Age | Commit message (Collapse) | Author | Files | Lines |
|
git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/lsm
Pull lsm updates from Paul Moore:
- Promote IMA/EVM to a proper LSM
This is the bulk of the diffstat, and the source of all the changes
in the VFS code. Prior to the start of the LSM stacking work it was
important that IMA/EVM were separate from the rest of the LSMs,
complete with their own hooks, infrastructure, etc. as it was the
only way to enable IMA/EVM at the same time as a LSM.
However, now that the bulk of the LSM infrastructure supports
multiple simultaneous LSMs, we can simplify things greatly by
bringing IMA/EVM into the LSM infrastructure as proper LSMs. This is
something I've wanted to see happen for quite some time and Roberto
was kind enough to put in the work to make it happen.
- Use the LSM hook default values to simplify the call_int_hook() macro
Previously the call_int_hook() macro required callers to supply a
default return value, despite a default value being specified when
the LSM hook was defined.
This simplifies the macro by using the defined default return value
which makes life easier for callers and should also reduce the number
of return value bugs in the future (we've had a few pop up recently,
hence this work).
- Use the KMEM_CACHE() macro instead of kmem_cache_create()
The guidance appears to be to use the KMEM_CACHE() macro when
possible and there is no reason why we can't use the macro, so let's
use it.
- Fix a number of comment typos in the LSM hook comment blocks
Not much to say here, we fixed some questionable grammar decisions in
the LSM hook comment blocks.
* tag 'lsm-pr-20240312' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/lsm: (28 commits)
cred: Use KMEM_CACHE() instead of kmem_cache_create()
lsm: use default hook return value in call_int_hook()
lsm: fix typos in security/security.c comment headers
integrity: Remove LSM
ima: Make it independent from 'integrity' LSM
evm: Make it independent from 'integrity' LSM
evm: Move to LSM infrastructure
ima: Move IMA-Appraisal to LSM infrastructure
ima: Move to LSM infrastructure
integrity: Move integrity_kernel_module_request() to IMA
security: Introduce key_post_create_or_update hook
security: Introduce inode_post_remove_acl hook
security: Introduce inode_post_set_acl hook
security: Introduce inode_post_create_tmpfile hook
security: Introduce path_post_mknod hook
security: Introduce file_release hook
security: Introduce file_post_open hook
security: Introduce inode_post_removexattr hook
security: Introduce inode_post_setattr hook
security: Align inode_setattr hook definition with EVM
...
|
|
As for IMA, move hardcoded EVM function calls from various places in the
kernel to the LSM infrastructure, by introducing a new LSM named 'evm'
(last and always enabled like 'ima'). The order in the Makefile ensures
that 'evm' hooks are executed after 'ima' ones.
Make EVM functions as static (except for evm_inode_init_security(), which
is exported), and register them as hook implementations in init_evm_lsm().
Also move the inline functions evm_inode_remove_acl(),
evm_inode_post_remove_acl(), and evm_inode_post_set_acl() from the public
evm.h header to evm_main.c.
Unlike before (see commit to move IMA to the LSM infrastructure),
evm_inode_post_setattr(), evm_inode_post_set_acl(),
evm_inode_post_remove_acl(), and evm_inode_post_removexattr() are not
executed for private inodes.
Finally, add the LSM_ID_EVM case in lsm_list_modules_test.c
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Reviewed-by: Casey Schaufler <casey@schaufler-ca.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Reviewed-by: Stefan Berger <stefanb@linux.ibm.com>
Reviewed-by: Mimi Zohar <zohar@linux.ibm.com>
Acked-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
|
|
In preparation for moving IMA and EVM to the LSM infrastructure, introduce
the inode_post_remove_acl hook.
At inode_remove_acl hook, EVM verifies the file's existing HMAC value. At
inode_post_remove_acl, EVM re-calculates the file's HMAC with the passed
POSIX ACL removed and other file metadata.
Other LSMs could similarly take some action after successful POSIX ACL
removal.
The new hook cannot return an error and cannot cause the operation to be
reverted.
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Reviewed-by: Stefan Berger <stefanb@linux.ibm.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Reviewed-by: Mimi Zohar <zohar@linux.ibm.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Paul Moore <paul@paul-moore.com>
|
|
In preparation for moving IMA and EVM to the LSM infrastructure, introduce
the inode_post_set_acl hook.
At inode_set_acl hook, EVM verifies the file's existing HMAC value. At
inode_post_set_acl, EVM re-calculates the file's HMAC based on the modified
POSIX ACL and other file metadata.
Other LSMs could similarly take some action after successful POSIX ACL
change.
The new hook cannot return an error and cannot cause the operation to be
reverted.
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Reviewed-by: Stefan Berger <stefanb@linux.ibm.com>
Acked-by: Casey Schaufler <casey@schaufler-ca.com>
Reviewed-by: Mimi Zohar <zohar@linux.ibm.com>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Paul Moore <paul@paul-moore.com>
|
|
In a future patch, we're going to split file leases into their own
structure. Since a lot of the underlying machinery uses the same fields
move those into a new file_lock_core, and embed that inside struct
file_lock.
For now, add some macros to ensure that we can continue to build while
the conversion is in progress.
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20240131-flsplit-v3-17-c6129007ee8d@kernel.org
Reviewed-by: NeilBrown <neilb@suse.de>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
Do the replacement:
s/simply passs @nop_mnt_idmap/simply pass @nop_mnt_idmap/
in the fs/ tree.
Found by chance while working on support for idmapped mounts in fuse.
Cc: Jan Kara <jack@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: <linux-fsdevel@vger.kernel.org>
Cc: <linux-kernel@vger.kernel.org>
Signed-off-by: Alexander Mikhalitsyn <aleksandr.mikhalitsyn@canonical.com>
Link: https://lore.kernel.org/r/20231215130927.136917-1-aleksandr.mikhalitsyn@canonical.com
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
In later patches, we're going to change how the inode's ctime field is
used. Switch to using accessor functions instead of raw accesses of
inode->i_ctime.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Message-Id: <20230705190309.579783-23-jlayton@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
|
|
All codepaths that don't want to implement POSIX ACLs should simply not
implement the associated inode operations instead of relying on
IOP_XATTR. That's the case for all filesystems today.
For vfs_listxattr() all filesystems that explicitly turn of xattrs for a
given inode all set inode->i_op to a dedicated set of inode operations
that doesn't implement ->listxattr(). We can remove the dependency of
vfs_listxattr() on IOP_XATTR.
Removing this dependency will allow us to decouple POSIX ACLs from
IOP_XATTR and they can still be listed even if no other xattr handlers
are implemented. Otherwise we would have to implement elaborate schemes
to raise IOP_XATTR even if sb->s_xattr is set to NULL.
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Reflect in their naming and document that they are kept around for
legacy reasons and shouldn't be used anymore by new code.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
The generic_listxattr() and simple_xattr_list() helpers list xattrs and
contain duplicated code. Add two helpers that both generic_listxattr()
and simple_xattr_list() can use.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping
Pull vfs acl update from Christian Brauner:
"This contains a single update to the internal get acl method and
replaces an open-coded cmpxchg() comparison with with try_cmpxchg().
It's clearer and also beneficial on some architectures"
* tag 'fs.acl.v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping:
posix_acl: Use try_cmpxchg in get_acl
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping
Pull vfs idmapping updates from Christian Brauner:
- Last cycle we introduced the dedicated struct mnt_idmap type for
mount idmapping and the required infrastucture in 256c8aed2b42 ("fs:
introduce dedicated idmap type for mounts"). As promised in last
cycle's pull request message this converts everything to rely on
struct mnt_idmap.
Currently we still pass around the plain namespace that was attached
to a mount. This is in general pretty convenient but it makes it easy
to conflate namespaces that are relevant on the filesystem with
namespaces that are relevant on the mount level. Especially for
non-vfs developers without detailed knowledge in this area this was a
potential source for bugs.
This finishes the conversion. Instead of passing the plain namespace
around this updates all places that currently take a pointer to a
mnt_userns with a pointer to struct mnt_idmap.
Now that the conversion is done all helpers down to the really
low-level helpers only accept a struct mnt_idmap argument instead of
two namespace arguments.
Conflating mount and other idmappings will now cause the compiler to
complain loudly thus eliminating the possibility of any bugs. This
makes it impossible for filesystem developers to mix up mount and
filesystem idmappings as they are two distinct types and require
distinct helpers that cannot be used interchangeably.
Everything associated with struct mnt_idmap is moved into a single
separate file. With that change no code can poke around in struct
mnt_idmap. It can only be interacted with through dedicated helpers.
That means all filesystems are and all of the vfs is completely
oblivious to the actual implementation of idmappings.
We are now also able to extend struct mnt_idmap as we see fit. For
example, we can decouple it completely from namespaces for users that
don't require or don't want to use them at all. We can also extend
the concept of idmappings so we can cover filesystem specific
requirements.
In combination with the vfs{g,u}id_t work we finished in v6.2 this
makes this feature substantially more robust and thus difficult to
implement wrong by a given filesystem and also protects the vfs.
- Enable idmapped mounts for tmpfs and fulfill a longstanding request.
A long-standing request from users had been to make it possible to
create idmapped mounts for tmpfs. For example, to share the host's
tmpfs mount between multiple sandboxes. This is a prerequisite for
some advanced Kubernetes cases. Systemd also has a range of use-cases
to increase service isolation. And there are more users of this.
However, with all of the other work going on this was way down on the
priority list but luckily someone other than ourselves picked this
up.
As usual the patch is tiny as all the infrastructure work had been
done multiple kernel releases ago. In addition to all the tests that
we already have I requested that Rodrigo add a dedicated tmpfs
testsuite for idmapped mounts to xfstests. It is to be included into
xfstests during the v6.3 development cycle. This should add a slew of
additional tests.
* tag 'fs.idmapped.v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping: (26 commits)
shmem: support idmapped mounts for tmpfs
fs: move mnt_idmap
fs: port vfs{g,u}id helpers to mnt_idmap
fs: port fs{g,u}id helpers to mnt_idmap
fs: port i_{g,u}id_into_vfs{g,u}id() to mnt_idmap
fs: port i_{g,u}id_{needs_}update() to mnt_idmap
quota: port to mnt_idmap
fs: port privilege checking helpers to mnt_idmap
fs: port inode_owner_or_capable() to mnt_idmap
fs: port inode_init_owner() to mnt_idmap
fs: port acl to mnt_idmap
fs: port xattr to mnt_idmap
fs: port ->permission() to pass mnt_idmap
fs: port ->fileattr_set() to pass mnt_idmap
fs: port ->set_acl() to pass mnt_idmap
fs: port ->get_acl() to pass mnt_idmap
fs: port ->tmpfile() to pass mnt_idmap
fs: port ->rename() to pass mnt_idmap
fs: port ->mknod() to pass mnt_idmap
fs: port ->mkdir() to pass mnt_idmap
...
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Remove legacy file_mnt_user_ns() and mnt_user_ns().
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
The file locking definitions have lived in fs.h since the dawn of time,
but they are only used by a small subset of the source files that
include it.
Move the file locking definitions to a new header file, and add the
appropriate #include directives to the source files that need them. By
doing this we trim down fs.h a bit and limit the amount of rebuilding
that has to be done when we make changes to the file locking APIs.
Reviewed-by: Xiubo Li <xiubli@redhat.com>
Reviewed-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Howells <dhowells@redhat.com>
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Acked-by: Chuck Lever <chuck.lever@oracle.com>
Acked-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Acked-by: Steve French <stfrench@microsoft.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
|
|
Use try_cmpxchg instead of cmpxchg (*ptr, old, new) == old
in get_acl. x86 CMPXCHG instruction returns success in ZF flag,
so this change saves a compare after cmpxchg (and related move
instruction in front of cmpxchg).
No functional change intended.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping
Pull idmapping updates from Christian Brauner:
"Last cycle we've already made the interaction with idmapped mounts
more robust and type safe by introducing the vfs{g,u}id_t type. This
cycle we concluded the conversion and removed the legacy helpers.
Currently we still pass around the plain namespace that was attached
to a mount. This is in general pretty convenient but it makes it easy
to conflate namespaces that are relevant on the filesystem - with
namespaces that are relevent on the mount level. Especially for
filesystem developers without detailed knowledge in this area this can
be a potential source for bugs.
Instead of passing the plain namespace we introduce a dedicated type
struct mnt_idmap and replace the pointer with a pointer to a struct
mnt_idmap. There are no semantic or size changes for the mount struct
caused by this.
We then start converting all places aware of idmapped mounts to rely
on struct mnt_idmap. Once the conversion is done all helpers down to
the really low-level make_vfs{g,u}id() and from_vfs{g,u}id() will take
a struct mnt_idmap argument instead of two namespace arguments. This
way it becomes impossible to conflate the two removing and thus
eliminating the possibility of any bugs. Fwiw, I fixed some issues in
that area a while ago in ntfs3 and ksmbd in the past. Afterwards only
low-level code can ultimately use the associated namespace for any
permission checks. Even most of the vfs can be completely obivious
about this ultimately and filesystems will never interact with it in
any form in the future.
A struct mnt_idmap currently encompasses a simple refcount and pointer
to the relevant namespace the mount is idmapped to. If a mount isn't
idmapped then it will point to a static nop_mnt_idmap and if it
doesn't that it is idmapped. As usual there are no allocations or
anything happening for non-idmapped mounts. Everthing is carefully
written to be a nop for non-idmapped mounts as has always been the
case.
If an idmapped mount is created a struct mnt_idmap is allocated and a
reference taken on the relevant namespace. Each mount that gets
idmapped or inherits the idmap simply bumps the reference count on
struct mnt_idmap. Just a reminder that we only allow a mount to change
it's idmapping a single time and only if it hasn't already been
attached to the filesystems and has no active writers.
The actual changes are fairly straightforward but this will have huge
benefits for maintenance and security in the long run even if it
causes some churn.
Note that this also makes it possible to extend struct mount_idmap in
the future. For example, it would be possible to place the namespace
pointer in an anonymous union together with an idmapping struct. This
would allow us to expose an api to userspace that would let it specify
idmappings directly instead of having to go through the detour of
setting up namespaces at all"
* tag 'fs.idmapped.mnt_idmap.v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping:
acl: conver higher-level helpers to rely on mnt_idmap
fs: introduce dedicated idmap type for mounts
|
|
The type should be struct posix_acl * instead of void *.
Cc: Christian Brauner <brauner@kernel.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert an initial portion to rely on struct mnt_idmap by converting the
high level xattr helpers.
Reviewed-by: Seth Forshee (DigitalOcean) <sforshee@kernel.org>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
After reworking posix acls this helper isn't used anywhere outside the core
posix acl paths. Make it static.
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Now that the posix acl api is active we can remove all the hacky helpers
we had to keep around for all these years and also remove the set and
get posix acl xattr handler methods as they aren't needed anymore.
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
In previous patches we built a new posix api solely around get and set
inode operations. Now that we have all the pieces in place we can switch
the system calls and the vfs over to only rely on this api when
interacting with posix acls. This finally removes all type unsafety and
type conversion issues explained in detail in [1] that we aim to get rid
of.
With the new posix acl api we immediately translate into an appropriate
kernel internal struct posix_acl format both when getting and setting
posix acls. This is a stark contrast to before were we hacked unsafe raw
values into the uapi struct that was stored in a void pointer relying
and having filesystems and security modules hack around in the uapi
struct as well.
Link: https://lore.kernel.org/all/20220801145520.1532837-1-brauner@kernel.org [1]
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
In previous patches we implemented get and set inode operations for all
non-stacking filesystems that support posix acls but didn't yet
implement get and/or set acl inode operations. This specifically
affected cifs and 9p.
Now we can build a posix acl api based solely on get and set inode
operations. We add a new vfs_remove_acl() api that can be used to set
posix acls. This finally removes all type unsafety and type conversion
issues explained in detail in [1] that we aim to get rid of.
After we finished building the vfs api we can switch stacking
filesystems to rely on the new posix api and then finally switch the
xattr system calls themselves to rely on the posix acl api.
Link: https://lore.kernel.org/all/20220801145520.1532837-1-brauner@kernel.org [1]
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
In previous patches we implemented get and set inode operations for all
non-stacking filesystems that support posix acls but didn't yet
implement get and/or set acl inode operations. This specifically
affected cifs and 9p.
Now we can build a posix acl api based solely on get and set inode
operations. We add a new vfs_get_acl() api that can be used to get posix
acls. This finally removes all type unsafety and type conversion issues
explained in detail in [1] that we aim to get rid of.
After we finished building the vfs api we can switch stacking
filesystems to rely on the new posix api and then finally switch the
xattr system calls themselves to rely on the posix acl api.
Link: https://lore.kernel.org/all/20220801145520.1532837-1-brauner@kernel.org [1]
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
In previous patches we implemented get and set inode operations for all
non-stacking filesystems that support posix acls but didn't yet
implement get and/or set acl inode operations. This specifically
affected cifs and 9p.
Now we can build a posix acl api based solely on get and set inode
operations. We add a new vfs_set_acl() api that can be used to set posix
acls. This finally removes all type unsafety and type conversion issues
explained in detail in [1] that we aim to get rid of.
After we finished building the vfs api we can switch stacking
filesystems to rely on the new posix api and then finally switch the
xattr system calls themselves to rely on the posix acl api.
Link: https://lore.kernel.org/all/20220801145520.1532837-1-brauner@kernel.org [1]
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
The current way of setting and getting posix acls through the generic
xattr interface is error prone and type unsafe. The vfs needs to
interpret and fixup posix acls before storing or reporting it to
userspace. Various hacks exist to make this work. The code is hard to
understand and difficult to maintain in it's current form. Instead of
making this work by hacking posix acls through xattr handlers we are
building a dedicated posix acl api around the get and set inode
operations. This removes a lot of hackiness and makes the codepaths
easier to maintain. A lot of background can be found in [1].
The current inode operation for getting posix acls takes an inode
argument but various filesystems (e.g., 9p, cifs, overlayfs) need access
to the dentry. In contrast to the ->set_acl() inode operation we cannot
simply extend ->get_acl() to take a dentry argument. The ->get_acl()
inode operation is called from:
acl_permission_check()
-> check_acl()
-> get_acl()
which is part of generic_permission() which in turn is part of
inode_permission(). Both generic_permission() and inode_permission() are
called in the ->permission() handler of various filesystems (e.g.,
overlayfs). So simply passing a dentry argument to ->get_acl() would
amount to also having to pass a dentry argument to ->permission(). We
should avoid this unnecessary change.
So instead of extending the existing inode operation rename it from
->get_acl() to ->get_inode_acl() and add a ->get_acl() method later that
passes a dentry argument and which filesystems that need access to the
dentry can implement instead of ->get_inode_acl(). Filesystems like cifs
which allow setting and getting posix acls but not using them for
permission checking during lookup can simply not implement
->get_inode_acl().
This is intended to be a non-functional change.
Link: https://lore.kernel.org/all/20220801145520.1532837-1-brauner@kernel.org [1]
Suggested-by/Inspired-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
The current way of setting and getting posix acls through the generic
xattr interface is error prone and type unsafe. The vfs needs to
interpret and fixup posix acls before storing or reporting it to
userspace. Various hacks exist to make this work. The code is hard to
understand and difficult to maintain in it's current form. Instead of
making this work by hacking posix acls through xattr handlers we are
building a dedicated posix acl api around the get and set inode
operations. This removes a lot of hackiness and makes the codepaths
easier to maintain. A lot of background can be found in [1].
Since some filesystem rely on the dentry being available to them when
setting posix acls (e.g., 9p and cifs) they cannot rely on set acl inode
operation. But since ->set_acl() is required in order to use the generic
posix acl xattr handlers filesystems that do not implement this inode
operation cannot use the handler and need to implement their own
dedicated posix acl handlers.
Update the ->set_acl() inode method to take a dentry argument. This
allows all filesystems to rely on ->set_acl().
As far as I can tell all codepaths can be switched to rely on the dentry
instead of just the inode. Note that the original motivation for passing
the dentry separate from the inode instead of just the dentry in the
xattr handlers was because of security modules that call
security_d_instantiate(). This hook is called during
d_instantiate_new(), d_add(), __d_instantiate_anon(), and
d_splice_alias() to initialize the inode's security context and possibly
to set security.* xattrs. Since this only affects security.* xattrs this
is completely irrelevant for posix acls.
Link: https://lore.kernel.org/all/20220801145520.1532837-1-brauner@kernel.org [1]
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any
negative reports (or any positive ones, come to that).
- Also the Maple Tree from Liam Howlett. An overlapping range-based
tree for vmas. It it apparently slightly more efficient in its own
right, but is mainly targeted at enabling work to reduce mmap_lock
contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
at [1]. This has yet to be addressed due to Liam's unfortunately
timed vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down
to the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to
support file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and
memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging
activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1]
* tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits)
hugetlb: allocate vma lock for all sharable vmas
hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer
hugetlb: fix vma lock handling during split vma and range unmapping
mglru: mm/vmscan.c: fix imprecise comments
mm/mglru: don't sync disk for each aging cycle
mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol
mm: memcontrol: use do_memsw_account() in a few more places
mm: memcontrol: deprecate swapaccounting=0 mode
mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled
mm/secretmem: remove reduntant return value
mm/hugetlb: add available_huge_pages() func
mm: remove unused inline functions from include/linux/mm_inline.h
selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory
selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd
selftests/vm: add thp collapse shmem testing
selftests/vm: add thp collapse file and tmpfs testing
selftests/vm: modularize thp collapse memory operations
selftests/vm: dedup THP helpers
mm/khugepaged: add tracepoint to hpage_collapse_scan_file()
mm/madvise: add file and shmem support to MADV_COLLAPSE
...
|
|
NFSv4 mandates a change attribute to avoid problems with timestamp
granularity, which Linux implements using the i_version counter. This is
particularly important when the underlying filesystem is fast.
Give tmpfs an i_version counter. Since it doesn't have to be persistent,
we can just turn on SB_I_VERSION and sprinkle some inode_inc_iversion
calls in the right places.
Also, while there is no formal spec for xattrs, most implementations
update the ctime on setxattr. Fix shmem_xattr_handler_set to update the
ctime and bump the i_version appropriately.
Link: https://lkml.kernel.org/r/20220909130031.15477-1-jlayton@kernel.org
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
remove the double world of 'in'.
Signed-off-by: Deming Wang <wangdeming@inspur.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
The uapi POSIX ACL struct passed through the value argument during
setxattr() contains {g,u}id values encoded via ACL_{GROUP,USER} entries
that should actually be stored in the form of k{g,u}id_t (See [1] for a
long explanation of the issue.).
In 0c5fd887d2bb ("acl: move idmapped mount fixup into vfs_{g,s}etxattr()")
we took the mount's idmapping into account in order to let overlayfs
handle POSIX ACLs on idmapped layers correctly. The fixup is currently
performed directly in vfs_setxattr() which piles on top of the earlier
hackiness by handling the mount's idmapping and stuff the vfs{g,u}id_t
values into the uapi struct as well. While that is all correct and works
fine it's just ugly.
Now that we have introduced vfs_make_posix_acl() earlier move handling
idmapped mounts out of vfs_setxattr() and into the POSIX ACL handler
where it belongs.
Note that we also need to call vfs_make_posix_acl() for EVM which
interpretes POSIX ACLs during security_inode_setxattr(). Leave them a
longer comment for future reference.
All filesystems that support idmapped mounts via FS_ALLOW_IDMAP use the
standard POSIX ACL xattr handlers and are covered by this change. This
includes overlayfs which simply calls vfs_{g,s}etxattr().
The following filesystems use custom POSIX ACL xattr handlers: 9p, cifs,
ecryptfs, and ntfs3 (and overlayfs but we've covered that in the paragraph
above) and none of them support idmapped mounts yet.
Link: https://lore.kernel.org/all/20220801145520.1532837-1-brauner@kernel.org/ [1]
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Reviewed-by: Seth Forshee (DigitalOcean) <sforshee@kernel.org>
|
|
Various filesystems store POSIX ACLs on the backing store in their uapi
format. Such filesystems need to translate from the uapi POSIX ACL
format into the VFS format during i_op->get_acl(). The VFS provides the
posix_acl_from_xattr() helper for this task.
But the usage of posix_acl_from_xattr() is currently ambiguous. It is
intended to transform from a uapi POSIX ACL to the VFS represenation.
For example, when retrieving POSIX ACLs for permission checking during
lookup or when calling getxattr() to retrieve system.posix_acl_{access,default}.
Calling posix_acl_from_xattr() during i_op->get_acl() will map the raw
{g,u}id values stored as ACL_{GROUP,USER} entries in the uapi POSIX ACL
format into k{g,u}id_t in the filesystem's idmapping and return a struct
posix_acl ready to be returned to the VFS for caching and to perform
permission checks on.
However, posix_acl_from_xattr() is also called during setxattr() for all
filesystems that rely on VFS provides posix_acl_{access,default}_xattr_handler.
The posix_acl_xattr_set() handler which is used for the ->set() method
of posix_acl_{access,default}_xattr_handler uses posix_acl_from_xattr()
to translate from the uapi POSIX ACL format to the VFS format so that it
can be passed to the i_op->set_acl() handler of the filesystem or for
direct caching in case no i_op->set_acl() handler is defined.
During setxattr() the {g,u}id values stored as ACL_{GROUP,USER} entries
in the uapi POSIX ACL format aren't raw {g,u}id values that need to be
mapped according to the filesystem's idmapping. Instead they are {g,u}id
values in the caller's idmapping which have been generated during
posix_acl_fix_xattr_from_us |