
NFS mount code paths for fs_context support which included
super_block initialization. In the process there was an extra
return left in the code and so we never call
nfs_fscache_get_super_cookie even if 'fsc' is given on as mount
option. In addition, there is an extra check inside
nfs_fscache_get_super_cookie for the NFS_OPTION_FSCACHE which
is unnecessary since the only caller nfs_get_cache_cookie
checks this flag.
Fixes: f2aedb713c28 ("NFS: Add fs_context support.")
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Commit 402cb8dda949 ("fscache: Attach the index key and aux data to
the cookie") added the index_key and index_key_len parameters to
fscache_acquire_cookie(), and updated the callers in the NFS client.
One of the callers was inside nfs_fscache_get_super_cookie()
and was changed to use the full struct nfs_fscache_key as the
index_key. However, a couple members of this structure contain
pointers and thus will change each time the same NFS share is
remounted. Since index_key is used for fscache_cookie->key_hash
and this subsequently is used to compare cookies, the effectiveness
of fscache with NFS is reduced to the point at which a umount
occurs. Any subsequent remount of the same share will cause a
unique NFS super_block index_key and key_hash to be generated for
the same data, rendering any prior fscache data unable to be
found. A simple reproducer demonstrates the problem.
1. Mount share with 'fsc', create a file, drop page cache
systemctl start cachefilesd
mount -o vers=3,fsc 127.0.0.1:/export /mnt
dd if=/dev/zero of=/mnt/file1.bin bs=4096 count=1
echo 3 > /proc/sys/vm/drop_caches
2. Read file into page cache and fscache, then unmount
dd if=/mnt/file1.bin of=/dev/null bs=4096 count=1
umount /mnt
3. Remount and re-read which should come from fscache
mount -o vers=3,fsc 127.0.0.1:/export /mnt
echo 3 > /proc/sys/vm/drop_caches
dd if=/mnt/file1.bin of=/dev/null bs=4096 count=1
4. Check for READ ops in mountstats - there should be none
grep READ: /proc/self/mountstats
Looking at the history and the removed function, nfs_super_get_key(),
we should only use nfs_fscache_key.key plus any uniquifier, for
the fscache index_key.
Fixes: 402cb8dda949 ("fscache: Attach the index key and aux data to the cookie")
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
An NFS client that mounts multiple exports from the same NFS
server with higher NFSv4 versions disabled (i.e. 4.2) and without
forcing a specific NFS version results in fscache index cookie
collisions and the following messages:
[ 570.004348] FS-Cache: Duplicate cookie detected
Each nfs_client structure should have its own fscache index cookie,
so add the minorversion to nfs_server_key.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=200145
Signed-off-by: Scott Mayhew <smayhew@redhat.com>
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
nfs currently behaves differently on 32-bit and 64-bit kernels regarding
the on-disk format of nfs_fscache_inode_auxdata.
That format should really be the same on any kernel, and we should avoid
the 'timespec' type in order to remove that from the kernel later on.
Using plain 'timespec64' would not be good here, since that includes
implied padding and would possibly leak kernel stack data to the on-disk
format on 32-bit architectures.
struct __kernel_timespec would work as a replacement, but open-coding
the two struct members in nfs_fscache_inode_auxdata makes it more
obvious what's going on here, and keeps the current format for 64-bit
architectures.
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
Split out from commit "NFS: Add fs_context support."
This patch adds additional refactoring for the conversion of NFS to use
fs_context, namely:
(*) Merge nfs_mount_info and nfs_clone_mount into nfs_fs_context.
nfs_clone_mount has had several fields removed, and nfs_mount_info
has been removed altogether.
(*) Various functions now take an fs_context as an argument instead
of nfs_mount_info, nfs_fs_context, etc.
Signed-off-by: Scott Mayhew <smayhew@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
|
|
People are reporing seeing fscache errors being reported concerning
duplicate cookies even in cases where they are not setting up fscache
at all. The rule needs to be that if fscache is not enabled, then it
should have no side effects at all.
To ensure this is the case, we disable fscache completely on all superblocks
for which the 'fsc' mount option was not set. In order to avoid issues
with '-oremount', we also disable the ability to turn fscache on via
remount.
Fixes: f1fe29b4a02d ("NFS: Use i_writecount to control whether...")
Link: https://bugzilla.kernel.org/show_bug.cgi?id=200145
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Steve Dickson <steved@redhat.com>
Cc: David Howells <dhowells@redhat.com>
|
|
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public licence as published by
the free software foundation either version 2 of the licence or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 114 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520170857.552531963@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
struct timespec is not y2038 safe. Transition vfs to use
y2038 safe struct timespec64 instead.
The change was made with the help of the following cocinelle
script. This catches about 80% of the changes.
All the header file and logic changes are included in the
first 5 rules. The rest are trivial substitutions.
I avoid changing any of the function signatures or any other
filesystem specific data structures to keep the patch simple
for review.
The script can be a little shorter by combining different cases.
But, this version was sufficient for my usecase.
virtual patch
@ depends on patch @
identifier now;
@@
- struct timespec
+ struct timespec64
current_time ( ... )
{
- struct timespec now = current_kernel_time();
+ struct timespec64 now = current_kernel_time64();
...
- return timespec_trunc(
+ return timespec64_trunc(
... );
}
@ depends on patch @
identifier xtime;
@@
struct \( iattr \| inode \| kstat \) {
...
- struct timespec xtime;
+ struct timespec64 xtime;
...
}
@ depends on patch @
identifier t;
@@
struct inode_operations {
...
int (*update_time) (...,
- struct timespec t,
+ struct timespec64 t,
...);
...
}
@ depends on patch @
identifier t;
identifier fn_update_time =~ "update_time$";
@@
fn_update_time (...,
- struct timespec *t,
+ struct timespec64 *t,
...) { ... }
@ depends on patch @
identifier t;
@@
lease_get_mtime( ... ,
- struct timespec *t
+ struct timespec64 *t
) { ... }
@te depends on patch forall@
identifier ts;
local idexpression struct inode *inode_node;
identifier i_xtime =~ "^i_[acm]time$";
identifier ia_xtime =~ "^ia_[acm]time$";
identifier fn_update_time =~ "update_time$";
identifier fn;
expression e, E3;
local idexpression struct inode *node1;
local idexpression struct inode *node2;
local idexpression struct iattr *attr1;
local idexpression struct iattr *attr2;
local idexpression struct iattr attr;
identifier i_xtime1 =~ "^i_[acm]time$";
identifier i_xtime2 =~ "^i_[acm]time$";
identifier ia_xtime1 =~ "^ia_[acm]time$";
identifier ia_xtime2 =~ "^ia_[acm]time$";
@@
(
(
- struct timespec ts;
+ struct timespec64 ts;
|
- struct timespec ts = current_time(inode_node);
+ struct timespec64 ts = current_time(inode_node);
)
<+... when != ts
(
- timespec_equal(&inode_node->i_xtime, &ts)
+ timespec64_equal(&inode_node->i_xtime, &ts)
|
- timespec_equal(&ts, &inode_node->i_xtime)
+ timespec64_equal(&ts, &inode_node->i_xtime)
|
- timespec_compare(&inode_node->i_xtime, &ts)
+ timespec64_compare(&inode_node->i_xtime, &ts)
|
- timespec_compare(&ts, &inode_node->i_xtime)
+ timespec64_compare(&ts, &inode_node->i_xtime)
|
ts = current_time(e)
|
fn_update_time(..., &ts,...)
|
inode_node->i_xtime = ts
|
node1->i_xtime = ts
|
ts = inode_node->i_xtime
|
<+... attr1->ia_xtime ...+> = ts
|
ts = attr1->ia_xtime
|
ts.tv_sec
|
ts.tv_nsec
|
btrfs_set_stack_timespec_sec(..., ts.tv_sec)
|
btrfs_set_stack_timespec_nsec(..., ts.tv_nsec)
|
- ts = timespec64_to_timespec(
+ ts =
...
-)
|
- ts = ktime_to_timespec(
+ ts = ktime_to_timespec64(
...)
|
- ts = E3
+ ts = timespec_to_timespec64(E3)
|
- ktime_get_real_ts(&ts)
+ ktime_get_real_ts64(&ts)
|
fn(...,
- ts
+ timespec64_to_timespec(ts)
,...)
)
...+>
(
<... when != ts
- return ts;
+ return timespec64_to_timespec(ts);
...>
)
|
- timespec_equal(&node1->i_xtime1, &node2->i_xtime2)
+ timespec64_equal(&node1->i_xtime2, &node2->i_xtime2)
|
- timespec_equal(&node1->i_xtime1, &attr2->ia_xtime2)
+ timespec64_equal(&node1->i_xtime2, &attr2->ia_xtime2)
|
- timespec_compare(&node1->i_xtime1, &node2->i_xtime2)
+ timespec64_compare(&node1->i_xtime1, &node2->i_xtime2)
|
node1->i_xtime1 =
- timespec_trunc(attr1->ia_xtime1,
+ timespec64_trunc(attr1->ia_xtime1,
...)
|
- attr1->ia_xtime1 = timespec_trunc(attr2->ia_xtime2,
+ attr1->ia_xtime1 = timespec64_trunc(attr2->ia_xtime2,
...)
|
- ktime_get_real_ts(&attr1->ia_xtime1)
+ ktime_get_real_ts64(&attr1->ia_xtime1)
|
- ktime_get_real_ts(&attr.ia_xtime1)
+ ktime_get_real_ts64(&attr.ia_xtime1)
)
@ depends on patch @
struct inode *node;
struct iattr *attr;
identifier fn;
identifier i_xtime =~ "^i_[acm]time$";
identifier ia_xtime =~ "^ia_[acm]time$";
expression e;
@@
(
- fn(node->i_xtime);
+ fn(timespec64_to_timespec(node->i_xtime));
|
fn(...,
- node->i_xtime);
+ timespec64_to_timespec(node->i_xtime));
|
- e = fn(attr->ia_xtime);
+ e = fn(timespec64_to_timespec(attr->ia_xtime));
)
@ depends on patch forall @
struct inode *node;
struct iattr *attr;
identifier i_xtime =~ "^i_[acm]time$";
identifier ia_xtime =~ "^ia_[acm]time$";
identifier fn;
@@
{
+ struct timespec ts;
<+...
(
+ ts = timespec64_to_timespec(node->i_xtime);
fn (...,
- &node->i_xtime,
+ &ts,
...);
|
+ ts = timespec64_to_timespec(attr->ia_xtime);
fn (...,
- &attr->ia_xtime,
+ &ts,
...);
)
...+>
}
@ depends on patch forall @
struct inode *node;
struct iattr *attr;
struct kstat *stat;
identifier ia_xtime =~ "^ia_[acm]time$";
identifier i_xtime =~ "^i_[acm]time$";
identifier xtime =~ "^[acm]time$";
identifier fn, ret;
@@
{
+ struct timespec ts;
<+...
(
+ ts = timespec64_to_timespec(node->i_xtime);
ret = fn (...,
- &node->i_xtime,
+ &ts,
...);
|
+ ts = timespec64_to_timespec(node->i_xtime);
ret = fn (...,
- &node->i_xtime);
+ &ts);
|
+ ts = timespec64_to_timespec(attr->ia_xtime);
ret = fn (...,
- &attr->ia_xtime,
+ &ts,
...);
|
+ ts = timespec64_to_timespec(attr->ia_xtime);
ret = fn (...,
- &attr->ia_xtime);
+ &ts);
|
+ ts = timespec64_to_timespec(stat->xtime);
ret = fn (...,
- &stat->xtime);
+ &ts);
)
...+>
}
@ depends on patch @
struct inode *node;
struct inode *node2;
identifier i_xtime1 =~ "^i_[acm]time$";
identifier i_xtime2 =~ "^i_[acm]time$";
identifier i_xtime3 =~ "^i_[acm]time$";
stru |