Age | Commit message (Collapse) | Author | Files | Lines |
|
Alexey Gladkov <gladkov.alexey@gmail.com> writes:
Procfs modernization:
---------------------
Historically procfs was always tied to pid namespaces, during pid
namespace creation we internally create a procfs mount for it. However,
this has the effect that all new procfs mounts are just a mirror of the
internal one, any change, any mount option update, any new future
introduction will propagate to all other procfs mounts that are in the
same pid namespace.
This may have solved several use cases in that time. However today we
face new requirements, and making procfs able to support new private
instances inside same pid namespace seems a major point. If we want to
to introduce new features and security mechanisms we have to make sure
first that we do not break existing usecases. Supporting private procfs
instances will allow to support new features and behaviour without
propagating it to all other procfs mounts.
Today procfs is more of a burden especially to some Embedded, IoT,
sandbox, container use cases. In user space we are over-mounting null
or inaccessible files on top to hide files and information. If we want
to hide pids we have to create PID namespaces otherwise mount options
propagate to all other proc mounts, changing a mount option value in one
mount will propagate to all other proc mounts. If we want to introduce
new features, then they will propagate to all other mounts too, resulting
either maybe new useful functionality or maybe breaking stuff. We have
also to note that userspace should not workaround procfs, the kernel
should just provide a sane simple interface.
In this regard several developers and maintainers pointed out that
there are problems with procfs and it has to be modernized:
"Here's another one: split up and modernize /proc." by Andy Lutomirski [1]
Discussion about kernel pointer leaks:
"And yes, as Kees and Daniel mentioned, it's definitely not just dmesg.
In fact, the primary things tend to be /proc and /sys, not dmesg
itself." By Linus Torvalds [2]
Lot of other areas in the kernel and filesystems have been updated to be
able to support private instances, devpts is one major example [3].
Which will be used for:
1) Embedded systems and IoT: usually we have one supervisor for
apps, we have some lightweight sandbox support, however if we create
pid namespaces we have to manage all the processes inside too,
where our goal is to be able to run a bunch of apps each one inside
its own mount namespace, maybe use network namespaces for vlans
setups, but right now we only want mount namespaces, without all the
other complexity. We want procfs to behave more like a real file system,
and block access to inodes that belong to other users. The 'hidepid=' will
not work since it is a shared mount option.
2) Containers, sandboxes and Private instances of file systems - devpts case
Historically, lot of file systems inside Linux kernel view when instantiated
were just a mirror of an already created and mounted filesystem. This was the
case of devpts filesystem, it seems at that time the requirements were to
optimize things and reuse the same memory, etc. This design used to work but not
anymore with today's containers, IoT, hostile environments and all the privacy
challenges that Linux faces.
In that regards, devpts was updated so that each new mounts is a total
independent file system by the following patches:
"devpts: Make each mount of devpts an independent filesystem" by
Eric W. Biederman [3] [4]
3) Linux Security Modules have multiple ptrace paths inside some
subsystems, however inside procfs, the implementation does not guarantee
that the ptrace() check which triggers the security_ptrace_check() hook
will always run. We have the 'hidepid' mount option that can be used to
force the ptrace_may_access() check inside has_pid_permissions() to run.
The problem is that 'hidepid' is per pid namespace and not attached to
the mount point, any remount or modification of 'hidepid' will propagate
to all other procfs mounts.
This also does not allow to support Yama LSM easily in desktop and user
sessions. Yama ptrace scope which restricts ptrace and some other
syscalls to be allowed only on inferiors, can be updated to have a
per-task context, where the context will be inherited during fork(),
clone() and preserved across execve(). If we support multiple private
procfs instances, then we may force the ptrace_may_access() on
/proc/<pids>/ to always run inside that new procfs instances. This will
allow to specifiy on user sessions if we should populate procfs with
pids that the user can ptrace or not.
By using Yama ptrace scope, some restricted users will only be able to see
inferiors inside /proc, they won't even be able to see their other
processes. Some software like Chromium, Firefox's crash handler, Wine
and others are already using Yama to restrict which processes can be
ptracable. With this change this will give the possibility to restrict
/proc/<pids>/ but more importantly this will give desktop users a
generic and usuable way to specifiy which users should see all processes
and which user can not.
Side notes:
* This covers the lack of seccomp where it is not able to parse
arguments, it is easy to install a seccomp filter on direct syscalls
that operate on pids, however /proc/<pid>/ is a Linux ABI using
filesystem syscalls. With this change all LSMs should be able to analyze
open/read/write/close... on /proc/<pid>/
4) This will allow to implement new features either in kernel or
userspace without having to worry about procfs.
In containers, sandboxes, etc we have workarounds to hide some /proc
inodes, this should be supported natively without doing extra complex
work, the kernel should be able to support sane options that work with
today and future Linux use cases.
5) Creation of new superblock with all procfs options for each procfs
mount will fix the ignoring of mount options. The problem is that the
second mount of procfs in the same pid namespace ignores the mount
options. The mount options are ignored without error until procfs is
remounted.
Before:
proc /proc proc rw,relatime,hidepid=2 0 0
mount("proc", "/tmp/proc", "proc", 0, "hidepid=1") = 0
+++ exited with 0 +++
proc /proc proc rw,relatime,hidepid=2 0 0
proc /tmp/proc proc rw,relatime,hidepid=2 0 0
proc /proc proc rw,relatime,hidepid=1 0 0
proc /tmp/proc proc rw,relatime,hidepid=1 0 0
After:
proc /proc proc rw,relatime,hidepid=ptraceable 0 0
proc /proc proc rw,relatime,hidepid=ptraceable 0 0
proc /tmp/proc proc rw,relatime,hidepid=invisible 0 0
Introduced changes:
-------------------
Each mount of procfs creates a separate procfs instance with its own
mount options.
This series adds few new mount options:
* New 'hidepid=ptraceable' or 'hidepid=4' mount option to show only ptraceable
processes in the procfs. This allows to support lightweight sandboxes in
Embedded Linux, also solves the case for LSM where now with this mount option,
we make sure that they have a ptrace path in procfs.
* 'subset=pid' that allows to hide non-pid inodes from procfs. It can be used
in containers and sandboxes, as these are already trying to hide and block
access to procfs inodes anyway.
ChangeLog:
----------
* Rebase on top of v5.7-rc1.
* Fix a resource leak if proc is not mounted or if proc is simply reconfigured.
* Add few selftests.
* After a discussion with Eric W. Biederman, the numerical values for hidepid
parameter have been removed from uapi.
* Remove proc_self and proc_thread_self from the pid_namespace struct.
* I took into account the comment of Kees Cook.
* Update Reviewed-by tags.
* 'subset=pidfs' renamed to 'subset=pid' as suggested by Alexey Dobriyan.
* Include Reviewed-by tags.
* Rebase on top of Eric W. Biederman's procfs changes.
* Add human readable values of 'hidepid' as suggested by Andy Lutomirski.
* Started using RCU lock to clean dcache entries as suggested by Linus Torvalds.
* 'pidonly=1' renamed to 'subset=pidfs' as suggested by Alexey Dobriyan.
* HIDEPID_* moved to uapi/ as they are user interface to mount().
Suggested-by Alexey Dobriyan <adobriyan@gmail.com>
* 'hidepid=' and 'gid=' mount options are moved from pid namespace to superblock.
* 'newinstance' mount option removed as suggested by Eric W. Biederman.
Mount of procfs always creates a new instance.
* 'limit_pids' renamed to 'hidepid=3'.
* I took into account the comment of Linus Torvalds [7].
* Documentation added.
* Fixed a bug that caused a problem with the Fedora boot.
* The 'pidonly' option is visible among the mount options.
* Renamed mount options to 'newinstance' and 'pids='
Suggested-by: Andy Lutomirski <luto@kernel.org>
* Fixed order of commit, Suggested-by: Andy Lutomirski <luto@kernel.org>
* Many bug fixes.
* Removed 'unshared' mount option and replaced it with 'limit_pids'
which is attached to the current procfs mount.
Suggested-by Andy Lutomirski <luto@kernel.org>
* Do not fill dcache with pid entries that we can not ptrace.
* Many bug fixes.
References:
-----------
[1] https://lists.linuxfoundation.org/pipermail/ksummit-discuss/2017-January/004215.html
[2] http://www.openwall.com/lists/kernel-hardening/2017/10/05/5
[3] https://lwn.net/Articles/689539/
[4] http://lxr.free-electrons.com/source/Documentation/filesystems/devpts.txt?v=3.14
[5] https://lkml.org/lkml/2017/5/2/407
[6] https://lkml.org/lkml/2017/5/3/357
[7] https://lkml.org/lkml/2018/5/11/505
Alexey Gladkov (7):
proc: rename struct proc_fs_info to proc_fs_opts
proc: allow to mount many instances of proc in one pid namespace
proc: instantiate only pids that we can ptrace on 'hidepid=4' mount
option
proc: add option to mount only a pids subset
docs: proc: add documentation for "hidepid=4" and "subset=pid" options
and new mount behavior
proc: use human-readable values for hidepid
proc: use named enums for better readability
Documentation/filesystems/proc.rst | 92 +++++++++---
fs/proc/base.c | 48 +++++--
fs/proc/generic.c | 9 ++
fs/proc/inode.c | 30 +++-
fs/proc/root.c | 131 +++++++++++++-----
fs/proc/self.c | 6 +-
fs/proc/thread_self.c | 6 +-
fs/proc_namespace.c | 14 +-
include/linux/pid_namespace.h | 12 --
include/linux/proc_fs.h | 30 +++-
tools/testing/selftests/proc/.gitignore | 2 +
tools/testing/selftests/proc/Makefile | 2 +
.../selftests/proc/proc-fsconfig-hidepid.c | 50 +++++++
.../selftests/proc/proc-multiple-procfs.c | 48 +++++++
14 files changed, 384 insertions(+), 96 deletions(-)
create mode 100644 tools/testing/selftests/proc/proc-fsconfig-hidepid.c
create mode 100644 tools/testing/selftests/proc/proc-multiple-procfs.c
Link: https://lore.kernel.org/lkml/20200419141057.621356-1-gladkov.alexey@gmail.com/
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
Oleg pointed out that in the unlikely event the kernel is compiled
with CONFIG_PROC_FS unset that release_task will now leak the pid.
Move the put_pid out of proc_flush_pid into release_task to fix this
and to guarantee I don't make that mistake again.
When possible it makes sense to keep get and put in the same function
so it can easily been seen how they pair up.
Fixes: 7bc3e6e55acf ("proc: Use a list of inodes to flush from proc")
Reported-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
Signed-off-by: Alexey Gladkov <gladkov.alexey@gmail.com>
Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
If "hidepid=4" mount option is set then do not instantiate pids that
we can not ptrace. "hidepid=4" means that procfs should only contain
pids that the caller can ptrace.
Signed-off-by: Djalal Harouni <tixxdz@gmail.com>
Signed-off-by: Alexey Gladkov <gladkov.alexey@gmail.com>
Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
This patch allows to have multiple procfs instances inside the
same pid namespace. The aim here is lightweight sandboxes, and to allow
that we have to modernize procfs internals.
1) The main aim of this work is to have on embedded systems one
supervisor for apps. Right now we have some lightweight sandbox support,
however if we create pid namespacess we have to manages all the
processes inside too, where our goal is to be able to run a bunch of
apps each one inside its own mount namespace without being able to
notice each other. We only want to use mount namespaces, and we want
procfs to behave more like a real mount point.
2) Linux Security Modules have multiple ptrace paths inside some
subsystems, however inside procfs, the implementation does not guarantee
that the ptrace() check which triggers the security_ptrace_check() hook
will always run. We have the 'hidepid' mount option that can be used to
force the ptrace_may_access() check inside has_pid_permissions() to run.
The problem is that 'hidepid' is per pid namespace and not attached to
the mount point, any remount or modification of 'hidepid' will propagate
to all other procfs mounts.
This also does not allow to support Yama LSM easily in desktop and user
sessions. Yama ptrace scope which restricts ptrace and some other
syscalls to be allowed only on inferiors, can be updated to have a
per-task context, where the context will be inherited during fork(),
clone() and preserved across execve(). If we support multiple private
procfs instances, then we may force the ptrace_may_access() on
/proc/<pids>/ to always run inside that new procfs instances. This will
allow to specifiy on user sessions if we should populate procfs with
pids that the user can ptrace or not.
By using Yama ptrace scope, some restricted users will only be able to see
inferiors inside /proc, they won't even be able to see their other
processes. Some software like Chromium, Firefox's crash handler, Wine
and others are already using Yama to restrict which processes can be
ptracable. With this change this will give the possibility to restrict
/proc/<pids>/ but more importantly this will give desktop users a
generic and usuable way to specifiy which users should see all processes
and which users can not.
Side notes:
* This covers the lack of seccomp where it is not able to parse
arguments, it is easy to install a seccomp filter on direct syscalls
that operate on pids, however /proc/<pid>/ is a Linux ABI using
filesystem syscalls. With this change LSMs should be able to analyze
open/read/write/close...
In the new patch set version I removed the 'newinstance' option
as suggested by Eric W. Biederman.
Selftest has been added to verify new behavior.
Signed-off-by: Alexey Gladkov <gladkov.alexey@gmail.com>
Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
Michael Kerrisk suggested to replace numeric clock IDs with symbolic names.
Now the content of these files looks like this:
$ cat /proc/774/timens_offsets
monotonic 864000 0
boottime 1728000 0
For setting offsets, both representations of clocks (numeric and symbolic)
can be used.
As for compatibility, it is acceptable to change things as long as
userspace doesn't care. The format of timens_offsets files is very new and
there are no userspace tools yet which rely on this format.
But three projects crun, util-linux and criu rely on the interface of
setting time offsets and this is why it's required to continue supporting
the numeric clock IDs on write.
Fixes: 04a8682a71be ("fs/proc: Introduce /proc/pid/timens_offsets")
Suggested-by: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Andrei Vagin <avagin@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kerrisk <mtk.manpages@gmail.com>
Acked-by: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200411154031.642557-1-avagin@gmail.com
|
|
syzbot wrote:
> ========================================================
> WARNING: possible irq lock inversion dependency detected
> 5.6.0-syzkaller #0 Not tainted
> --------------------------------------------------------
> swapper/1/0 just changed the state of lock:
> ffffffff898090d8 (tasklist_lock){.+.?}-{2:2}, at: send_sigurg+0x9f/0x320 fs/fcntl.c:840
> but this lock took another, SOFTIRQ-unsafe lock in the past:
> (&pid->wait_pidfd){+.+.}-{2:2}
>
>
> and interrupts could create inverse lock ordering between them.
>
>
> other info that might help us debug this:
> Possible interrupt unsafe locking scenario:
>
> CPU0 CPU1
> ---- ----
> lock(&pid->wait_pidfd);
> local_irq_disable();
> lock(tasklist_lock);
> lock(&pid->wait_pidfd);
> <Interrupt>
> lock(tasklist_lock);
>
> *** DEADLOCK ***
>
> 4 locks held by swapper/1/0:
The problem is that because wait_pidfd.lock is taken under the tasklist
lock. It must always be taken with irqs disabled as tasklist_lock can be
taken from interrupt context and if wait_pidfd.lock was already taken this
would create a lock order inversion.
Oleg suggested just disabling irqs where I have added extra calls to
wait_pidfd.lock. That should be safe and I think the code will eventually
do that. It was rightly pointed out by Christian that sharing the
wait_pidfd.lock was a premature optimization.
It is also true that my pre-merge window testing was insufficient. So
remove the premature optimization and give struct pid a dedicated lock of
it's own for struct pid things. I have verified that lockdep sees all 3
paths where we take the new pid->lock and lockdep does not complain.
It is my current day dream that one day pid->lock can be used to guard the
task lists as well and then the tasklist_lock won't need to be held to
deliver signals. That will require taking pid->lock with irqs disabled.
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Link: https://lore.kernel.org/lkml/00000000000011d66805a25cd73f@google.com/
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Reported-by: syzbot+343f75cdeea091340956@syzkaller.appspotmail.com
Reported-by: syzbot+832aabf700bc3ec920b9@syzkaller.appspotmail.com
Reported-by: syzbot+f675f964019f884dbd0f@syzkaller.appspotmail.com
Reported-by: syzbot+a9fb1457d720a55d6dc5@syzkaller.appspotmail.com
Fixes: 7bc3e6e55acf ("proc: Use a list of inodes to flush from proc")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
This changes do_io_accounting to use the new exec_update_mutex
instead of cred_guard_mutex.
This fixes possible deadlocks when the trace is accessing
/proc/$pid/io for instance.
This should be safe, as the credentials are only used for reading.
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
This changes lock_trace to use the new exec_update_mutex
instead of cred_guard_mutex.
This fixes possible deadlocks when the trace is accessing
/proc/$pid/stack for instance.
This should be safe, as the credentials are only used for reading,
and task->mm is updated on execve under the new exec_update_mutex.
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
Rework the flushing of proc to use a list of directory inodes that
need to be flushed.
The list is kept on struct pid not on struct task_struct, as there is
a fixed connection between proc inodes and pids but at least for the
case of de_thread the pid of a task_struct changes.
This removes the dependency on proc_mnt which allows for different
mounts of proc having different mount options even in the same pid
namespace and this allows for the removal of proc_mnt which will
trivially the first mount of proc to honor it's mount options.
This flushing remains an optimization. The functions
pid_delete_dentry and pid_revalidate ensure that ordinary dcache
management will not attempt to use dentries past the point their
respective task has died. When unused the shrinker will
eventually be able to remove these dentries.
There is a case in de_thread where proc_flush_pid can be
called early for a given pid. Which winds up being
safe (if suboptimal) as this is just an optiimization.
Only pid directories are put on the list as the other
per pid files are children of those directories and
d_invalidate on the directory will get them as well.
So that the pid can be used during flushing it's reference count is
taken in release_task and dropped in proc_flush_pid. Further the call
of proc_flush_pid is moved after the tasklist_lock is released in
release_task so that it is certain that the pid has already been
unhashed when flushing it taking place. This removes a small race
where a dentry could recreated.
As struct pid is supposed to be small and I need a per pid lock
I reuse the only lock that currently exists in struct pid the
the wait_pidfd.lock.
The net result is that this adds all of this functionality
with just a little extra list management overhead and
a single extra pointer in struct pid.
v2: Initialize pid->inodes. I somehow failed to get that
initialization into the initial version of the patch. A boot
failure was reported by "kernel test robot <lkp@intel.com>", and
failure to initialize that pid->inodes matches all of the reported
symptoms.
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull openat2 support from Al Viro:
"This is the openat2() series from Aleksa Sarai.
I'm afraid that the rest of namei stuff will have to wait - it got
zero review the last time I'd posted #work.namei, and there had been a
leak in the posted series I'd caught only last weekend. I was going to
repost it on Monday, but the window opened and the odds of getting any
review during that... Oh, well.
Anyway, openat2 part should be ready; that _did_ get sane amount of
review and public testing, so here it comes"
From Aleksa's description of the series:
"For a very long time, extending openat(2) with new features has been
incredibly frustrating. This stems from the fact that openat(2) is
possibly the most famous counter-example to the mantra "don't silently
accept garbage from userspace" -- it doesn't check whether unknown
flags are present[1].
This means that (generally) the addition of new flags to openat(2) has
been fraught with backwards-compatibility issues (O_TMPFILE has to be
defined as __O_TMPFILE|O_DIRECTORY|[O_RDWR or O_WRONLY] to ensure old
kernels gave errors, since it's insecure to silently ignore the
flag[2]). All new security-related flags therefore have a tough road
to being added to openat(2).
Furthermore, the need for some sort of control over VFS's path
resolution (to avoid malicious paths resulting in inadvertent
breakouts) has been a very long-standing desire of many userspace
applications.
This patchset is a revival of Al Viro's old AT_NO_JUMPS[3] patchset
(which was a variant of David Drysdale's O_BENEATH patchset[4] which
was a spin-off of the Capsicum project[5]) with a few additions and
changes made based on the previous discussion within [6] as well as
others I felt were useful.
In line with the conclusions of the original discussion of
AT_NO_JUMPS, the flag has been split up into separate flags. However,
instead of being an openat(2) flag it is provided through a new
syscall openat2(2) which provides several other improvements to the
openat(2) interface (see the patch description for more details). The
following new LOOKUP_* flags are added:
LOOKUP_NO_XDEV:
Blocks all mountpoint crossings (upwards, downwards, or through
absolute links). Absolute pathnames alone in openat(2) do not
trigger this. Magic-link traversal which implies a vfsmount jump is
also blocked (though magic-link jumps on the same vfsmount are
permitted).
LOOKUP_NO_MAGICLINKS:
Blocks resolution through /proc/$pid/fd-style links. This is done
by blocking the usage of nd_jump_link() during resolution in a
filesystem. The term "magic-links" is used to match with the only
reference to these links in Documentation/, but I'm happy to change
the name.
It should be noted that this is different to the scope of
~LOOKUP_FOLLOW in that it applies to all path components. However,
you can do openat2(NO_FOLLOW|NO_MAGICLINKS) on a magic-link and it
will *not* fail (assuming that no parent component was a
magic-link), and you will have an fd for the magic-link.
In order to correctly detect magic-links, the introduction of a new
LOOKUP_MAGICLINK_JUMPED state flag was required.
LOOKUP_BENEATH:
Disallows escapes to outside the starting dirfd's
tree, using techniques such as ".." or absolute links. Absolute
paths in openat(2) are also disallowed.
Conceptually this flag is to ensure you "stay below" a certain
point in the filesystem tree -- but this requires some additional
to protect against various races that would allow escape using
"..".
Currently LOOKUP_BENEATH implies LOOKUP_NO_MAGICLINKS, because it
can trivially beam you around the filesystem (breaking the
protection). In future, there might be similar safety checks done
as in LOOKUP_IN_ROOT, but that requires more discussion.
In addition, two new flags are added that expand on the above ideas:
LOOKUP_NO_SYMLINKS:
Does what it says on the tin. No symlink resolution is allowed at
all, including magic-links. Just as with LOOKUP_NO_MAGICLINKS this
can still be used with NOFOLLOW to open an fd for the symlink as
long as no parent path had a symlink component.
LOOKUP_IN_ROOT:
This is an extension of LOOKUP_BENEATH that, rather than blocking
attempts to move past the root, forces all such movements to be
scoped to the starting point. This provides chroot(2)-like
protection but without the cost of a chroot(2) for each filesystem
operation, as well as being safe against race attacks that
chroot(2) is not.
If a race is detected (as with LOOKUP_BENEATH) then an error is
generated, and similar to LOOKUP_BENEATH it is not permitted to
cross magic-links with LOOKUP_IN_ROOT.
The primary need for this is from container runtimes, which
currently need to do symlink scoping in userspace[7] when opening
paths in a potentially malicious container.
There is a long list of CVEs that could have bene mitigated by
having RESOLVE_THIS_ROOT (such as CVE-2017-1002101,
CVE-2017-1002102, CVE-2018-15664, and CVE-2019-5736, just to name a
few).
In order to make all of the above more usable, I'm working on
libpathrs[8] which is a C-friendly library for safe path resolution.
It features a userspace-emulated backend if the kernel doesn't support
openat2(2). Hopefully we can get userspace to switch to using it, and
thus get openat2(2) support for free once it's ready.
Future work would include implementing things like
RESOLVE_NO_AUTOMOUNT and possibly a RESOLVE_NO_REMOTE (to allow
programs to be sure they don't hit DoSes though stale NFS handles)"
* 'work.openat2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
Documentation: path-lookup: include new LOOKUP flags
selftests: add openat2(2) selftests
open: introduce openat2(2) syscall
namei: LOOKUP_{IN_ROOT,BENEATH}: permit limited ".." resolution
namei: LOOKUP_IN_ROOT: chroot-like scoped resolution
namei: LOOKUP_BENEATH: O_BENEATH-like scoped resolution
namei: LOOKUP_NO_XDEV: block mountpoint crossing
namei: LOOKUP_NO_MAGICLINKS: block magic-link resolution
namei: LOOKUP_NO_SYMLINKS: block symlink resolution
namei: allow set_root() to produce errors
namei: allow nd_jump_link() to produce errors
nsfs: clean-up ns_get_path() signature to return int
namei: only return -ECHILD from follow_dotdot_rcu()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 resource control updates from Ingo Molnar:
"The main change in this tree is the extension of the resctrl procfs
ABI with a new file that helps tooling to navigate from tasks back to
resctrl groups: /proc/{pid}/cpu_resctrl_groups.
Also fix static key usage for certain feature combinations and
simplify the task exit resctrl case"
* 'x86-cache-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/resctrl: Add task resctrl information display
x86/resctrl: Check monitoring static key in the MBM overflow handler
x86/resctrl: Do not reconfigure exiting tasks
|
|
Monitoring tools that want to find out which resctrl control and monitor
groups a task belongs to must currently read the "tasks" file in every
group until they locate the process ID.
Add an additional file /proc/{pid}/cpu_resctrl_groups to provide this
information:
1) res:
mon:
resctrl is not available.
2) res:/
mon:
Task is part of the root resctrl control group, and it is not associated
to any monitor group.
3) res:/
mon:mon0
Task is part of the root resctrl control group and monitor group mon0.
4) res:group0
mon:
Task is part of resctrl control group group0, and it is not associated
to any monitor group.
5) res:group0
mon:mon1
Task is part of resctrl control group group0 and monitor group mon1.
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Jinshi Chen <jinshi.chen@intel.com>
Link: https://lkml.kernel.org/r/20200115092851.14761-1-yu.c.chen@intel.com
|
|
This patch provides a /proc/<pid>/attr/apparmor/
subdirectory. Enabling userspace to use the apparmor attributes
without having to worry about collisions with selinux or smack on
interface files in /proc/<pid>/attr.
Signed-off-by: John Johansen <john.johansen@canonical.com>
|
|
API to set time namespace offsets for children processes, i.e.:
echo "$clockid $offset_sec $offset_nsec" > /proc/self/timens_offsets
Co-developed-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Andrei Vagin <avagin@gmail.com>
Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20191112012724.250792-28-dima@arista.com
|
|
In preparation for LOOKUP_NO_MAGICLINKS, it's necessary to add the
ability for nd_jump_link() to return an error which the corresponding
get_link() caller must propogate back up to the VFS.
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Aleksa Sarai <cyphar@cyphar.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
This fixes two problems reported with the cmdline simplification and
cleanup last year:
- the setproctitle() special cases didn't quite match the original
semantics, and it can be noticeable:
https://lore.kernel.org/lkml/alpine.LNX.2.21.1904052326230.3249@kich.toxcorp.com/
- it could leak an uninitialized byte from the temporary buffer under
the right (wrong) circustances:
https://lore.kernel.org/lkml/20190712160913.17727-1-izbyshev@ispras.ru/
It rewrites the logic entirely, splitting it into two separate commits
(and two separate functions) for the two different cases ("unedited
cmdline" vs "setproctitle() has been used to change the command line").
* proc-cmdline:
/proc/<pid>/cmdline: add back the setproctitle() special case
/proc/<pid>/cmdline: remove all the special cases
|
|
This makes the setproctitle() special case very explicit indeed, and
handles it with a separate helper function entirely. In the process, it
re-instates the original semantics of simply stopping at the first NUL
character when the original last NUL character is no longer there.
[ The original semantics can still be seen in mm/util.c: get_cmdline()
that is limited to a fixed-size buffer ]
This makes the logic about when we use the string lengths etc much more
obvious, and makes it easier to see what we do and what the two very
different cases are.
Note that even when we allow walking past the end of the argument array
(because the setproctitle() might have overwritten and overflowed the
original argv[] strings), we only allow it when it overflows into the
environment region if it is immediately adjacent.
[ Fixed for missing 'count' checks noted by Alexey Izbyshev ]
Link: https://lore.kernel.org/lkml/alpine.LNX.2.21.1904052326230.3249@kich.toxcorp.com/
Fixes: 5ab827189965 ("fs/proc: simplify and clarify get_mm_cmdline() function")
Cc: Jakub Jankowski <shasta@toxcorp.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Alexey Izbyshev <izbyshev@ispras.ru>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Start off with a clean slate that only reads exactly from arg_start to
arg_end, without any oddities. This simplifies the code and in the
process removes the case that caused us to potentially leak an
uninitialized byte from the temporary kernel buffer.
Note that in order to start from scratch with an understandable base,
this simplifies things _too_ much, and removes all the legacy logic to
handle setproctitle() having changed the argument strings.
We'll add back those special cases very differently in the next commit.
Link: https://lore.kernel.org/lkml/20190712160913.17727-1-izbyshev@ispras.ru/
Fixes: f5b65348fd77 ("proc: fix missing final NUL in get_mm_cmdline() rewrite")
Cc: Alexey Izbyshev <izbyshev@ispras.ru>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit ef08e3b4981a ("[PATCH] cpusets: confine oom_killer to
mem_exclusive cpuset") introduces a heuristic where a potential
oom-killer victim is skipped if the intersection of the potential victim
and the current (the process triggered the oom) is empty based on the
reason that killing such victim most probably will not help the current
allocating process.
However the commit 7887a3da753e ("[PATCH] oom: cpuset hint") changed the
heuristic to just decrease the oom_badness scores of such potential
victim based on the reason that the cpuset of such processes might have
changed and previously they may have allocated memory on mems where the
current allocating process can allocate from.
Unintentionally 7887a3da753e ("[PATCH] oom: cpuset hint") introduced a
side effect as the oom_badness is also exposed to the user space through
/proc/[pid]/oom_score, so, readers with different cpusets can read
different oom_score of the same process.
Later, commit 6cf86ac6f36b ("oom: filter tasks not sharing the same
cpuset") fixed the side effect introduced by 7887a3da753e by moving the
cpuset intersection back to only oom-killer context and out of
oom_badness. However the combination of ab290adbaf8f ("oom: make
oom_unkillable_task() helper function") and 26ebc984913b ("oom:
/proc/<pid>/oom_score treat kernel thread honestly") unintentionally
brought back the cpuset intersection check into the oom_badness
calculation function.
Other than doing cpuset/mempolicy intersection from oom_badness, the memcg
oom context is also doing cpuset/mempolicy intersection which is quite
wrong and is caught by syzcaller with the following report:
kasan: CONFIG_KASAN_INLINE enabled
kasan: GPF could be caused by NULL-ptr deref or user memory access
general protection fault: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 28426 Comm: syz-executor.5 Not tainted 5.2.0-rc3-next-20190607
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
Google 01/01/2011
RIP: 0010:__read_once_size include/linux/compiler.h:194 [inline]
RIP: 0010:has_intersects_mems_allowed mm/oom_kill.c:84 [inline]
RIP: 0010:oom_unkillable_task mm/oom_kill.c:168 [inline]
RIP: 0010:oom_unkillable_task+0x180/0x400 mm/oom_kill.c:155
Code: c1 ea 03 80 3c 02 00 0f 85 80 02 00 00 4c 8b a3 10 07 00 00 48 b8 00
00 00 00 00 fc ff df 4d 8d 74 24 10 4c 89 f2 48 c1 ea 03 <80> 3c 02 00 0f
85 67 02 00 00 49 8b 44 24 10 4c 8d a0 68 fa ff ff
RSP: 0018:ffff888000127490 EFLAGS: 00010a03
RAX: dffffc0000000000 RBX: ffff8880a4cd5438 RCX: ffffffff818dae9c
RDX: 100000000c3cc602 RSI: ffffffff818dac8d RDI: 0000000000000001
RBP: ffff8880001274d0 R08: ffff888000086180 R09: ffffed1015d26be0
R10: ffffed1015d26bdf R11: ffff8880ae935efb R12: 8000000061e63007
R13: 0000000000000000 R14: 8000000061e63017 R15: 1ffff11000024ea6
FS: 00005555561f5940(0000) GS:ffff8880ae800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000607304 CR3: 000000009237e000 CR4: 00000000001426f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000600
Call Trace:
oom_evaluate_task+0x49/0x520 mm/oom_kill.c:321
mem_cgroup_scan_tasks+0xcc/0x180 mm/memcontrol.c:1169
select_bad_process mm/oom_kill.c:374 [inline]
out_of_memory mm/oom_kill.c:1088 [inline]
out_of_memory+0x6b2/0x1280 mm/oom_kill.c:1035
mem_cgroup_out_of_memory+0x1ca/0x230 mm/memcontrol.c:1573
mem_cgroup_oom mm/memcontrol.c:1905 [inline]
try_charge+0xfbe/0x1480 mm/memcontrol.c:2468
mem_cgroup_try_charge+0x24d/0x5e0 mm/memcontrol.c:6073
mem_cgroup_try_charge_delay+0x1f/0xa0 mm/memcontrol.c:6088
do_huge_pmd_wp_page_fallback+0x24f/0x1680 mm/huge_memory.c:1201
do_huge_pmd_wp_page+0x7fc/0x2160 mm/huge_memory.c:1359
wp_huge_pmd mm/memory.c:3793 [inline]
__handle_mm_fault+0x164c/0x3eb0 mm/memory.c:4006
handle_mm_fault+0x3b7/0xa90 mm/memory.c:4053
do_user_addr_fault arch/x86/mm/fault.c:1455 [inline]
__do_page_fault+0x5ef/0xda0 arch/x86/mm/fault.c:1521
do_page_fault+0x71/0x57d arch/x86/mm/fault.c:1552
page_fault+0x1e/0x30 arch/x86/entry/entry_64.S:1156
RIP: 0033:0x400590
Code: 06 e9 49 01 00 00 48 8b 44 24 10 48 0b 44 24 28 75 1f 48 8b 14 24 48
8b 7c 24 20 be 04 00 00 00 e8 f5 56 00 00 48 8b 74 24 08 <89> 06 e9 1e 01
00 00 48 8b 44 24 08 48 8b 14 24 be 04 00 00 00 8b
RSP: 002b:00007fff7bc49780 EFLAGS: 00010206
RAX: 0000000000000001 RBX: 0000000000760000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 000000002000cffc RDI: 0000000000000001
RBP: fffffffffffffffe R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000075 R11: 0000000000000246 R12: 0000000000760008
R13: 00000000004c55f2 R14: 0000000000000000 R15: 00007fff7bc499b0
Modules linked in:
---[ end trace a65689219582ffff ]---
RIP: 0010:__read_once_size include/linux/compiler.h:194 [inline]
RIP: 0010:has_intersects_mems_allowed mm/oom_kill.c:84 [inline]
RIP: 0010:oom_unkillable_task mm/oom_kill.c:168 [inline]
RIP: 0010:oom_unkillable_task+0x180/0x400 mm/oom_kill.c:155
Code: c1 ea 03 80 3c 02 00 0f 85 80 02 00 00 4c 8b a3 10 07 00 00 48 b8 00
00 00 00 00 fc ff df 4d 8d 74 24 10 4c 89 f2 48 c1 ea 03 <80> 3c 02 00 0f
85 67 02 00 00 49 8b 44 24 10 4c 8d a0 68 fa ff ff
RSP: 0018:ffff888000127490 EFLAGS: 00010a03
RAX: dffffc0000000000 RBX: ffff8880a4cd5438 RCX: ffffffff818dae9c
RDX: 100000000c3cc602 RSI: ffffffff818dac8d RDI: 0000000000000001
RBP: ffff8880001274d0 R08: ffff888000086180 R09: ffffed1015d26be0
R10: ffffed1015d26bdf R11: ffff8880ae935efb R12: 8000000061e63007
R13: 0000000000000000 R14: 8000000061e63017 R15: 1ffff11000024ea6
FS: 00005555561f5940(0000) GS:ffff8880ae800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000001b2f823000 CR3: 000000009237e000 CR4: 00000000001426f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000600
The fix is to decouple the cpuset/mempolicy intersection check from
oom_unkillable_task() and make sure cpuset/mempolicy intersection check is
only done in the global oom context.
[shakeelb@google.com: change function name and update comment]
Link: http://lkml.kernel.org/r/20190628152421.198994-3-shakeelb@google.com
Link: http://lkml.kernel.org/r/20190624212631.87212-3-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reported-by: syzbot+d0fc9d3c166bc5e4a94b@syzkaller.appspotmail.com
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Paul Jackson <pj@sgi.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
oom_unkillable_task() can be called from three different contexts i.e.
global OOM, memcg OOM and oom_score procfs interface. At the moment
oom_unkillable_task() does a task_in_mem_cgroup() check on the given
process. Since there is no reason to perform task_in_mem_cgroup()
check for global OOM and oom_score procfs interface, those contexts
provide NULL memcg and skips the task_in_mem_cgroup() check. However
for memcg OOM context, the oom_unkillable_task() is always called from
mem_cgroup_scan_tasks() and thus task_in_mem_cgroup() check becomes
redundant and effectively dead code. So, just remove the
task_in_mem_cgroup() check altogether.
Link: http://lkml.kernel.org/r/20190624212631.87212-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Paul Jackson <pj@sgi.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Do not remain stuck forever if something goes wrong. Using a killable
lock permits cleanup of stuck tasks and simplifies investigation.
It seems ->d_revalidate() could return any error (except ECHILD) to abort
validation and pass error as result of lookup sequence.
[akpm@linux-foundation.org: fix proc_map_files_lookup() return value, per Andrei]
Link: http://lkml.kernel.org/r/156007493995.3335.9595044802115356911.stgit@buzz
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@gmail.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 AVX512 status update from Ingo Molnar:
"This adds a new ABI that the main scheduler probably doesn't want to
deal with but HPC job schedulers might want to use: the
AVX512_elapsed_ms field in the new /proc/<pid>/arch_status task status
file, which allows the user-space job scheduler to cluster such tasks,
to avoid turbo frequency drops"
* 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Documentation/filesystems/proc.txt: Add arch_status file
x86/process: Add AVX-512 usage elapsed time to /proc/pid/arch_status
proc: Add /proc/<pid>/arch_status
|
|
Remove the d_is_dir() check from tgid_pidfd_to_pid().
It is pointless since you should never get &proc_tgid_base_operations
for f_op on a non-directory.
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Christian Brauner <christian@brauner.io>
|
|
Exposing architecture specific per process information is useful for
various reasons. An example is the AVX512 usage on x86 which is important
for task placement for power/performance optimizations.
Adding this information to the existing /prcc/pid/status file would be the
obvious choise, but it has been agreed on that a explicit arch_status file
is better in separating the generic and architecture specific information.
[ tglx: Massage changelog ]
Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: peterz@infradead.org
Cc: hpa@zytor.com
Cc: ak@linux.intel.com
Cc: tim.c.chen@linux.intel.com
Cc: dave.hansen@intel.com
Cc: arjan@linux.intel.com
Cc: adobriyan@gmail.com
Cc: aubrey.li@intel.com
Cc: linux-api@vger.kernel.org
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Linux API <linux-api@vger.kernel.org>
Link: https://lkml.kernel.org/r/20190606012236.9391-1-aubrey.li@linux.intel.com
|
|
clear_tsk_latency_tracing
The name clear_all_latency_tracing is misleading, in fact which only
clear per task's latency_record[], and we do have another function named
clear_global_latency_tracing which clear the global latency_record[]
buffer.
Link: http://lkml.kernel.org/r/20190226114602.16902-1-linf@wangsu.com
Signed-off-by: Lin Feng <linf@wangsu.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Fabian Frederick <fabf@skynet.be>
Cc: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/selinux
Pull selinux updates from Paul Moore:
"We've got a few SELinux patches for the v5.2 merge window, the
highlights are below:
- Add LSM hooks, and the SELinux implementation, for proper labeling
of kernfs. While we are only including the SELinux implementation
here, the rest of the LSM folks have given the hooks a thumbs-up.
- Update the SELinux mdp (Make Dummy Policy) script to actually work
on a modern system.
- Disallow userspace to change the LSM credentials via
/proc/self/attr when the task's credentials are already overridden.
The change was made in procfs because all the LSM folks agreed this
was the Right Thing To Do and duplicating it across each LSM was
going to be annoying"
* tag 'selinux-pr-20190507' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/selinux:
proc: prevent changes to overridden credentials
selinux: Check address length before reading address family
kernfs: fix xattr name handling in LSM helpers
MAINTAINERS: update SELinux file patterns
selinux: avoid uninitialized variable warning
selinux: remove useless assignments
LSM: lsm_hooks.h - fix missing colon in docstring
selinux: Make selinux_kernfs_init_security static
kernfs: initialize security of newly created nodes
s |