Age | Commit message (Collapse) | Author | Files | Lines |
|
[ Upstream commit cf7b39a0cbf6bf57aa07a008d46cf695add05b4c ]
We get a bug:
BUG: KASAN: slab-out-of-bounds in iov_iter_revert+0x11c/0x404
lib/iov_iter.c:1139
Read of size 8 at addr ffff0000d3fb11f8 by task
CPU: 0 PID: 12582 Comm: syz-executor.2 Not tainted
5.10.0-00843-g352c8610ccd2 #2
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x0/0x2d0 arch/arm64/kernel/stacktrace.c:132
show_stack+0x28/0x34 arch/arm64/kernel/stacktrace.c:196
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x110/0x164 lib/dump_stack.c:118
print_address_description+0x78/0x5c8 mm/kasan/report.c:385
__kasan_report mm/kasan/report.c:545 [inline]
kasan_report+0x148/0x1e4 mm/kasan/report.c:562
check_memory_region_inline mm/kasan/generic.c:183 [inline]
__asan_load8+0xb4/0xbc mm/kasan/generic.c:252
iov_iter_revert+0x11c/0x404 lib/iov_iter.c:1139
io_read fs/io_uring.c:3421 [inline]
io_issue_sqe+0x2344/0x2d64 fs/io_uring.c:5943
__io_queue_sqe+0x19c/0x520 fs/io_uring.c:6260
io_queue_sqe+0x2a4/0x590 fs/io_uring.c:6326
io_submit_sqe fs/io_uring.c:6395 [inline]
io_submit_sqes+0x4c0/0xa04 fs/io_uring.c:6624
__do_sys_io_uring_enter fs/io_uring.c:9013 [inline]
__se_sys_io_uring_enter fs/io_uring.c:8960 [inline]
__arm64_sys_io_uring_enter+0x190/0x708 fs/io_uring.c:8960
__invoke_syscall arch/arm64/kernel/syscall.c:36 [inline]
invoke_syscall arch/arm64/kernel/syscall.c:48 [inline]
el0_svc_common arch/arm64/kernel/syscall.c:158 [inline]
do_el0_svc+0x120/0x290 arch/arm64/kernel/syscall.c:227
el0_svc+0x1c/0x28 arch/arm64/kernel/entry-common.c:367
el0_sync_handler+0x98/0x170 arch/arm64/kernel/entry-common.c:383
el0_sync+0x140/0x180 arch/arm64/kernel/entry.S:670
Allocated by task 12570:
stack_trace_save+0x80/0xb8 kernel/stacktrace.c:121
kasan_save_stack mm/kasan/common.c:48 [inline]
kasan_set_track mm/kasan/common.c:56 [inline]
__kasan_kmalloc+0xdc/0x120 mm/kasan/common.c:461
kasan_kmalloc+0xc/0x14 mm/kasan/common.c:475
__kmalloc+0x23c/0x334 mm/slub.c:3970
kmalloc include/linux/slab.h:557 [inline]
__io_alloc_async_data+0x68/0x9c fs/io_uring.c:3210
io_setup_async_rw fs/io_uring.c:3229 [inline]
io_read fs/io_uring.c:3436 [inline]
io_issue_sqe+0x2954/0x2d64 fs/io_uring.c:5943
__io_queue_sqe+0x19c/0x520 fs/io_uring.c:6260
io_queue_sqe+0x2a4/0x590 fs/io_uring.c:6326
io_submit_sqe fs/io_uring.c:6395 [inline]
io_submit_sqes+0x4c0/0xa04 fs/io_uring.c:6624
__do_sys_io_uring_enter fs/io_uring.c:9013 [inline]
__se_sys_io_uring_enter fs/io_uring.c:8960 [inline]
__arm64_sys_io_uring_enter+0x190/0x708 fs/io_uring.c:8960
__invoke_syscall arch/arm64/kernel/syscall.c:36 [inline]
invoke_syscall arch/arm64/kernel/syscall.c:48 [inline]
el0_svc_common arch/arm64/kernel/syscall.c:158 [inline]
do_el0_svc+0x120/0x290 arch/arm64/kernel/syscall.c:227
el0_svc+0x1c/0x28 arch/arm64/kernel/entry-common.c:367
el0_sync_handler+0x98/0x170 arch/arm64/kernel/entry-common.c:383
el0_sync+0x140/0x180 arch/arm64/kernel/entry.S:670
Freed by task 12570:
stack_trace_save+0x80/0xb8 kernel/stacktrace.c:121
kasan_save_stack mm/kasan/common.c:48 [inline]
kasan_set_track+0x38/0x6c mm/kasan/common.c:56
kasan_set_free_info+0x20/0x40 mm/kasan/generic.c:355
__kasan_slab_free+0x124/0x150 mm/kasan/common.c:422
kasan_slab_free+0x10/0x1c mm/kasan/common.c:431
slab_free_hook mm/slub.c:1544 [inline]
slab_free_freelist_hook mm/slub.c:1577 [inline]
slab_free mm/slub.c:3142 [inline]
kfree+0x104/0x38c mm/slub.c:4124
io_dismantle_req fs/io_uring.c:1855 [inline]
__io_free_req+0x70/0x254 fs/io_uring.c:1867
io_put_req_find_next fs/io_uring.c:2173 [inline]
__io_queue_sqe+0x1fc/0x520 fs/io_uring.c:6279
__io_req_task_submit+0x154/0x21c fs/io_uring.c:2051
io_req_task_submit+0x2c/0x44 fs/io_uring.c:2063
task_work_run+0xdc/0x128 kernel/task_work.c:151
get_signal+0x6f8/0x980 kernel/signal.c:2562
do_signal+0x108/0x3a4 arch/arm64/kernel/signal.c:658
do_notify_resume+0xbc/0x25c arch/arm64/kernel/signal.c:722
work_pending+0xc/0x180
blkdev_read_iter can truncate iov_iter's count since the count + pos may
exceed the size of the blkdev. This will confuse io_read that we have
consume the iovec. And once we do the iov_iter_revert in io_read, we
will trigger the slab-out-of-bounds. Fix it by reexpand the count with
size has been truncated.
blkdev_write_iter can trigger the problem too.
Signed-off-by: yangerkun <yangerkun@huawei.com>
Acked-by: Pavel Begunkov <asml.silencec@gmail.com>
Link: https://lore.kernel.org/r/20210401071807.3328235-1-yangerkun@huawei.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit d4f6b31d721779d91b5e2f8072478af73b196c34 ]
The MDS reserves a set of inodes for its own usage, and these should
never be accessible to clients. Add a new helper to vet a proposed
inode number against that range, and complain loudly and refuse to
create or look it up if it's in it.
Also, ensure that the MDS doesn't try to delegate inodes that are in
that range or lower. Print a warning if it does, and don't save the
range in the xarray.
URL: https://tracker.ceph.com/issues/49922
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Xiubo Li <xiubli@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit d3c51ae1b8cce5bdaf91a1ce32b33cf5626075dc ]
We want the snapdir to mirror the non-snapped directory's attributes for
most things, but i_snap_caps represents the caps granted on the snapshot
directory by the MDS itself. A misbehaving MDS could issue different
caps for the snapdir and we lose them here.
Only reset i_snap_caps when the inode is I_NEW. Also, move the setting
of i_op and i_fop inside the if block since they should never change
anyway.
Reported-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 10a7052c7868bc7bc72d947f5aac6f768928db87 ]
Ensure that we invalidate the fscache whenever we invalidate the
pagecache.
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 50c7a7994dd20af56e4d47e90af10bab71b71001 ]
When we're looking to revalidate the page cache, we should just ensure
that we mark the change attribute invalid.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit fcdf3c34b7abdcbb49690c94c7fa6ce224dc9749 upstream.
Using no_printk() for jbd_debug() revealed two warnings:
fs/jbd2/recovery.c: In function 'fc_do_one_pass':
fs/jbd2/recovery.c:256:30: error: format '%d' expects a matching 'int' argument [-Werror=format=]
256 | jbd_debug(3, "Processing fast commit blk with seq %d");
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
fs/ext4/fast_commit.c: In function 'ext4_fc_replay_add_range':
fs/ext4/fast_commit.c:1732:30: error: format '%d' expects argument of type 'int', but argument 2 has type 'long unsigned int' [-Werror=format=]
1732 | jbd_debug(1, "Converting from %d to %d %lld",
The first one was added incorrectly, and was also missing a few newlines
in debug output, and the second one happened when the type of an
argument changed.
Reported-by: kernel test robot <lkp@intel.com>
Fixes: d556435156b7 ("jbd2: avoid -Wempty-body warnings")
Fixes: 6db074618969 ("ext4: use BIT() macro for BH_** state bits")
Fixes: 5b849b5f96b4 ("jbd2: fast commit recovery path")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20210409201211.1866633-1-arnd@kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 312723a0b34d6d110aa4427a982536bb36ab8471 upstream.
Since debugfs_allow is only set at boot time during __init, make it
read-only after being set.
Fixes: a24c6f7bc923 ("debugfs: Add access restriction option")
Cc: Peter Enderborg <peter.enderborg@sony.com>
Reviewed-by: Peter Enderborg <peter.enderborg@sony.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20210405213959.3079432-1-keescook@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 8bfbfb0ddd706b1ce2e89259ecc45f192c0ec2bf ]
In f2fs_destroy_compress_ctx(), after f2fs_destroy_compress_ctx(),
cc.cluster_idx will be cleared w/ NULL_CLUSTER, f2fs_cluster_blocks()
may check wrong cluster metadata, fix it.
Fixes: 4c8ff7095bef ("f2fs: support data compression")
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit a949dc5f2c5cfe0c910b664650f45371254c0744 ]
pos_fsstress testcase complains a panic as belew:
------------[ cut here ]------------
kernel BUG at fs/f2fs/compress.c:1082!
invalid opcode: 0000 [#1] SMP PTI
CPU: 4 PID: 2753477 Comm: kworker/u16:2 Tainted: G OE 5.12.0-rc1-custom #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
Workqueue: writeback wb_workfn (flush-252:16)
RIP: 0010:prepare_compress_overwrite+0x4c0/0x760 [f2fs]
Call Trace:
f2fs_prepare_compress_overwrite+0x5f/0x80 [f2fs]
f2fs_write_cache_pages+0x468/0x8a0 [f2fs]
f2fs_write_data_pages+0x2a4/0x2f0 [f2fs]
do_writepages+0x38/0xc0
__writeback_single_inode+0x44/0x2a0
writeback_sb_inodes+0x223/0x4d0
__writeback_inodes_wb+0x56/0xf0
wb_writeback+0x1dd/0x290
wb_workfn+0x309/0x500
process_one_work+0x220/0x3c0
worker_thread+0x53/0x420
kthread+0x12f/0x150
ret_from_fork+0x22/0x30
The root cause is truncate() may race with overwrite as below,
so that one reference count left in page can not guarantee the
page attaching in mapping tree all the time, after truncation,
later find_lock_page() may return NULL pointer.
- prepare_compress_overwrite
- f2fs_pagecache_get_page
- unlock_page
- f2fs_setattr
- truncate_setsize
- truncate_inode_page
- delete_from_page_cache
- find_lock_page
Fix this by avoiding referencing updated page.
Fixes: 4c8ff7095bef ("f2fs: support data compression")
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit a12cc5b423d4f36dc1a1ea3911e49cf9dff43898 ]
In error path of f2fs_write_compressed_pages(), it needs to call
f2fs_compress_free_page() to release temporary page.
Fixes: 5e6bbde95982 ("f2fs: introduce mempool for {,de}compress intermediate page allocation")
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 237388320deffde7c2d65ed8fc9eef670dc979b3 ]
I am seeing missed wakeups which ultimately lead to a deadlock when I am
using virtiofs with DAX enabled and running "make -j". I had to mount
virtiofs as rootfs and also reduce to dax window size to 256M to reproduce
the problem consistently.
So here is the problem. put_unlocked_entry() wakes up waiters only
if entry is not null as well as !dax_is_conflict(entry). But if I
call multiple instances of invalidate_inode_pages2() in parallel,
then I can run into a situation where there are waiters on
this index but nobody will wake these waiters.
invalidate_inode_pages2()
invalidate_inode_pages2_range()
invalidate_exceptional_entry2()
dax_invalidate_mapping_entry_sync()
__dax_invalidate_entry() {
xas_lock_irq(&xas);
entry = get_unlocked_entry(&xas, 0);
...
...
dax_disassociate_entry(entry, mapping, trunc);
xas_store(&xas, NULL);
...
...
put_unlocked_entry(&xas, entry);
xas_unlock_irq(&xas);
}
Say a fault in in progress and it has locked entry at offset say "0x1c".
Now say three instances of invalidate_inode_pages2() are in progress
(A, B, C) and they all try to invalidate entry at offset "0x1c". Given
dax entry is locked, all tree instances A, B, C will wait in wait queue.
When dax fault finishes, say A is woken up. It will store NULL entry
at index "0x1c" and wake up B. When B comes along it will find "entry=0"
at page offset 0x1c and it will call put_unlocked_entry(&xas, 0). And
this means put_unlocked_entry() will not wake up next waiter, given
the current code. And that means C continues to wait and is not woken
up.
This patch fixes the issue by waking up all waiters when a dax entry
has been invalidated. This seems to fix the deadlock I am facing
and I can make forward progress.
Reported-by: Sergio Lopez <slp@redhat.com>
Fixes: ac401cc78242 ("dax: New fault locking")
Reviewed-by: Jan Kara <jack@suse.cz>
Suggested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Link: https://lore.kernel.org/r/20210428190314.1865312-4-vgoyal@redhat.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 4c3d043d271d4d629aa2328796cdfc96b37d3b3c ]
As of now put_unlocked_entry() always wakes up next waiter. In next
patches we want to wake up all waiters at one callsite. Hence, add a
parameter to the function.
This patch does not introduce any change of behavior.
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Suggested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Link: https://lore.kernel.org/r/20210428190314.1865312-3-vgoyal@redhat.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 698ab77aebffe08b312fbcdddeb0e8bd08b78717 ]
Dan mentioned that he is not very fond of passing around a boolean true/false
to specify if only next waiter should be woken up or all waiters should be
woken up. He instead prefers that we introduce an enum and make it very
explicity at the callsite itself. Easier to read code.
This patch should not introduce any change of behavior.
Reviewed-by: Greg Kurz <groug@kaod.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Suggested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Vivek Goyal <vgoyal@redhat.com>
Link: https://lore.kernel.org/r/20210428190314.1865312-2-vgoyal@redhat.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 626e9f41f7c281ba3e02843702f68471706aa6d9 upstream.
When doing a fast fsync on a file, there is a race which can result in the
fsync returning success to user space without logging the inode and without
durably persisting new data.
The following example shows one possible scenario for this:
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt
$ touch /mnt/bar
$ xfs_io -f -c "pwrite -S 0xab 0 1M" -c "fsync" /mnt/baz
# Now we have:
# file bar == inode 257
# file baz == inode 258
$ mv /mnt/baz /mnt/foo
# Now we have:
# file bar == inode 257
# file foo == inode 258
$ xfs_io -c "pwrite -S 0xcd 0 1M" /mnt/foo
# fsync bar before foo, it is important to trigger the race.
$ xfs_io -c "fsync" /mnt/bar
$ xfs_io -c "fsync" /mnt/foo
# After this:
# inode 257, file bar, is empty
# inode 258, file foo, has 1M filled with 0xcd
<power failure>
# Replay the log:
$ mount /dev/sdc /mnt
# After this point file foo should have 1M filled with 0xcd and not 0xab
The following steps explain how the race happens:
1) Before the first fsync of inode 258, when it has the "baz" name, its
->logged_trans is 0, ->last_sub_trans is 0 and ->last_log_commit is -1.
The inode also has the full sync flag set;
2) After the first fsync, we set inode 258 ->logged_trans to 6, which is
the generation of the current transaction, and set ->last_log_commit
to 0, which is the current value of ->last_sub_trans (done at
btrfs_log_inode()).
The full sync flag is cleared from the inode during the fsync.
The log sub transaction that was committed had an ID of 0 and when we
synced the log, at btrfs_sync_log(), we incremented root->log_transid
from 0 to 1;
3) During the rename:
We update inode 258, through btrfs_update_inode(), and that causes its
->last_sub_trans to be set to 1 (the current log transaction ID), and
->last_log_commit remains with a value of 0.
After updating inode 258, because we have previously logged the inode
in the previous fsync, we log again the inode through the call to
btrfs_log_new_name(). This results in updating the inode's
->last_log_commit from 0 to 1 (the current value of its
->last_sub_trans).
The ->last_sub_trans of inode 257 is updated to 1, which is the ID of
the next log transaction;
4) Then a buffered write against inode 258 is made. This leaves the value
of ->last_sub_trans as 1 (the ID of the current log transaction, stored
at root->log_transid);
5) Then an fsync against inode 257 (or any other inode other than 258),
happens. This results in committing the log transaction with ID 1,
which results in updating root->last_log_commit to 1 and bumping
root->log_transid from 1 to 2;
6) Then an fsync against inode 258 starts. We flush delalloc and wait only
for writeback to complete, since the full sync flag is not set in the
inode's runtime flags - we do not wait for ordered extents to complete.
Then, at btrfs_sync_file(), we call btrfs_inode_in_log() before the
ordered extent completes. The call returns true:
static inline bool btrfs_inode_in_log(...)
{
bool ret = false;
spin_lock(&inode->lock);
if (inode->logged_trans == generation &&
inode->last_sub_trans <= inode->last_log_commit &&
inode->last_sub_trans <= inode->root->last_log_commit)
ret = true;
spin_unlock(&inode->lock);
return ret;
}
generation has a value of 6 (fs_info->generation), ->logged_trans also
has a value of 6 (set when we logged the inode during the first fsync
and when logging it during the rename), ->last_sub_trans has a value
of 1, set during the rename (step 3), ->last_log_commit also has a
value of 1 (set in step 3) and root->last_log_commit has a value of 1,
which was set in step 5 when fsyncing inode 257.
As a consequence we don't log the inode, any new extents and do not
sync the log, resulting in a data loss if a power failure happens
after the fsync and before the current transaction commits.
Also, because we do not log the inode, after a power failure the mtime
and ctime of the inode do not match those we had before.
When the ordered extent completes before we call btrfs_inode_in_log(),
then the call returns false and we log the inode and sync the log,
since at the end of ordered extent completion we update the inode and
set ->last_sub_trans to 2 (the value of root->log_transid) and
->last_log_commit to 1.
This problem is found after removing the check for the emptiness of the
inode's list of modified extents in the recent commit 209ecbb8585bf6
("btrfs: remove stale comment and logic from btrfs_inode_in_log()"),
added in the 5.13 merge window. However checking the emptiness of the
list is not really the way to solve this problem, and was never intended
to, because while that solves the problem for COW writes, the problem
persists for NOCOW writes because in that case the list is always empty.
In the case of NOCOW writes, even though we wait for the writeback to
complete before returning from btrfs_sync_file(), we end up not logging
the inode, which has a new mtime/ctime, and because we don't sync the log,
we never issue disk barriers (send REQ_PREFLUSH to the device) since that
only happens when we sync the log (when we write super blocks at
btrfs_sync_log()). So effectively, for a NOCOW case, when we return from
btrfs_sync_file() to user space, we are not guaranteeing that the data is
durably persisted on disk.
Also, while the example above uses a rename exchange to show how the
problem happens, it is not the only way to trigger it. An alternative
could be adding a new hard link to inode 258, since that also results
in calling btrfs_log_new_name() and updating the inode in the log.
An example reproducer using the addition of a hard link instead of a
rename operation:
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt
$ touch /mnt/bar
$ xfs_io -f -c "pwrite -S 0xab 0 1M" -c "fsync" /mnt/foo
$ ln /mnt/foo /mnt/foo_link
$ xfs_io -c "pwrite -S 0xcd 0 1M" /mnt/foo
$ xfs_io -c "fsync" /mnt/bar
$ xfs_io -c "fsync" /mnt/foo
<power failure>
# Replay the log:
$ mount /dev/sdc /mnt
# After this point file foo often has 1M filled with 0xab and not 0xcd
The reasons leading to the final fsync of file foo, inode 258, not
persisting the new data are the same as for the previous example with
a rename operation.
So fix by never skipping logging and log syncing when there are still any
ordered extents in flight. To avoid making the conditional if statement
that checks if logging an inode is needed harder to read, place all the
logic into an helper function with separate if statements to make it more
manageable and easier to read.
A test case for fstests will follow soon.
For NOCOW writes, the problem existed before commit b5e6c3e170b770
("btrfs: always wait on ordered extents at fsync time"), introduced in
kernel 4.19, then it went away with that commit since we started to always
wait for ordered extent completion before logging.
The problem came back again once the fast fsync path was changed again to
avoid waiting for ordered extent completion, in commit 487781796d3022
("btrfs: make fast fsyncs wait only for writeback"), added in kernel 5.10.
However, for COW writes, the race only happens after the recent
commit 209ecbb8585bf6 ("btrfs: remove stale comment and logic from
btrfs_inode_in_log()"), introduced in the 5.13 merge window. For NOCOW
writes, the bug existed before that commit. So tag 5.10+ as the release
for stable backports.
CC: stable@vger.kernel.org # 5.10+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 22247efd822e6d263f3c8bd327f3f769aea9b1d9 upstream.
Patch series "mm/hugetlb: Fix issues on file sealing and fork", v2.
Hugh reported issue with F_SEAL_FUTURE_WRITE not applied correctly to
hugetlbfs, which I can easily verify using the memfd_test program, which
seems that the program is hardly run with hugetlbfs pages (as by default
shmem).
Meanwhile I found another probably even more severe issue on that hugetlb
fork won't wr-protect child cow pages, so child can potentially write to
parent private pages. Patch 2 addresses that.
After this series applied, "memfd_test hugetlbfs" should start to pass.
This patch (of 2):
F_SEAL_FUTURE_WRITE is missing for hugetlb starting from the first day.
There is a test program for that and it fails constantly.
$ ./memfd_test hugetlbfs
memfd-hugetlb: CREATE
memfd-hugetlb: BASIC
memfd-hugetlb: SEAL-WRITE
memfd-hugetlb: SEAL-FUTURE-WRITE
mmap() didn't fail as expected
Aborted (core dumped)
I think it's probably because no one is really running the hugetlbfs test.
Fix it by checking FUTURE_WRITE also in hugetlbfs_file_mmap() as what we
do in shmem_mmap(). Generalize a helper for that.
Link: https://lkml.kernel.org/r/20210503234356.9097-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20210503234356.9097-2-peterx@redhat.com
Fixes: ab3948f58ff84 ("mm/memfd: add an F_SEAL_FUTURE_WRITE seal to memfd")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reported-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit d6e621de1fceb3b098ebf435ef7ea91ec4838a1a upstream.
Sysbot has reported a "divide error" which has been identified as being
caused by a corrupted file_size value within the file inode. This value
has been corrupted to a much larger value than expected.
Calculate_skip() is passed i_size_read(inode) >> msblk->block_log. Due to
the file_size value corruption this overflows the int argument/variable in
that function, leading to the divide error.
This patch changes the function to use u64. This will accommodate any
unexpectedly large values due to corruption.
The value returned from calculate_skip() is clamped to be never more than
SQUASHFS_CACHED_BLKS - 1, or 7. So file_size corruption does not lead to
an unexpectedly large return result here.
Link: https://lkml.kernel.org/r/20210507152618.9447-1-phillip@squashfs.org.uk
Signed-off-by: Phillip Lougher <phillip@squashfs.org.uk>
Reported-by: <syzbot+e8f781243ce16ac2f962@syzkaller.appspotmail.com>
Reported-by: <syzbot+7b98870d4fec9447b951@syzkaller.appspotmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c3187cf32216313fb316084efac4dab3a8459b1d upstream.
I believe there are some issues introduced by commit 31651c607151
("hfsplus: avoid deadlock on file truncation")
HFS+ has extent records which always contains 8 extents. In case the
first extent record in catalog file gets full, new ones are allocated from
extents overflow file.
In case shrinking truncate happens to middle of an extent record which
locates in extents overflow file, the logic in hfsplus_file_truncate() was
changed so that call to hfs_brec_remove() is not guarded any more.
Right action would be just freeing the extents that exceed the new size
inside extent record by calling hfsplus_free_extents(), and then check if
the whole extent record should be removed. However since the guard
(blk_cnt > start) is now after the call to hfs_brec_remove(), this has
unfortunate effect that the last matching extent record is removed
unconditionally.
To reproduce this issue, create a file which has at least 10 extents, and
then perform shrinking truncate into middle of the last extent record, so
that the number of remaining extents is not under or divisible by 8. This
causes the last extent record (8 extents) to be removed totally instead of
truncating into middle of it. Thus this causes corruption, and lost data.
Fix for this is simply checking if the new truncated end is below the
start of this extent record, making it safe to remove the full extent
record. However call to hfs_brec_remove() can't be moved to it's previous
place since we're dropping ->tree_lock and it can cause a race condition
and the cached info being invalidated possibly corrupting the node data.
Another issue is related to this one. When entering into the block
(blk_cnt > start) we are not holding the ->tree_lock. We break out from
the loop not holding the lock, but hfs_find_exit() does unlock it. Not
sure if it's possible for someone else to take the lock under our feet,
but it can cause hard to debug errors and premature unlocking. Even if
there's no real risk of it, the locking should still always be kept in
balance. Thus taking the lock now just before the check.
Link: https://lkml.kernel.org/r/20210429165139.3082828-1-jouni.roivas@tuxera.com
Fixes: 31651c607151f ("hfsplus: avoid deadlock on file truncation")
Signed-off-by: Jouni Roivas <jouni.roivas@tuxera.com>
Reviewed-by: Anton Altaparmakov <anton@tuxera.com>
Cc: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Cc: Viacheslav Dubeyko <slava@dubeyko.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 3a1b9eaf727b4ab84ebf059e09c38fc6a53e5614 ]
Fields in struct f2fs_move_range won't change in f2fs_ioc_move_range(),
let's avoid copying this structure's data to userspace.
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit f4bf74d82915708208bc9d0c9bd3f769f56bfbec ]
Currently the pde_is_permanent() check is being run on root multiple times
rather than on the next proc directory entry. This looks like a
copy-paste error. Fix this by replacing root with next.
Addresses-Coverity: ("Copy-paste error")
Link: https://lkml.kernel.org/r/20210318122633.14222-1-colin.king@canonical.com
Fixes: d919b33dafb3 ("proc: faster open/read/close with "permanent" files")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 1775c7ddacfcea29051c67409087578f8f4d751b ]
Fixes: 878dabb64117 ("ceph: don't return -ESTALE if there's still an open file")
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Xiubo Li <xiubli@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 217fd6f625af591e2866bebb8cda778cf85bea2e ]
If nfsd already has an open file that it plans to use for IO from
another, it may not need to do another vfs open, but it still may need
to break any delegations in case the existing opens are for another
client.
Symptoms are that we may incorrectly fail to break a delegation on a
write open from a different client, when the delegation-holding client
already has a write open.
Fixes: 28df3d1539de ("nfsd: clients don't need to break their own delegations")
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 8926cc8302819be9e67f70409ed001ecb2c924a9 ]
If the NFS super block is being unmounted, then we currently may end up
telling the server that we've forgotten the layout while it is actually
still in use by the client.
In that case, just assume that the client will soon return the layout
anyway, and so return NFS4ERR_DELAY in response to the layout recall.
Fixes: 58ac3e59235f ("NFSv4/pnfs: Clean up nfs_layout_find_inode()")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 73f5c88f521a630ea1628beb9c2d48a2e777a419 ]
Currently the client ignores the value of the sr_eof of the SEEK
operation. According to the spec, if the server didn't find the
requested extent and reached the end of the file, the server
would return sr_eof=true. In case the request for DATA and no
data was found (ie in the middle of the hole), then the lseek
expects that ENXIO would be returned.
Fixes: 1c6dcbe5ceff8 ("NFS: Implement SEEK")
Signed-off-by: Olga Kornievskaia <kolga@netapp.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit ed34695e15aba74f45247f1ee2cf7e09d449f925 ]
We (adam zabrocki, alexander matrosov, alexander tereshkin, maksym
bazalii) observed the check:
if (fh->size > sizeof(struct nfs_fh))
should not use the size of the nfs_fh struct which includes an extra two
bytes from the size field.
struct nfs_fh {
unsigned short size;
unsigned char data[NFS_MAXFHSIZE];
}
but should determine the size from data[NFS_MAXFHSIZE] so the memcpy
will not write 2 bytes beyond destination. The proposed fix is to
compare against the NFS_MAXFHSIZE directly, as is done elsewhere in fs
code base.
Fixes: d67ae825a59d ("pnfs/flexfiles: Add the FlexFile Layout Driver")
Signed-off-by: Nikola Livic <nlivic@gmail.com>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 9fdbfad1777cb4638f489eeb62d85432010c0031 ]
We need to use unsigned long subtraction and then convert to signed in
order to deal correcly with C overflow rules.
Fixes: f5062003465c ("NFS: Set an attribute barrier on all updates")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 99f23783224355e7022ceea9b8d9f62c0fd01bd8 ]
Whether we're allocating or delallocating space, we should flush out the
pending writes in order to avoid races with attribute updates.
Fixes: 1e564d3dbd68 ("NFSv4.2: Fix a race in nfs42_proc_deallocate()")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit e99812e1382f0bfb6149393262bc70645c9f537a ]
We can't use nfs4_fattr_bitmap as a bitmask, because it hasn't been
filtered to represent the attributes supported by the server. Instead,
let's revert to using server->cache_consistency_bitmask after adding in
the missing SPACE_USED attribute.
Fixes: 913eca1aea87 ("NFS: Fallocate should use the nfs4_fattr_bitmap")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 332d1a0373be32a3a3c152756bca45ff4f4e11b5 ]
As currently set, the calls to nfs4_bitmask_adjust() will end up
overwriting the contents of the nfs_server cache_consistency_bitmask
field.
The intention here should be to modify a private copy of that mask in
the close/delegreturn/write arguments.
Fixes: 76bd5c016ef4 ("NFSv4: make cache consistency bitmask dynamic")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 25ae837e61dee712b4b1df36602ebfe724b2a0b6 ]
Callers may pass fio parameter with NULL value to f2fs_allocate_data_block(),
so we should make sure accessing fio's field after fio's validation check.
Fixes: f608c38c59c6 ("f2fs: clean up parameter of f2fs_allocate_data_block()")
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit be1ee45d51384161681ecf21085a42d316ae25f7 ]
In the cache writing process, if it is an atomic file, increase the page
count of F2FS_WB_CP_DATA, otherwise increase the page count of
F2FS_WB_DATA.
When you step into the hook branch due to insufficient memory in
f2fs_write_begin, f2fs_drop_inmem_pages_all will be called to traverse
all atomic inodes and clear the FI_ATOMIC_FILE mark of all atomic files.
In f2fs_drop_inmem_pages,first acquire the inmem_lock , revoke all the
inmem_pages, and then clear the FI_ATOMIC_FILE mark. Before this mark is
cleared, other threads may hold inmem_lock to add inmem_pages to the inode
that has just been emptied inmem_pages, and increase the page count of
F2FS_WB_CP_DATA.
When the IO returns, it is found that the FI_ATOMIC_FILE flag is cleared
by f2fs_drop_inmem_pages_all, and f2fs_is_atomic_file returns false,which
causes the page count of F2FS_WB_DATA to be decremented. The page count of
F2FS_WB_CP_DATA cannot be cleared. Finally, hungtask is triggered in
f2fs_wait_on_all_pages because get_pages will never return zero.
process A: process B:
f2fs_drop_inmem_pages_all
->f2fs_drop_inmem_pages of inode#1
->mutex_lock(&fi->inmem_lock)
->__revoke_inmem_pages of inode#1 f2fs_ioc_commit_atomic_write
->mutex_unlock(&fi->inmem_lock) ->f2fs_commit_inmem_pages of inode#1
->mutex_lock(&fi->inmem_lock)
->__f2fs_commit_inmem_pages
->f2fs_do_write_data_page
->f2fs_outplace_write_data
->do_write_page
->f2fs_submit_page_write
->inc_page_count(sbi, F2FS_WB_CP_DATA )
->mutex_unlock(&fi->inmem_lock)
->spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
->clear_inode_flag(inode, FI_ATOMIC_FILE)
->spin_unlock(&sbi->inode_lock[ATOMIC_FILE])
f2fs_write_end_io
->dec_page_count(sbi, F2FS_WB_DATA );
We can fix the problem by putting the action of clearing the FI_ATOMIC_FILE
mark into the inmem_lock lock. This operation can ensure that no one will
submit the inmem pages before the FI_ATOMIC_FILE mark is cleared, so that
there will be no atomic writes waiting for writeback.
Fixes: 57864ae5ce3a ("f2fs: limit # of inmemory pages")
Signed-off-by: Yi Zhuang <zhuangyi1@huawei.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 823d13e12b6cbaef2f6e5d63c648643e7bc094dd ]
In order to avoid race with f2fs_do_replace_block().
Fixes: f5a53edcf01e ("f2fs: support aligned pinned file")
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 61461fc921b756ae16e64243f72af2bfc2e620db ]
In CP disabling mode, there are two issues when using LFS or SSR | AT_SSR
mode to select victim:
1. LFS is set to find source section during GC, the victim should have
no checkpointed data, since after GC, section could not be set free for
reuse.
Previously, we only check valid chpt blocks in current segment rather
than section, fix it.
2. SSR | AT_SSR are set to find target segment for writes which can be
fully filled by checkpointed and newly written blocks, we should never
select such segment, otherwise it can cause panic or data corruption
during allocation, potential case is described as below:
a) target segment has 'n' (n < 512) ckpt valid blocks
b) GC migrates 'n' valid blocks to other segment (segment is still
in dirty list)
c) GC migrates '512 - n' blocks to target segment (segment has 'n'
cp_vblocks and '512 - n' vblocks)
d) If GC selects target segment via {AT,}SSR allocator, however there
is no free space in targe segment.
Fixes: 4354994f097d ("f2fs: checkpoint disabling")
Fixes: 093749e296e2 ("f2fs: support age threshold based garbage collection")
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 88f2cfc5fa90326edb569b4a81bb38ed4dcd3108 ]
In the case of expanding pinned file, map.m_lblk and map.m_len
will update in each round of section allocation, so in error
path, last i_size will be calculated with wrong m_lblk and m_len,
fix it.
Fixes: f5a53edcf01e ("f2fs: support aligned pinned file")
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit e1175f02291141bbd924fc578299305fcde35855 ]
Now, fallocate() on a pinned file only allocates blocks which aligns
to segment rather than section, so GC may try to migrate pinned file's
block, and after several times of failure, pinned file's block could
be migrated to other place, however user won't be aware of such
condition, and then old obsolete block address may be readed/written
incorrectly.
To avoid such condition, let's try to allocate pinned file's blocks
with section alignment.
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 28e18ee636ba28532dbe425540af06245a0bbecb ]
The uninitialized variable dn.node_changed does not get set when a
call to f2fs_get_node_page fails. This uninitialized value gets used
in the call to f2fs_balance_fs() that may or not may not balances
dirty node and dentry pages depending on the uninitialized state of
the variable. Fix this by only calling f2fs_balance_fs if err is
not set.
Thanks to Jaegeuk Kim for suggesting an appropriate fix.
Addresses-Coverity: ("Uninitialized scalar variable")
Fixes: 2a3407607028 ("f2fs: call f2fs_balance_fs only when node was changed")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 3ab0598e6d860ef49d029943ba80f627c15c15d6 ]
f2fs_resize_fs() hangs in below callstack with testcase:
- mkfs 16GB image & mount image
- dd 8GB fileA
- dd 8GB fileB
- sync
- rm fileA
- sync
- resize filesystem to 8GB
kernel BUG at segment.c:2484!
Call Trace:
allocate_segment_by_default+0x92/0xf0 [f2fs]
f2fs_allocate_data_block+0x44b/0x7e0 [f2fs]
do_write_page+0x5a/0x110 [f2fs]
f2fs_outplace_write_data+0x55/0x100 [f2fs]
f2fs_do_write_data_page+0x392/0x850 [f2fs]
move_data_page+0x233/0x320 [f2fs]
do_garbage_collect+0x14d9/0x1660 [f2fs]
free_segment_range+0x1f7/0x310 [f2fs]
f2fs_resize_fs+0x118/0x330 [f2fs]
__f2fs_ioctl+0x487/0x3680 [f2fs]
__x64_sys_ioctl+0x8e/0xd0
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
The root cause is we forgot to check that whether we have enough space
in resized filesystem to store all valid blocks in before-resizing
filesystem, then allocator will run out-of-space during block migration
in free_segment_range().
Fixes: b4b10061ef98 ("f2fs: refactor resize_fs to avoid meta updates in progress")
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 7dede88659df38f96128ab3922c50dde2d29c574 ]
F2FS_IOC_FLUSH_DEVICE/F2FS_IOC_RESIZE_FS needs to migrate all blocks of
target segment to other place, no matter the segment has partially or fully
valid blocks.
However, after commit 803e74be04b3 ("f2fs: stop GC when the victim becomes
fully valid"), we may skip migration due to target segment is fully valid,
result in failing the ioctl interface, fix this.
Fixes: 803e74be04b3 ("f2fs: stop GC when the victim becomes fully valid")
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 34178b1bc4b5c936eab3adb4835578093095a571 ]
Eric reported a ioctl bug in below link:
https://lore.kernel.org/linux-f2fs-devel/20201103032234.GB2875@sol.localdomain/
That said, on some 32-bit architectures, u64 has only 32-bit alignment,
notably i386 and x86_32, so that size of struct f2fs_gc_range compiled
in x86_32 is 20 bytes, however the size in x86_64 is 24 bytes, binary
compiled in x86_32 can not call F2FS_IOC_GARBAGE_COLLECT_RANGE successfully
due to mismatched value of ioctl command in between binary and f2fs
module, similarly, F2FS_IOC_MOVE_RANGE will fail too.
In this patch we introduce two ioctls for compatibility of above special
32-bit binary:
- F2FS_IOC32_GARBAGE_COLLECT_RANGE
- F2FS_IOC32_MOVE_RANGE
Reported-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Chao Yu <yucha |