summaryrefslogtreecommitdiff
path: root/fs/xfs/xfs_qm.c
AgeCommit message (Collapse)AuthorFilesLines
2025-03-03xfs: disable rt quotas for zoned file systemsChristoph Hellwig1-1/+2
They'll need a little more work. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
2024-12-23xfs: add some rtgroup inode helpersDarrick J. Wong1-4/+4
Create some simple helpers to reduce the amount of typing whenever we access rtgroup inodes. Conversion was done with this spatch and some minor reformatting: @@ expression rtg; @@ - rtg->rtg_inodes[XFS_RTGI_BITMAP] + rtg_bitmap(rtg) @@ expression rtg; @@ - rtg->rtg_inodes[XFS_RTGI_SUMMARY] + rtg_summary(rtg) and the CLI command: $ spatch --sp-file /tmp/moo.cocci --dir fs/xfs/ --use-gitgrep --in-place Signed-off-by: "Darrick J. Wong" <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-12-23xfs: prepare to reuse the dquot pointer space in struct xfs_inodeDarrick J. Wong1-0/+2
Files participating in the metadata directory tree are not accounted to the quota subsystem. Therefore, the i_[ugp]dquot pointers in struct xfs_inode are never used and should always be NULL. In the next patch we want to add a u64 count of fs blocks reserved for metadata btree expansion, but we don't want every inode in the fs to pay the memory price for this feature. The intent is to union those three pointers with the u64 counter, but for that to work we must guard against all access to the dquot pointers for metadata files. Signed-off-by: "Darrick J. Wong" <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-12-12xfs: don't crash on corrupt /quotas direntDarrick J. Wong1-0/+7
If the /quotas dirent points to an inode but the inode isn't loadable (and hence mkdir returns -EEXIST), don't crash, just bail out. Cc: <stable@vger.kernel.org> # v6.13-rc1 Fixes: e80fbe1ad8eff7 ("xfs: use metadir for quota inodes") Signed-off-by: "Darrick J. Wong" <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-12-12xfs: convert quotacheck to attach dquot buffersDarrick J. Wong1-5/+13
Now that we've converted the dquot logging machinery to attach the dquot buffer to the li_buf pointer so that the AIL dqflush doesn't have to allocate or read buffers in a reclaim path, do the same for the quotacheck code so that the reclaim shrinker dqflush call doesn't have to do that either. Cc: <stable@vger.kernel.org> # v6.12 Fixes: 903edea6c53f09 ("mm: warn about illegal __GFP_NOFAIL usage in a more appropriate location and manner") Signed-off-by: "Darrick J. Wong" <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-12-12xfs: attach dquot buffer to dquot log item bufferDarrick J. Wong1-3/+6
Ever since 6.12-rc1, I've observed a pile of warnings from the kernel when running fstests with quotas enabled: WARNING: CPU: 1 PID: 458580 at mm/page_alloc.c:4221 __alloc_pages_noprof+0xc9c/0xf18 CPU: 1 UID: 0 PID: 458580 Comm: xfsaild/sda3 Tainted: G W 6.12.0-rc6-djwa #rc6 6ee3e0e531f6457e2d26aa008a3b65ff184b377c <snip> Call trace: __alloc_pages_noprof+0xc9c/0xf18 alloc_pages_mpol_noprof+0x94/0x240 alloc_pages_noprof+0x68/0xf8 new_slab+0x3e0/0x568 ___slab_alloc+0x5a0/0xb88 __slab_alloc.constprop.0+0x7c/0xf8 __kmalloc_noprof+0x404/0x4d0 xfs_buf_get_map+0x594/0xde0 [xfs 384cb02810558b4c490343c164e9407332118f88] xfs_buf_read_map+0x64/0x2e0 [xfs 384cb02810558b4c490343c164e9407332118f88] xfs_trans_read_buf_map+0x1dc/0x518 [xfs 384cb02810558b4c490343c164e9407332118f88] xfs_qm_dqflush+0xac/0x468 [xfs 384cb02810558b4c490343c164e9407332118f88] xfs_qm_dquot_logitem_push+0xe4/0x148 [xfs 384cb02810558b4c490343c164e9407332118f88] xfsaild+0x3f4/0xde8 [xfs 384cb02810558b4c490343c164e9407332118f88] kthread+0x110/0x128 ret_from_fork+0x10/0x20 ---[ end trace 0000000000000000 ]--- This corresponds to the line: WARN_ON_ONCE(current->flags & PF_MEMALLOC); within the NOFAIL checks. What's happening here is that the XFS AIL is trying to write a disk quota update back into the filesystem, but for that it needs to read the ondisk buffer for the dquot. The buffer is not in memory anymore, probably because it was evicted. Regardless, the buffer cache tries to allocate a new buffer, but those allocations are NOFAIL. The AIL thread has marked itself PF_MEMALLOC (aka noreclaim) since commit 43ff2122e6492b ("xfs: on-stack delayed write buffer lists") presumably because reclaim can push on XFS to push on the AIL. An easy way to fix this probably would have been to drop the NOFAIL flag from the xfs_buf allocation and open code a retry loop, but then there's still the problem that for bs>ps filesystems, the buffer itself could require up to 64k worth of pages. Inode items had similar behavior (multi-page cluster buffers that we don't want to allocate in the AIL) which we solved by making transaction precommit attach the inode cluster buffers to the dirty log item. Let's solve the dquot problem in the same way. So: Make a real precommit handler to read the dquot buffer and attach it to the log item; pass it to dqflush in the push method; and have the iodone function detach the buffer once we've flushed everything. Add a state flag to the log item to track when a thread has entered the precommit -> push mechanism to skip the detaching if it turns out that the dquot is very busy, as we don't hold the dquot lock between log item commit and AIL push). Reading and attaching the dquot buffer in the precommit hook is inspired by the work done for inode cluster buffers some time ago. Cc: <stable@vger.kernel.org> # v6.12 Fixes: 903edea6c53f09 ("mm: warn about illegal __GFP_NOFAIL usage in a more appropriate location and manner") Signed-off-by: "Darrick J. Wong" <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-12-12xfs: separate dquot buffer reads from xfs_dqflushDarrick J. Wong1-7/+30
The first step towards holding the dquot buffer in the li_buf instead of reading it in the AIL is to separate the part that reads the buffer from the actual flush code. There should be no functional changes. Signed-off-by: "Darrick J. Wong" <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-12-12xfs: keep quota directory inode loadedDarrick J. Wong1-22/+25
In the same vein as the previous patch, there's no point in the metapath scrub setup function doing a lookup on the quota metadir just so it can validate that lookups work correctly. Instead, retain the quota directory inode in memory for the lifetime of the mount so that we can check this meaningfully. Cc: <stable@vger.kernel.org> # v6.13-rc1 Fixes: 128a055291ebbc ("xfs: scrub quota file metapaths") Signed-off-by: "Darrick J. Wong" <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-23Merge tag 'mm-stable-2024-11-18-19-27' of ↵Linus Torvalds1-4/+2
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - The series "zram: optimal post-processing target selection" from Sergey Senozhatsky improves zram's post-processing selection algorithm. This leads to improved memory savings. - Wei Yang has gone to town on the mapletree code, contributing several series which clean up the implementation: - "refine mas_mab_cp()" - "Reduce the space to be cleared for maple_big_node" - "maple_tree: simplify mas_push_node()" - "Following cleanup after introduce mas_wr_store_type()" - "refine storing null" - The series "selftests/mm: hugetlb_fault_after_madv improvements" from David Hildenbrand fixes this selftest for s390. - The series "introduce pte_offset_map_{ro|rw}_nolock()" from Qi Zheng implements some rationaizations and cleanups in the page mapping code. - The series "mm: optimize shadow entries removal" from Shakeel Butt optimizes the file truncation code by speeding up the handling of shadow entries. - The series "Remove PageKsm()" from Matthew Wilcox completes the migration of this flag over to being a folio-based flag. - The series "Unify hugetlb into arch_get_unmapped_area functions" from Oscar Salvador implements a bunch of consolidations and cleanups in the hugetlb code. - The series "Do not shatter hugezeropage on wp-fault" from Dev Jain takes away the wp-fault time practice of turning a huge zero page into small pages. Instead we replace the whole thing with a THP. More consistent cleaner and potentiall saves a large number of pagefaults. - The series "percpu: Add a test case and fix for clang" from Andy Shevchenko enhances and fixes the kernel's built in percpu test code. - The series "mm/mremap: Remove extra vma tree walk" from Liam Howlett optimizes mremap() by avoiding doing things which we didn't need to do. - The series "Improve the tmpfs large folio read performance" from Baolin Wang teaches tmpfs to copy data into userspace at the folio size rather than as individual pages. A 20% speedup was observed. - The series "mm/damon/vaddr: Fix issue in damon_va_evenly_split_region()" fro Zheng Yejian fixes DAMON splitting. - The series "memcg-v1: fully deprecate charge moving" from Shakeel Butt removes the long-deprecated memcgv2 charge moving feature. - The series "fix error handling in mmap_region() and refactor" from Lorenzo Stoakes cleanup up some of the mmap() error handling and addresses some potential performance issues. - The series "x86/module: use large ROX pages for text allocations" from Mike Rapoport teaches x86 to use large pages for read-only-execute module text. - The series "page allocation tag compression" from Suren Baghdasaryan is followon maintenance work for the new page allocation profiling feature. - The series "page->index removals in mm" from Matthew Wilcox remove most references to page->index in mm/. A slow march towards shrinking struct page. - The series "damon/{self,kunit}tests: minor fixups for DAMON debugfs interface tests" from Andrew Paniakin performs maintenance work for DAMON's self testing code. - The series "mm: zswap swap-out of large folios" from Kanchana Sridhar improves zswap's batching of compression and decompression. It is a step along the way towards using Intel IAA hardware acceleration for this zswap operation. - The series "kasan: migrate the last module test to kunit" from Sabyrzhan Tasbolatov completes the migration of the KASAN built-in tests over to the KUnit framework. - The series "implement lightweight guard pages" from Lorenzo Stoakes permits userapace to place fault-generating guard pages within a single VMA, rather than requiring that multiple VMAs be created for this. Improved efficiencies for userspace memory allocators are expected. - The series "memcg: tracepoint for flushing stats" from JP Kobryn uses tracepoints to provide increased visibility into memcg stats flushing activity. - The series "zram: IDLE flag handling fixes" from Sergey Senozhatsky fixes a zram buglet which potentially affected performance. - The series "mm: add more kernel parameters to control mTHP" from Maíra Canal enhances our ability to control/configuremultisize THP from the kernel boot command line. - The series "kasan: few improvements on kunit tests" from Sabyrzhan Tasbolatov has a couple of fixups for the KASAN KUnit tests. - The series "mm/list_lru: Split list_lru lock into per-cgroup scope" from Kairui Song optimizes list_lru memory utilization when lockdep is enabled. * tag 'mm-stable-2024-11-18-19-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (215 commits) cma: enforce non-zero pageblock_order during cma_init_reserved_mem() mm/kfence: add a new kunit test test_use_after_free_read_nofault() zram: fix NULL pointer in comp_algorithm_show() memcg/hugetlb: add hugeTLB counters to memcg vmstat: call fold_vm_zone_numa_events() before show per zone NUMA event mm: mmap_lock: check trace_mmap_lock_$type_enabled() instead of regcount zram: ZRAM_DEF_COMP should depend on ZRAM MAINTAINERS/MEMORY MANAGEMENT: add document files for mm Docs/mm/damon: recommend academic papers to read and/or cite mm: define general function pXd_init() kmemleak: iommu/iova: fix transient kmemleak false positive mm/list_lru: simplify the list_lru walk callback function mm/list_lru: split the lock to per-cgroup scope mm/list_lru: simplify reparenting and initial allocation mm/list_lru: code clean up for reparenting mm/list_lru: don't export list_lru_add mm/list_lru: don't pass unnecessary key parameters kasan: add kunit tests for kmalloc_track_caller, kmalloc_node_track_caller kasan: change kasan_atomics kunit test as KUNIT_CASE_SLOW kasan: use EXPORT_SYMBOL_IF_KUNIT to export symbols ...
2024-11-11mm/list_lru: simplify the list_lru walk callback functionKairui Song1-3/+2
Now isolation no longer takes the list_lru global node lock, only use the per-cgroup lock instead. And this lock is inside the list_lru_one being walked, no longer needed to pass the lock explicitly. Link: https://lkml.kernel.org/r/20241104175257.60853-7-ryncsn@gmail.com Signed-off-by: Kairui Song <kasong@tencent.com> Cc: Chengming Zhou <zhouchengming@bytedance.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-11-11mm/list_lru: split the lock to per-cgroup scopeKairui Song1-1/+0
Currently, every list_lru has a per-node lock that protects adding, deletion, isolation, and reparenting of all list_lru_one instances belonging to this list_lru on this node. This lock contention is heavy when multiple cgroups modify the same list_lru. This lock can be split into per-cgroup scope to reduce contention. To achieve this, we need a stable list_lru_one for every cgroup. This commit adds a lock to each list_lru_one and introduced a helper function lock_list_lru_of_memcg, making it possible to pin the list_lru of a memcg. Then reworked the reparenting process. Reparenting will switch the list_lru_one instances one by one. By locking each instance and marking it dead using the nr_items counter, reparenting ensures that all items in the corresponding cgroup (on-list or not, because items have a stable cgroup, see below) will see the list_lru_one switch synchronously. Objcg reparent is also moved after list_lru reparent so items will have a stable mem cgroup until all list_lru_one instances are drained. The only caller that doesn't work the *_obj interfaces are direct calls to list_lru_{add,del}. But it's only used by zswap and that's also based on objcg, so it's fine. This also changes the bahaviour of the isolation function when LRU_RETRY or LRU_REMOVED_RETRY is returned, because now releasing the lock could unblock reparenting and free the list_lru_one, isolation function will have to return withoug re-lock the lru. prepare() { mkdir /tmp/test-fs modprobe brd rd_nr=1 rd_size=33554432 mkfs.xfs -f /dev/ram0 mount -t xfs /dev/ram0 /tmp/test-fs for i in $(seq 1 512); do mkdir "/tmp/test-fs/$i" for j in $(seq 1 10240); do echo TEST-CONTENT > "/tmp/test-fs/$i/$j" done & done; wait } do_test() { read_worker() { sleep 1 tar -cv "$1" &>/dev/null } read_in_all() { cd "/tmp/test-fs" && ls for i in $(seq 1 512); do (exec sh -c 'echo "$PPID"') > "/sys/fs/cgroup/benchmark/$i/cgroup.procs" read_worker "$i" & done; wait } for i in $(seq 1 512); do mkdir -p "/sys/fs/cgroup/benchmark/$i" done echo +memory > /sys/fs/cgroup/benchmark/cgroup.subtree_control echo 512M > /sys/fs/cgroup/benchmark/memory.max echo 3 > /proc/sys/vm/drop_caches time read_in_all } Above script simulates compression of small files in multiple cgroups with memory pressure. Run prepare() then do_test for 6 times: Before: real 0m7.762s user 0m11.340s sys 3m11.224s real 0m8.123s user 0m11.548s sys 3m2.549s real 0m7.736s user 0m11.515s sys 3m11.171s real 0m8.539s user 0m11.508s sys 3m7.618s real 0m7.928s user 0m11.349s sys 3m13.063s real 0m8.105s user 0m11.128s sys 3m14.313s After this commit (about ~15% faster): real 0m6.953s user 0m11.327s sys 2m42.912s real 0m7.453s user 0m11.343s sys 2m51.942s real 0m6.916s user 0m11.269s sys 2m43.957s real 0m6.894s user 0m11.528s sys 2m45.346s real 0m6.911s user 0m11.095s sys 2m43.168s real 0m6.773s user 0m11.518s sys 2m40.774s Link: https://lkml.kernel.org/r/20241104175257.60853-6-ryncsn@gmail.com Signed-off-by: Kairui Song <kasong@tencent.com> Cc: Chengming Zhou <zhouchengming@bytedance.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Waiman Long <longman@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-11-05xfs: enable realtime quota againDarrick J. Wong1-3/+4
Enable quotas for the realtime device. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05xfs: create quota preallocation watermarks for realtime quotaDarrick J. Wong1-5/+16
Refactor the quota preallocation watermarking code so that it'll work for realtime quota too. Convert the do_div calls into div_u64 for compactness. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05xfs: fix chown with rt quotaDarrick J. Wong1-17/+27
Make chown's quota adjustments work with realtime files. This is mostly a matter of calling xfs_inode_count_blocks on a given file to figure out the number of blocks allocated to the data device and to the realtime device, and using those quantities to update the quota accounting when the id changes. Delayed allocation reservations are moved from the old dquot's incore reservation to the new dquot's incore reservation. Note that there was a missing ILOCK bug in xfs_qm_dqusage_adjust that we must fix before calling xfs_iread_extents. Prior to 2.6.37 the locking was correct, but then someone removed the ILOCK as part of a cleanup. Nobody noticed because nowhere in the git history have we ever supported rt+quota so nobody can use this. I'm leaving git breadcrumbs in case anyone is desperate enough to try to backport the rtquota code to old kernels. Not-Cc: <stable@vger.kernel.org> # v2.6.37 Fixes: 52fda114249578 ("xfs: simplify xfs_qm_dqusage_adjust") Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05xfs: use metadir for quota inodesDarrick J. Wong1-27/+176
Store the quota inodes in the /quota metadata directory if metadir is enabled. This enables us to stop using the sb_[ugp]uotino fields in the superblock. From this point on, all metadata files will be children of the metadata directory tree root. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05xfs: refactor xfs_qm_destroy_quotainosDarrick J. Wong1-33/+20
Reuse this function instead of open-coding the logic. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05xfs: move RT bitmap and summary information to the rtgroupChristoph Hellwig1-4/+9
Move the pointers to the RT bitmap and summary inodes as well as the summary cache to the rtgroups structure to prepare for having a separate bitmap and summary inodes for each rtgroup. Code using the inodes now needs to operate on a rtgroup. Where easily possible such code is converted to iterate over all rtgroups, else rtgroup 0 (the only one that can currently exist) is hardcoded. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2024-11-05xfs: add a xfs_qm_unmount_rt helperChristoph Hellwig1-4/+18
RT group enabled file systems fix the bug where we pointlessly attach quotas to the RT bitmap and summary files. Split the code to detach the quotas into a helper, make it conditional and document the differing behavior for RT group and pre-RT group file systems. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2024-11-05xfs: mark quota inodes as metadata filesDarrick J. Wong1-0/+2
When we're creating quota files at mount time, make sure to mark them as metadir inodes if appropriate. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05xfs: don't count metadata directory files to quotaDarrick J. Wong1-0/+11
Files in the metadata directory tree are internal to the filesystem. Don't count the inodes or the blocks they use in the root dquot because users do not need to know about their resource usage. This will also quiet down complaints about dquot usage not matching du output. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-11-05xfs: iget for metadata inodesDarrick J. Wong1-2/+21
Create a xfs_trans_metafile_iget function for metadata inodes to ensure that when we try to iget a metadata file, the inode is allocated and its file mode matches the metadata file type the caller expects. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-09-01xfs: refactor loading quota inodes in the regular caseDarrick J. Wong1-6/+40
Create a helper function to load quota inodes in the case where the dqtype and the sb quota inode fields correspond. This is true for nearly all the iget callsites in the quota code, except for when we're switching the group and project quota inodes. We'll need this in subsequent patches to make the metadir handling less convoluted. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-09-01xfs: pass the icreate args object to xfs_diallocDarrick J. Wong1-1/+1
Pass the xfs_icreate_args object to xfs_dialloc since we can extract the relevant mode (really just the file type) and parent inumber from there. This simplifies the calling convention in preparation for the next patch. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-07-02xfs: separate the icreate logic around INIT_XATTRSDarrick J. Wong1-0/+1
INIT_XATTRS is overloaded here -- it's set during the creat process when we think that we're immediately going to set some ACL xattrs to save time. However, it's also used by the parent pointers code to enable the attr fork in preparation to receive ppptr xattrs. This results in xfs_has_parent() branches scattered around the codebase to turn on INIT_XATTRS. Linkable files are created far more commonly than unlinkable temporary files or directory tree roots, so we should centralize this logic in xfs_inode_init. For the three callers that don't want parent pointers (online repiar tempfiles, unlinkable tempfiles, rootdir creation) we provide an UNLINKABLE flag to skip attr fork initialization. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-07-02xfs: pack icreate initialization parameters into a separate structureDarrick J. Wong1-2/+4
Callers that want to create an inode currently pass all possible file attribute values for the new inode into xfs_init_new_inode as ten separate parameters. This causes two code maintenance issues: first, we have large multi-line call sites which programmers must read carefully to make sure they did not accidentally invert a value. Second, all three file id parameters must be passed separately to the quota functions; any discrepancy results in quota count errors. Clean this up by creating a new icreate_args structure to hold all this information, some helpers to initialize them properly, and make the callers pass this structure through to the creation function, whose name we shorten to xfs_icreate. This eliminates the issues, enables us to keep the inode init code in sync with userspace via libxfs, and is needed for future metadata directory tree management. (A subsequent cleanup will also fix the quota alloc calls.) Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-04-15xfs: Hold inode locks in xfs_iallocAllison Henderson1-1/+3
Modify xfs_ialloc to hold locks after return. Caller will be responsible for manual unlock. We will need this later to hold locks across parent pointer operations Signed-off-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Catherine Hoang <catherine.hoang@oracle.com> [djwong: hold the parent ilocked across transaction rolls too] Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-02-22xfs: report quota block corruption errors to the health systemDarrick J. Wong1-2/+6
Whenever we encounter corrupt quota blocks, we should report that to the health monitoring system for later reporting. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-02-22xfs: track quota updates during live quotacheckDarrick J. Wong1-7/+9
Create a shadow dqtrx system in the quotacheck code that hooks the regular dquot counter update code. This will be the means to keep our copy of the dquot counters up to date while the scan runs in real time. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-02-22xfs: report the health of quota countsDarrick J. Wong1-1/+6
Report the health of quota counts. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-02-19xfs: Replace xfs_isilocked with xfs_assert_ilockedMatthew Wilcox (Oracle)1-5/+5
To use the new rwsem_assert_held()/rwsem_assert_held_write(), we can't use the existing ASSERT macro. Add a new xfs_assert_ilocked() and convert all the callers. Fix an apparent bug in xfs_isilocked(): If the caller specifies XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL, xfs_assert_ilocked() will check both the IOLOCK and the ILOCK are held for write. xfs_isilocked() only checked that the ILOCK was held for write. xfs_assert_ilocked() is always on, even if DEBUG or XFS_WARN aren't defined. It's a cheap check, so I don't think it's worth defining it away. Reviewed-by: "Darrick J. Wong" <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: "Matthew Wilcox (Oracle)" <willy@infradead.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-02-13xfs: use __GFP_NOLOCKDEP instead of GFP_NOFSDave Chinner1-3/+3
In the past we've had problems with lockdep false positives stemming from inode locking occurring in memory reclaim contexts (e.g. from superblock shrinkers). Lockdep doesn't know that inodes access from above memory reclaim cannot be accessed from below memory reclaim (and vice versa) but there has never been a good solution to solving this problem with lockdep annotations. This situation isn't unique to inode locks - buffers are also locked above and below memory reclaim, and we have to maintain lock ordering for them - and against inodes - appropriately. IOWs, the same code paths and locks are taken both above and below memory reclaim and so we always need to make sure the lock orders are consistent. We are spared the lockdep problems this might cause by the fact that semaphores and bit locks aren't covered by lockdep. In general, this sort of lockdep false positive detection is cause by code that runs GFP_KERNEL memory allocation with an actively referenced inode locked. When it is run from a transaction, memory allocation is automatically GFP_NOFS, so we don't have reclaim recursion issues. So in the places where we do memory allocation with inodes locked outside of a transaction, we have explicitly set them to use GFP_NOFS allocations to prevent lockdep false positives from being reported if the allocation dips into direct memory reclaim. More recently, __GFP_NOLOCKDEP was added to the memory allocation flags to tell lockdep not to track that particular allocation for the purposes of reclaim recursion detection. This is a much better way of preventing false positives - it allows us to use GFP_KERNEL context outside of transactions, and allows direct memory reclaim to proceed normally without throwing out false positive deadlock warnings. The obvious places that lock inodes and do memory allocation are the lookup paths and inode extent list initialisation. These occur in non-transactional GFP_KERNEL contexts, and so can run direct reclaim and lock inodes. This patch makes a first path through all the explicit GFP_NOFS allocations in XFS and converts the obvious ones to GFP_KERNEL | __GFP_NOLOCKDEP as a first step towards removing explicit GFP_NOFS allocations from the XFS code. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: "Darrick J. Wong" <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-02-13xfs: convert remaining kmem_free() to kfree()Dave Chinner1-3/+3
The remaining callers of kmem_free() are freeing heap memory, so we can convert them directly to kfree() and get rid of kmem_free() altogether. This conversion was done with: $ for f in `git grep -l kmem_free fs/xfs`; do > sed -i s/kmem_free/kfree/ $f > done $ Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: "Darrick J. Wong" <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-02-13xfs: convert kmem_alloc() to kmalloc()Dave Chinner1-1/+2
kmem_alloc() is just a thin wrapper around kmalloc() these days. Convert everything to use kmalloc() so we can get rid of the wrapper. Note: the transaction region allocation in xlog_add_to_transaction() can be a high order allocation. Converting it to use kmalloc(__GFP_NOFAIL) results in warnings in the page allocation code being triggered because the mm subsystem does not want us to use __GFP_NOFAIL with high order allocations like we've been doing with the kmem_alloc() wrapper for a couple of decades. Hence this specific case gets converted to xlog_kvmalloc() rather than kmalloc() to avoid this issue. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: "Darrick J. Wong" <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-02-13xfs: convert kmem_zalloc() to kzalloc()Dave Chinner1-1/+2
There's no reason to keep the kmem_zalloc() around anymore, it's just a thin wrapper around kmalloc(), so lets get rid of it. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: "Darrick J. Wong" <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-12-12list_lru: allow explicit memcg and NUMA node selectionNhat Pham1-1/+1
Patch series "workload-specific and memory pressure-driven zswap writeback", v8. There are currently several issues with zswap writeback: 1. There is only a single global LRU for zswap, making it impossible to perform worload-specific shrinking - an memcg under memory pressure cannot determine which pages in the pool it owns, and often ends up writing pages from other memcgs. This issue has been previously observed in practice and mitigated by simply disabling memcg-initiated shrinking: https://lore.kernel.org/all/20230530232435.3097106-1-nphamcs@gmail.com/T/#u But this solution leaves a lot to be desired, as we still do not have an avenue for an memcg to free up its own memory locked up in the zswap pool. 2. We only shrink the zswap pool when the user-defined limit is hit. This means that if we set the limit too high, cold data that are unlikely to be used again will reside in the pool, wasting precious memory. It is hard to predict how much zswap space will be needed ahead of time, as this depends on the workload (specifically, on factors such as memory access patterns and compressibility of the memory pages). This patch series solves these issues by separating the global zswap LRU into per-memcg and per-NUMA LRUs, and performs workload-specific (i.e memcg- and NUMA-aware) zswap writeback under memory pressure. The new shrinker does not have any parameter that must be tuned by the user, and can be opted in or out on a per-memcg basis. As a proof of concept, we ran the following synthetic benchmark: build the linux kernel in a memory-limited cgroup, and allocate some cold data in tmpfs to see if the shrinker could write them out and improved the overall performance. Depending on the amount of cold data generated, we observe from 14% to 35% reduction in kernel CPU time used in the kernel builds. This patch (of 6): The interface of list_lru is based on the assumption that the list node and the data it represents belong to the same allocated on the correct node/memcg. While this assumption is valid for existing slab objects LRU such as dentries and inodes, it is undocumented, and rather inflexible for certain potential list_lru users (such as the upcoming zswap shrinker and the THP shrinker). It has caused us a lot of issues during our development. This patch changes list_lru interface so that the caller must explicitly specify numa node and memcg when adding and removing objects. The old list_lru_add() and list_lru_del() are renamed to list_lru_add_obj() and list_lru_del_obj(), respectively. It also extends the list_lru API with a new function, list_lru_putback, which undoes a previous list_lru_isolate call. Unlike list_lru_add, it does not increment the LRU node count (as list_lru_isolate does not decrement the node count). list_lru_putback also allows for explicit memcg and NUMA node selection. Link: https://lkml.kernel.org/r/20231130194023.4102148-1-nphamcs@gmail.com Link: https://lkml.kernel.org/r/20231130194023.4102148-2-nphamcs@gmail.com Signed-off-by: Nhat Pham <nphamcs@gmail.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Tested-by: Bagas Sanjaya <bagasdotme@gmail.com> Cc: Chris Li <chrisl@kernel.org> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Seth Jennings <sjenning@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Vitaly Wool <vitaly.wool@konsulko.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-10-04xfs: dynamically allocate the xfs-qm shrinkerQi Zheng1-13/+14
In preparation for implementing lockless slab shrink, use new APIs to dynamically allocate the xfs-qm shrinker, so that it can be freed asynchronously via RCU. Then it doesn't need to wait for RCU read-side critical section when releasing the struct xfs_quotainfo. Link: https://lkml.kernel.org/r/20230911094444.68966-37-zhengqi.arch@bytedance.com Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Chandan Babu R <chandan.babu@oracle.com> Cc: "Darrick J. Wong" <djwong@kernel.org> Cc: Abhinav Kumar <quic_abhinavk@quicinc.com> Cc: Alasdair Kergon <agk@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Anna Schumaker <anna@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Bob Peterson <rpeterso@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Carlos Llamas <cmllamas@google.com> Cc: Chao Yu <chao@kernel.org> Cc: Chris Mason <clm@fb.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: Chuck Lever <cel@kernel.org> Cc: Coly Li <colyli@suse.de> Cc: Dai Ngo <Dai.Ngo@oracle.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Airlie <airlied@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Sterba <dsterba@suse.com> Cc: Dmitry Baryshkov <dmitry.baryshkov@linaro.org> Cc: Gao Xiang <hsiangkao@linux.alibaba.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Huang Rui <ray.huang@amd.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Jason Wang <jasowang@redhat.com> Cc: Jeff Layton <jlayton@kernel.org> Cc: Jeffle Xu <jefflexu@linux.alibaba.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Cc: Kirill Tkhai <tkhai@ya.ru> Cc: Marijn Suijten <marijn.suijten@somainline.org> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Mike Snitzer <snitzer@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Nadav Amit <namit@vmware.com> Cc: Neil Brown <neilb@suse.de> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Olga Kornievskaia <kolga@netapp.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rob Clark <robdclark@gmail.com> Cc: Rob Herring <robh@kernel.org> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Sean Paul <sean@poorly.run> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Song Liu <song@kernel.org> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tomeu Vizoso <tomeu.vizoso@collabora.com> Cc: Tom Talpey <tom@talpey.com> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Xuan Zhuo <xuanzhuo@linux.alibaba.com> Cc: Yue Hu <huyue2@coolpad.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-09-24xfs: fix reloading entire unlinked bucket listsDarrick J. Wong1-3/+12
During review of the patcheset that provided reloading of the incore iunlink list, Dave made a few suggestions, and I updated the copy in my dev tree. Unfortunately, I then got distracted by ... who even knows what ... and forgot to backport those changes from my dev tree to my release candidate branch. I then sent multiple pull requests with stale patches, and that's what was merged into -rc3. So. This patch re-adds the use of an unlocked iunlink list check to determine if we want to allocate the resources to recreate the incore list. Since lost iunlinked inodes are supposed to be rare, this change helps us avoid paying the transaction and AGF locking costs every time we open any inode. This also re-adds the shutdowns on failure, and re-applies the restructuring of the inner loop in xfs_inode_reload_unlinked_bucket, and re-adds a requested comment about the quotachecking code. Retain the original RVB tag from Dave since there's no code change from the last submission. Fixes: 68b957f64fca1 ("xfs: load uncached unlinked inodes into memory on demand") Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2023-09-12xfs: make inode unlinked bucket recovery work with quotacheckDarrick J. Wong1-0/+7
Teach quotacheck to reload the unlinked inode lists when walking the inode table. This requires extra state handling, since it's possible that a reloaded inode will get inactivated before quotacheck tries to scan it; in this case, we need to ensure that the reloaded inode does not have dquots attached when it is freed. Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2023-03-05xfs: quotacheck failure can race with background inode inactivationDave Chinner1-14/+26
The background inode inactivation can attached dquots to inodes, but this can race with a foreground quotacheck failure that leads to disabling quotas and freeing the mp->m_quotainfo structure. The background inode inactivation then tries to allocate a quota, tries to dereference mp->m_quotainfo, and crashes like so: XFS (loop1): Quotacheck: Unsuccessful (Error -5): Disabling quotas. xfs filesystem being mounted at /root/syzkaller.qCVHXV/0/file0 supports timestamps until 2038 (0x7fffffff) BUG: kernel NULL pointer dereference, address: 00000000000002a8 .... CPU: 0 PID: 161 Comm: kworker/0:4 Not tainted 6.2.0-c9c3395d5e3d #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Workqueue: xfs-inodegc/loop1 xfs_inodegc_worker RIP: 0010:xfs_dquot_alloc+0x95/0x1e0 .... Call Trace: <TASK> xfs_qm_dqread+0x46/0x440 xfs_qm_dqget_inode+0x154/0x500 xfs_qm_dqattach_one+0x142/0x3c0 xfs_qm_dqattach_locked+0x14a/0x170 xfs_qm_dqattach+0x52/0x80 xfs_inactive+0x186/0x340 xfs_inodegc_worker+0xd3/0x430 process_one_work+0x3b1/0x960 worker_thread+0x52/0x660 kthread+0x161/0x1a0 ret_from_fork+0x29/0x50 </TASK> .... Prevent this race by flushing all the queued background inode inactivations pending before purging all the cached dquots when quotacheck fails. Reported-by: Pengfei Xu <pengfei.xu@intel.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2023-02-20Merge tag 'fs.idmapped.v6.3' of ↵Linus Torvalds1-1/+1
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping Pull vfs idmapping updates from Christian Brauner: - Last cycle we introduced the dedicated struct mnt_idmap type for mount idmapping and the required infrastucture in 256c8aed2b42 ("fs: introduce dedicated idmap type for mounts"). As promised in last cycle's pull request message this converts everything to rely on struct mnt_idmap. Currently we still pass around the plain namespace that was attached to a mount. This is in general pretty convenient but it makes it easy to conflate namespaces that are relevant on the filesystem with namespaces that are relevant on the mount level. Especially for non-vfs developers without detailed knowledge in this area this was a potential source for bugs. This finishes the conversion. Instead of passing the plain namespace around this updates all places that currently take a pointer to a mnt_userns with a pointer to struct mnt_idmap. Now that the conversion is done all helpers down to the really low-level helpers only accept a struct mnt_idmap argument instead of two namespace arguments. Conflating mount and other idmappings will now cause the compiler to complain loudly thus eliminating the possibility of any bugs. This makes it impossible for filesystem developers to mix up mount and filesystem idmappings as they are two distinct types and require distinct helpers that cannot be used interchangeably. Everything associated with struct mnt_idmap is moved into a single separate file. With that change no code can poke around in struct mnt_idmap. It can only be interacted with through dedicated helpers. That means all filesystems are and all of the vfs is completely oblivious to the actual implementation of idmappings. We are now also able to extend struct mnt_idmap as we see fit. For example, we can decouple it completely from namespaces for users that don't require or don't want to use them at all. We can also extend the concept of idmappings so we can cover filesystem specific requirements. In combination with the vfs{g,u}id_t work we finished in v6.2 this makes this feature substantially more robust and thus difficult to implement wrong by a given filesystem and also protects the vfs. - Enable idmapped mounts for tmpfs and fulfill a longstanding request. A long-standing request from users had been to make it possible to create idmapped mounts for tmpfs. For example, to share the host's tmpfs