Age | Commit message (Collapse) | Author | Files | Lines |
|
[ Upstream commit b2aae654a4794ef898ad33a179f341eb610f6b85 ]
Add a mutex lock to protect est structure parameters so that the
EST parameters can be updated by other threads.
Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Pavel Machek (CIP) <pavel@denx.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 1027b96ec9d34f9abab69bc1a4dc5b1ad8ab1349 ]
DO_ONCE
DEFINE_STATIC_KEY_TRUE(___once_key);
__do_once_done
once_disable_jump(once_key);
INIT_WORK(&w->work, once_deferred);
struct once_work *w;
w->key = key;
schedule_work(&w->work); module unload
//*the key is
destroy*
process_one_work
once_deferred
BUG_ON(!static_key_enabled(work->key));
static_key_count((struct static_key *)x) //*access key, crash*
When module uses DO_ONCE mechanism, it could crash due to the above
concurrency problem, we could reproduce it with link[1].
Fix it by add/put module refcount in the once work process.
[1] https://lore.kernel.org/netdev/eaa6c371-465e-57eb-6be9-f4b16b9d7cbf@huawei.com/
Cc: Hannes Frederic Sowa <hannes@stressinduktion.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Eric Dumazet <edumazet@google.com>
Reported-by: Minmin chen <chenmingmin@huawei.com>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit b910eaaaa4b89976ef02e5d6448f3f73dc671d91 upstream.
Jiri Olsa reported a bug ([1]) in kernel where cgroup local
storage pointer may be NULL in bpf_get_local_storage() helper.
There are two issues uncovered by this bug:
(1). kprobe or tracepoint prog incorrectly sets cgroup local storage
before prog run,
(2). due to change from preempt_disable to migrate_disable,
preemption is possible and percpu storage might be overwritten
by other tasks.
This issue (1) is fixed in [2]. This patch tried to address issue (2).
The following shows how things can go wrong:
task 1: bpf_cgroup_storage_set() for percpu local storage
preemption happens
task 2: bpf_cgroup_storage_set() for percpu local storage
preemption happens
task 1: run bpf program
task 1 will effectively use the percpu local storage setting by task 2
which will be either NULL or incorrect ones.
Instead of just one common local storage per cpu, this patch fixed
the issue by permitting 8 local storages per cpu and each local
storage is identified by a task_struct pointer. This way, we
allow at most 8 nested preemption between bpf_cgroup_storage_set()
and bpf_cgroup_storage_unset(). The percpu local storage slot
is released (calling bpf_cgroup_storage_unset()) by the same task
after bpf program finished running.
bpf_test_run() is also fixed to use the new bpf_cgroup_storage_set()
interface.
The patch is tested on top of [2] with reproducer in [1].
Without this patch, kernel will emit error in 2-3 minutes.
With this patch, after one hour, still no error.
[1] https://lore.kernel.org/bpf/CAKH8qBuXCfUz=w8L+Fj74OaUpbosO29niYwTki7e3Ag044_aww@mail.gmail.com/T
[2] https://lore.kernel.org/bpf/20210309185028.3763817-1-yhs@fb.com
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Roman Gushchin <guro@fb.com>
Link: https://lore.kernel.org/bpf/20210323055146.3334476-1-yhs@fb.com
Cc: <stable@vger.kernel.org> # 5.10.x
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit f56ce412a59d7d938b81de8878faef128812482c ]
We've noticed occasional OOM killing when memory.low settings are in
effect for cgroups. This is unexpected and undesirable as memory.low is
supposed to express non-OOMing memory priorities between cgroups.
The reason for this is proportional memory.low reclaim. When cgroups
are below their memory.low threshold, reclaim passes them over in the
first round, and then retries if it couldn't find pages anywhere else.
But when cgroups are slightly above their memory.low setting, page scan
force is scaled down and diminished in proportion to the overage, to the
point where it can cause reclaim to fail as well - only in that case we
currently don't retry, and instead trigger OOM.
To fix this, hook proportional reclaim into the same retry logic we have
in place for when cgroups are skipped entirely. This way if reclaim
fails and some cgroups were scanned with diminished pressure, we'll try
another full-force cycle before giving up and OOMing.
[akpm@linux-foundation.org: coding-style fixes]
Link: https://lkml.kernel.org/r/20210817180506.220056-1-hannes@cmpxchg.org
Fixes: 9783aa9917f8 ("mm, memcg: proportional memory.{low,min} reclaim")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Leon Yang <lnyng@fb.com>
Reviewed-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org> [5.4+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit fa05bdb89b01b098aad19ec0ebc4d1cc7b11177e ]
This reverts commit 9ea3e52c5bc8bb4a084938dc1e3160643438927a.
Cited commit added a check to make sure 'action' is not NULL, but
'action' is already dereferenced before the check, when calling
flow_offload_has_one_action().
Therefore, the check does not make any sense and results in a smatch
warning:
include/net/flow_offload.h:322 flow_action_mixed_hw_stats_check() warn:
variable dereferenced before check 'action' (see line 319)
Fix by reverting this commit.
Cc: gushengxian <gushengxian@yulong.com>
Fixes: 9ea3e52c5bc8 ("flow_offload: action should not be NULL when it is referenced")
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Acked-by: Jamal Hadi Salim <jhs@mojatatu.com>
Link: https://lore.kernel.org/r/20210819105842.1315705-1-idosch@idosch.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 51c0e618b219c025ddaaf14baea8942cb7e2105b ]
MMSYS is the driver which controls the routing of these DDP components,
so the definition of the mtk_ddp_comp_id enum should be placed in mtk-mmsys.h
Signed-off-by: Yongqiang Niu <yongqiang.niu@mediatek.com>
Signed-off-by: Enric Balletbo i Serra <enric.balletbo@collabora.com>
Reviewed-by: Chun-Kuang Hu <chunkuang.hu@kernel.org>
Link: https://lore.kernel.org/r/20201006193320.405529-2-enric.balletbo@collabora.com
Signed-off-by: Matthias Brugger <matthias.bgg@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 0e566c8f0f2e8325e35f6f97e13cde5356b41814 ]
VQs may be accessed to mark the device broken while they are
created/destroyed. Hence protect the access to the vqs list.
Fixes: e2dcdfe95c0b ("virtio: virtio_break_device() to mark all virtqueues broken.")
Signed-off-by: Parav Pandit <parav@nvidia.com>
Link: https://lore.kernel.org/r/20210721142648.1525924-4-parav@nvidia.com
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 848378812e40152abe9b9baf58ce2004f76fb988 upstream.
A recent change in LLVM causes module_{c,d}tor sections to appear when
CONFIG_K{A,C}SAN are enabled, which results in orphan section warnings
because these are not handled anywhere:
ld.lld: warning: arch/x86/pci/built-in.a(legacy.o):(.text.asan.module_ctor) is being placed in '.text.asan.module_ctor'
ld.lld: warning: arch/x86/pci/built-in.a(legacy.o):(.text.asan.module_dtor) is being placed in '.text.asan.module_dtor'
ld.lld: warning: arch/x86/pci/built-in.a(legacy.o):(.text.tsan.module_ctor) is being placed in '.text.tsan.module_ctor'
Fangrui explains: "the function asan.module_ctor has the SHF_GNU_RETAIN
flag, so it is in a separate section even with -fno-function-sections
(default)".
Place them in the TEXT_TEXT section so that these technologies continue
to work with the newer compiler versions. All of the KASAN and KCSAN
KUnit tests continue to pass after this change.
Cc: stable@vger.kernel.org
Link: https://github.com/ClangBuiltLinux/linux/issues/1432
Link: https://github.com/llvm/llvm-project/commit/7b789562244ee941b7bf2cefeb3fc08a59a01865
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Fangrui Song <maskray@google.com>
Acked-by: Marco Elver <elver@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20210731023107.1932981-1-nathan@kernel.org
[nc: Resolve conflict due to lack of cf68fffb66d60]
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 77e89afc25f30abd56e76a809ee2884d7c1b63ce upstream.
Multi-MSI uses a single MSI descriptor and there is a single mask register
when the device supports per vector masking. To avoid reading back the mask
register the value is cached in the MSI descriptor and updates are done by
clearing and setting bits in the cache and writing it to the device.
But nothing protects msi_desc::masked and the mask register from being
modified concurrently on two different CPUs for two different Linux
interrupts which belong to the same multi-MSI descriptor.
Add a lock to struct device and protect any operation on the mask and the
mask register with it.
This makes the update of msi_desc::masked unconditional, but there is no
place which requires a modification of the hardware register without
updating the masked cache.
msi_mask_irq() is now an empty wrapper which will be cleaned up in follow
up changes.
The problem goes way back to the initial support of multi-MSI, but picking
the commit which introduced the mask cache is a valid cut off point
(2.6.30).
Fixes: f2440d9acbe8 ("PCI MSI: Refactor interrupt masking code")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210729222542.726833414@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 826da771291fc25a428e871f9e7fb465e390f852 upstream.
X86 IO/APIC and MSI interrupts (when used without interrupts remapping)
require that the affinity setup on startup is done before the interrupt is
enabled for the first time as the non-remapped operation mode cannot safely
migrate enabled interrupts from arbitrary contexts. Provide a new irq chip
flag which allows affected hardware to request this.
This has to be opt-in because there have been reports in the past that some
interrupt chips cannot handle affinity setting before startup.
Fixes: 18404756765c ("genirq: Expose default irq affinity mask (take 3)")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210729222542.779791738@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit b69dd5b3780a7298bd893816a09da751bc0636f7 ]
Some arches support cmpxchg() on 4-byte and 8-byte only.
Increase mr_ifc_count width to 32bit to fix this problem.
Fixes: 4a2b285e7e10 ("net: igmp: fix data-race in igmp_ifc_timer_expire()")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Guenter Roeck <linux@roeck-us.net>
Link: https://lore.kernel.org/r/20210811195715.3684218-1-eric.dumazet@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 45a687879b31caae4032abd1c2402e289d2b8083 ]
Ignore fdb flags when adding port extern learn entries and always set
BR_FDB_LOCAL flag when adding bridge extern learn entries. This is
closest to the behaviour we had before and avoids breaking any use cases
which were allowed.
This patch fixes iproute2 calls which assume NUD_PERMANENT and were
allowed before, example:
$ bridge fdb add 00:11:22:33:44:55 dev swp1 extern_learn
Extern learn entries are allowed to roam, but do not expire, so static
or dynamic flags make no sense for them.
Also add a comment for future reference.
Fixes: eb100e0e24a2 ("net: bridge: allow to add externally learned entries from user-space")
Fixes: 0541a6293298 ("net: bridge: validate the NUD_PERMANENT bit when adding an extern_learn FDB entry")
Reviewed-by: Ido Schimmel <idosch@nvidia.com>
Tested-by: Ido Schimmel <idosch@nvidia.com>
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20210810110010.43859-1-razor@blackwall.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 563476ae0c5e48a028cbfa38fa9d2fc0418eb88f ]
The CQ destroy is performed based on the IRQ number that is stored in
cq->irqn. That number wasn't set explicitly during CQ creation and as
expected some of the API users of mlx5_core_create_cq() forgot to update
it.
This caused to wrong synchronization call of the wrong IRQ with a number
0 instead of the real one.
As a fix, set the IRQ number directly in the mlx5_core_create_cq() and
update all users accordingly.
Fixes: 1a86b377aa21 ("vdpa/mlx5: Add VDPA driver for supported mlx5 devices")
Fixes: ef1659ade359 ("IB/mlx5: Add DEVX support for CQ events")
Signed-off-by: Shay Drory <shayd@nvidia.com>
Reviewed-by: Tariq Toukan <tariqt@nvidia.com>
Signed-off-by: Saeed Mahameed <saeedm@nvidia.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit beb7f2de5728b0bd2140a652fa51f6ad85d159f7 ]
Without this there is a warning if source files include psample.h
before skbuff.h or doesn't include it at all.
Fixes: 6ae0a6286171 ("net: Introduce psample, a new genetlink channel for packet sampling")
Signed-off-by: Roi Dayan <roid@nvidia.com>
Link: https://lore.kernel.org/r/20210808065242.1522535-1-roid@nvidia.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
Since the commit ce6ee46e0f39 ("mm/page_alloc: fix memory map
initialization for descending nodes") initialization of the memory map
relies on availability of zone_to_nid() and zone_set_nid methods to link
struct page to a node.
But in 5.10 zone_to_nid() is only defined for NUMA, but not for
DISCONTIGMEM which causes crashes on m68k systems with two memory banks.
For instance on ARAnyM with both ST-RAM and FastRAM atari_defconfig build
produces the following crash:
Unable to handle kernel access at virtual address (ptrval)
Oops: 00000000
Modules linked in:
PC: [<0005fbbc>] bpf_prog_alloc_no_stats+0x5c/0xba
SR: 2200 SP: (ptrval) a2: 016daa90
d0: 0000000c d1: 00000200 d2: 00000001 d3: 00000cc0
d4: 016d1f80 d5: 00034da6 a0: 305c2800 a1: 305c2a00
Process swapper (pid: 1, task=(ptrval))
Frame format=7 eff addr=31800000 ssw=0445 faddr=31800000
wb 1 stat/addr/data: 0000 00000000 00000000
wb 2 stat/addr/data: 0000 00000000 00000000
wb 3 stat/addr/data: 00c5 31800000 00000001
push data: 00000000 00000000 00000000 00000000
Stack from 3058fec8:
00000dc0 00000000 004addc2 3058ff16 0005fc34 00000238 00000000 00000210
004addc2 3058ff16 00281ae0 00000238 00000000 00000000 004addc2 004bc7ec
004aea9e 0048b0c0 3058ff16 00460042 004ba4d2 3058ff8c 004ade6a 0000007e
0000210e 0000007e 00000002 016d1f80 00034da6 000020b4 00000000 004b4764
004bc7ec 00000000 004b4760 004bc7c0 004b4744 001e4cb2 00010001 016d1fe5
016d1ff0 004994d2 003e1589 016d1f80 00412b8c 0000007e 00000001 00000001
Call Trace: [<004addc2>] sock_init+0x0/0xaa
[<0005fc34>] bpf_prog_alloc+0x1a/0x66
[<004addc2>] sock_init+0x0/0xaa
[<00281ae0>] bpf_prog_create+0x2e/0x7c
[<004addc2>] sock_init+0x0/0xaa
[<004aea9e>] ptp_classifier_init+0x22/0x44
[<004ade6a>] sock_init+0xa8/0xaa
[<0000210e>] do_one_initcall+0x5a/0x150
[<00034da6>] parse_args+0x0/0x208
[<000020b4>] do_one_initcall+0x0/0x150
[<001e4cb2>] strcpy+0x0/0x1c
[<00010001>] stwotoxd+0x5/0x1c
[<004994d2>] kernel_init_freeable+0x154/0x1a6
[<001e4cb2>] strcpy+0x0/0x1c
[<0049951a>] kernel_init_freeable+0x19c/0x1a6
[<004addc2>] sock_init+0x0/0xaa
[<00321510>] kernel_init+0x0/0xd8
[<00321518>] kernel_init+0x8/0xd8
[<00321510>] kernel_init+0x0/0xd8
[<00002890>] ret_from_kernel_thread+0xc/0x14
Code: 204b 200b 4cdf 180c 4e75 700c e0aa 3682 <2748> 001c 214b 0140 022b
ffbf 0002 206b 001c 2008 0680 0000 0108 2140 0108 2140
Disabling lock debugging due to kernel taint
Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000000b
Using CONFIG_NEED_MULTIPLE_NODES rather than CONFIG_NUMA to guard
definitions of zone_to_nid() and zone_set_nid() fixes the issue.
Reported-by: Mikael Pettersson <mikpelinux@gmail.com>
Fixes: ce6ee46e0f39 ("mm/page_alloc: fix memory map initialization for descending nodes")
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Tested-by: Mikael Pettersson <mikpelinux@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 51e1bb9eeaf7868db56e58f47848e364ab4c4129 upstream.
Back then, commit 96ae52279594 ("bpf: Add bpf_probe_write_user BPF helper
to be called in tracers") added the bpf_probe_write_user() helper in order
to allow to override user space memory. Its original goal was to have a
facility to "debug, divert, and manipulate execution of semi-cooperative
processes" under CAP_SYS_ADMIN. Write to kernel was explicitly disallowed
since it would otherwise tamper with its integrity.
One use case was shown in cf9b1199de27 ("samples/bpf: Add test/example of
using bpf_probe_write_user bpf helper") where the program DNATs traffic
at the time of connect(2) syscall, meaning, it rewrites the arguments to
a syscall while they're still in userspace, and before the syscall has a
chance to copy the argument into kernel space. These days we have better
mechanisms in BPF for achieving the same (e.g. for load-balancers), but
without having to write to userspace memory.
Of course the bpf_probe_write_user() helper can also be used to abuse
many other things for both good or bad purpose. Outside of BPF, there is
a similar mechanism for ptrace(2) such as PTRACE_PEEK{TEXT,DATA} and
PTRACE_POKE{TEXT,DATA}, but would likely require some more effort.
Commit 96ae52279594 explicitly dedicated the helper for experimentation
purpose only. Thus, move the helper's availability behind a newly added
LOCKDOWN_BPF_WRITE_USER lockdown knob so that the helper is disabled under
the "integrity" mode. More fine-grained control can be implemented also
from LSM side with this change.
Fixes: 96ae52279594 ("bpf: Add bpf_probe_write_user BPF helper to be called in tracers")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 376e4199e327a5cf29b8ec8fb0f64f3d8b429819 ]
Currently TEE_SHM_DMA_BUF flag has been inappropriately used to not
register shared memory allocated for private usage by underlying TEE
driver: OP-TEE in this case. So rather add a new flag as TEE_SHM_PRIV
that can be utilized by underlying TEE drivers for private allocation
and usage of shared memory.
With this corrected, allow tee_shm_alloc_kernel_buf() to allocate a
shared memory region without the backing of dma-buf.
Cc: stable@vger.kernel.org
Signed-off-by: Sumit Garg <sumit.garg@linaro.org>
Co-developed-by: Tyler Hicks <tyhicks@linux.microsoft.com>
Signed-off-by: Tyler Hicks <tyhicks@linux.microsoft.com>
Reviewed-by: Jens Wiklander <jens.wiklander@linaro.org>
Reviewed-by: Sumit Garg <sumit.garg@linaro.org>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 2580d3f40022642452dd8422bfb8c22e54cf84bb upstream.
xfrm_bydst_resize() calls synchronize_rcu() while holding
hash_resize_mutex. But then on PREEMPT_RT configurations,
xfrm_policy_lookup_bytype() may acquire that mutex while running in an
RCU read side critical section. This results in a deadlock.
In fact the scope of hash_resize_mutex is way beyond the purpose of
xfrm_policy_lookup_bytype() to just fetch a coherent and stable policy
for a given destination/direction, along with other details.
The lower level net->xfrm.xfrm_policy_lock, which among other things
protects per destination/direction references to policy entries, is
enough to serialize and benefit from priority inheritance against the
write side. As a bonus, it makes it officially a per network namespace
synchronization business where a policy table resize on namespace A
shouldn't block a policy lookup on namespace B.
Fixes: 77cc278f7b20 (xfrm: policy: Use sequence counters with associated lock)
Cc: stable@vger.kernel.org
Cc: Ahmed S. Darwish <a.darwish@linutronix.de>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Varad Gautam <varad.gautam@suse.com>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: David S. Miller <davem@davemloft.net>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dc7019b7d0e188d4093b34bd0747ed0d668c63bf upstream.
Adds a new function tee_shm_alloc_kernel_buf() to allocate shared memory
from a kernel driver. This function can later be made more lightweight
by unnecessary dma-buf export.
Cc: stable@vger.kernel.org
Reviewed-by: Tyler Hicks <tyhicks@linux.microsoft.com>
Reviewed-by: Sumit Garg <sumit.garg@linaro.org>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit bf88fef0b6f1488abeca594d377991171c00e52a upstream.
The HNP work can be re-scheduled while it's still in-fly. This results in
re-initialization of the busy work, resetting the hrtimer's list node of
the work and crashing kernel with null dereference within kernel/timer
once work's timer is expired. It's very easy to trigger this problem by
re-plugging USB cable quickly. Initialize HNP work only once to fix this
trouble.
Unable to handle kernel NULL pointer dereference at virtual address 00000126)
...
PC is at __run_timers.part.0+0x150/0x228
LR is at __next_timer_interrupt+0x51/0x9c
...
(__run_timers.part.0) from [<c0187a2b>] (run_timer_softirq+0x2f/0x50)
(run_timer_softirq) from [<c01013ad>] (__do_softirq+0xd5/0x2f0)
(__do_softirq) from [<c012589b>] (irq_exit+0xab/0xb8)
(irq_exit) from [<c0170341>] (handle_domain_irq+0x45/0x60)
(handle_domain_irq) from [<c04c4a43>] (gic_handle_irq+0x6b/0x7c)
(gic_handle_irq) from [<c0100b65>] (__irq_svc+0x65/0xac)
Cc: stable@vger.kernel.org
Acked-by: Peter Chen <peter.chen@kernel.org>
Signed-off-by: Dmitry Osipenko <digetx@gmail.com>
Link: https://lore.kernel.org/r/20210717182134.30262-6-digetx@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit e04480920d1eec9c061841399aa6f35b6f987d8b ]
syzbot is hitting might_sleep() warning at hci_sock_dev_event() due to
calling lock_sock() with rw spinlock held [1].
It seems that history of this locking problem is a trial and error.
Commit b40df5743ee8 ("[PATCH] bluetooth: fix socket locking in
hci_sock_dev_event()") in 2.6.21-rc4 changed bh_lock_sock() to
lock_sock() as an attempt to fix lockdep warning.
Then, commit 4ce61d1c7a8e ("[BLUETOOTH]: Fix locking in
hci_sock_dev_event().") in 2.6.22-rc2 changed lock_sock() to
local_bh_disable() + bh_lock_sock_nested() as an attempt to fix the
sleep in atomic context warning.
Then, commit 4b5dd696f81b ("Bluetooth: Remove local_bh_disable() from
hci_sock.c") in 3.3-rc1 removed local_bh_disable().
Then, commit e305509e678b ("Bluetooth: use correct lock to prevent UAF
of hdev object") in 5.13-rc5 again changed bh_lock_sock_nested() to
lock_sock() as an attempt to fix CVE-2021-3573.
This difficulty comes from current implementation that
hci_sock_dev_event(HCI_DEV_UNREG) is responsible for dropping all
references from sockets because hci_unregister_dev() immediately
reclaims resources as soon as returning from
hci_sock_dev_event(HCI_DEV_UNREG).
But the history suggests that hci_sock_dev_event(HCI_DEV_UNREG) was not
doing what it should do.
Therefore, instead of trying to detach sockets from device, let's accept
not detaching sockets from device at hci_sock_dev_event(HCI_DEV_UNREG),
by moving actual cleanup of resources from hci_unregister_dev() to
hci_cleanup_dev() which is called by bt_host_release() when all
references to this unregistered device (which is a kobject) are gone.
Since hci_sock_dev_event(HCI_DEV_UNREG) no longer resets
hci_pi(sk)->hdev, we need to check whether this device was unregistered
and return an error based on HCI_UNREGISTER flag. There might be subtle
behavioral difference in "monitor the hdev" functionality; please report
if you found something went wrong due to this patch.
Link: https://syzkaller.appspot.com/bug?extid=a5df189917e79d5e59c9 [1]
Reported-by: syzbot <syzbot+a5df189917e79d5e59c9@syzkaller.appspotmail.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Fixes: e305509e678b ("Bluetooth: use correct lock to prevent UAF of hdev object")
Acked-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 4039146777a91e1576da2bf38e0d8a1061a1ae47 ]
The patch fixing the returned value of ip6_skb_dst_mtu (int -> unsigned
int) was rebased between its initial review and the version applied. In
the meantime fade56410c22 was applied, which added a new variable (int)
used as the returned value. This lead to a mismatch between the function
prototype and the variable used as the return value.
Fixes: 40fc3054b458 ("net: ipv6: fix return value of ip6_skb_dst_mtu")
Cc: Vadim Fedorenko <vfedorenko@novek.ru>
Signed-off-by: Antoine Tenart <atenart@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit fc68f42aa737dc15e7665a4101d4168aadb8e4c4 ]
Commit 71f642833284 ("ACPI: utils: Fix reference counting in
for_each_acpi_dev_match()") started doing "acpi_dev_put()" on a pointer
that was possibly NULL. That fails miserably, because that helper
inline function is not set up to handle that case.
Just make acpi_dev_put() silently accept a NULL pointer, rather than
calling down to put_device() with an invalid offset off that NULL
pointer.
Link: https://lore.kernel.org/lkml/a607c149-6bf6-0fd0-0e31-100378504da2@kernel.dk/
Reported-and-tested-by: Jens Axboe <axboe@kernel.dk>
Tested-by: Daniel Scally <djrscally@gmail.com>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 6549c46af8551b346bcc0b9043f93848319acd5c ]
For linear regulators, the n_voltages should be (max - min) / step + 1.
Buck voltage from 1v to 3V, per step 100mV, and vout mask is 0x1f.
If value is from 20 to 31, the voltage will all be fixed to 3V.
And LDO also, just vout range is different from 1.2v to 3v, step is the
same. If value is from 18 to 31, the voltage will also be fixed to 3v.
Signed-off-by: Axel Lin <axel.lin@ingics.com>
Reviewed-by: ChiYuan Huang <cy_huang@richtek.com>
Link: https://lore.kernel.org/r/20210627080418.1718127-1-axel.lin@ingics.com
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit e042aa532c84d18ff13291d00620502ce7a38dda upstream.
In 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask") we
narrowed the offset mask for unprivileged pointer arithmetic in order to
mitigate a corner case where in the speculative domain it is possible to
advance, for example, the map value pointer by up to value_size-1 out-of-
bounds in order to leak kernel memory via side-channel to user space.
The verifier's state pruning for scalars leaves one corner case open
where in the first verification path R_x holds an unknown scalar with an
aux->alu_limit of e.g. 7, and in a second verification path that same
register R_x, here denoted as R_x', holds an unknown scalar which has
tighter bounds and would thus satisfy range_within(R_x, R_x') as well as
tnum_in(R_x, R_x') for state pruning, yielding an aux->alu_limit of 3:
Given the second path fits the register constraints for pruning, the final
generated mask from aux->alu_limit will remain at 7. While technically
not wrong for the non-speculative domain, it would however be possible
to craft similar cases where the mask would be too wide as in 7fedb63a8307.
One way to fix it is to detect the presence of unknown scalar map pointer
arithmetic and force a deeper search on unknown scalars to ensure that
we do not run into a masking mismatch.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit c9e73e3d2b1eb1ea7ff068e05007eec3bd8ef1c9 upstream.
func_states_equal makes a very short lived allocation for idmap,
probably because it's too large to fit on the stack. However the
function is called quite often, leading to a lot of alloc / free
churn. Replace the temporary allocation with dedicated scratch
space in struct bpf_verifier_env.
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Edward Cree <ecree.xilinx@gmail.com>
Link: https://lore.kernel.org/bpf/20210429134656.122225-4-lmb@cloudflare.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 2039f26f3aca5b0e419b98f65dd36481337b86ee ]
Spectre v4 gadgets make use of memory disambiguation, which is a set of
techniques that execute memory access instructions, that is, loads and
stores, out of program order; Intel's optimization manual, section 2.4.4.5:
A load instruction micro-op may depend on a preceding store. Many
microarchitectures block loads until all preceding store addresses are
known. The memory disambiguator predicts which loads will not depend on
any previous stores. When the disambiguator predicts that a load does
not have such a dependency, the load takes its data from the L1 data
cache. Eventually, the prediction is verified. If an actual conflict is
detected, the load and all succeeding instructions are re-executed.
af86ca4e3088 ("bpf: Prevent memory disambiguation attack") tried to mitigate
this attack by sanitizing the memory locations through preemptive "fast"
(low latency) stores of zero prior to the actual "slow" (high latency) store
of a pointer value such that upon dependency misprediction the CPU then
speculatively executes the load of the pointer value and retrieves the zero
value instead of the attacker controlled scalar value previously stored at
that location, meaning, subsequent access in the speculative domain is then
redirected to the "zero page".
The sanitized preemptive store of zero prior to the actual "slow" store is
done through a simple ST instruction based on r10 (frame pointer) with
relative offset to the stack location that the verifier has been tracking
on the original used register for STX, which does not have to be r10. Thus,
there are no memory dependencies for this store, since it's only using r10
and immediate constant of zero; hence af86ca4e3088 /assumed/ a low latency
operation.
However, a recent attack demonstrated that this mitigation is not sufficient
since the preemptive store of zero could also be turned into a "slow" store
and is thus bypassed as well:
[...]
// r2 = oob address (e.g. scalar)
// r7 = pointer to map value
31: (7b) *(u64 *)(r10 -16) = r2
// r9 will remain "fast" register, r10 will become "slow" register below
32: (bf) r9 = r10
// JIT maps BPF reg to x86 reg:
// r9 -> r15 (callee saved)
// r10 -> rbp
// train store forward prediction to break dependency link between both r9
// and r10 by evicting them from the predictor's LRU table.
33: (61) r0 = *(u32 *)(r7 +24576)
34: (63) *(u32 *)(r7 +29696) = r0
35: (61) r0 = *(u32 *)(r7 +24580)
36: (63) *(u32 *)(r7 +29700) = r0
37: (61) r0 = *(u32 *)(r7 +24584)
38: (63) *(u32 *)(r7 +29704) = r0
39: (61) r0 = *(u32 *)(r7 +24588)
40: (63) *(u32 *)(r7 +29708) = r0
[...]
543: (61) r0 = *(u32 *)(r7 +25596)
544: (63) *(u32 *)(r7 +30716) = r0
// prepare call to bpf_ringbuf_output() helper. the latter will cause rbp
// to spill to stack memory while r13/r14/r15 (all callee saved regs) remain
// in hardware registers. rbp becomes slow due to push/pop latency. below is
// disasm of bpf_ringbuf_output() helper for better visual context:
//
// ffffffff8117ee20: 41 54 push r12
// ffffffff8117ee22: 55 push rbp
// ffffffff8117ee23: 53 push rbx
// ffffffff8117ee24: 48 f7 c1 fc ff ff ff test rcx,0xfffffffffffffffc
// ffffffff8117ee2b: 0f 85 af 00 00 00 jne ffffffff8117eee0 <-- jump taken
// [...]
// ffffffff8117eee0: 49 c7 c4 ea ff ff ff mov r12,0xffffffffffffffea
// ffffffff8117eee7: 5b pop rbx
// ffffffff8117eee8: 5d pop rbp
// ffffffff8117eee9: 4c 89 e0 mov rax,r12
// ffffffff8117eeec: 41 5c pop r12
// ffffffff8117eeee: c3 ret
545: (18) r1 = map[id:4]
547: (bf) r2 = r7
548: (b7) r3 = 0
549: (b7) r4 = 4
550: (85) call bpf_ringbuf_output#194288
// instruction 551 inserted by verifier \
551: (7a) *(u64 *)(r10 -16) = 0 | /both/ are now slow stores here
// storing map value pointer r7 at fp-16 | since value of r10 is "slow".
552: (7b) *(u64 *)(r10 -16) = r7 /
// following "fast" read to the same memory location, but due to dependency
// misprediction it will speculatively execute before insn 551/552 completes.
553: (79) r2 = *(u64 *)(r9 -16)
// in speculative domain contains attacker controlled r2. in non-speculative
// domain this contains r7, and thus accesses r7 +0 below.
554: (71) r3 = *(u8 *)(r2 +0)
// leak r3
As can be seen, the current speculative store bypass mitigation which the
verifier inserts at line 551 is insufficient since /both/, the write of
the zero sanitation as well as the map value pointer are a high latency
instruction due to prior memory access via push/pop of r10 (rbp) in contrast
to the low latency read in line 553 as r9 (r15) which stays in hardware
registers. Thus, architecturally, fp-16 is r7, however, microarchitecturally,
fp-16 can still be r2.
Initial thoughts to address this issue was to track spilled pointer loads
from stack and enforce their load via LDX through r10 as well so that /both/
the preemptive store of zero /as well as/ the load use the /same/ register
such that a dependency is created between the store and load. However, this
option is not sufficient either since it can be bypassed as well under
speculation. An updated attack with pointer spill/fills now _all_ based on
r10 would look as follows:
[...]
// r2 = oob address (e.g. scalar)
// r7 = pointer to map value
[...]
// longer store forward prediction training sequence than before.
2062: (61) r0 = *(u32 *)(r7 +25588)
2063: (63) *(u32 *)(r7 +30708) = r0
2064: (61) r0 = *(u32 *)(r7 +25592)
2065: (63) *(u32 *)(r7 +30712) = r0
2066: (61) r0 = *(u32 *)(r7 +25596)
2067: (63) *(u32 *)(r7 +30716) = r0
// store the speculative load address (scalar) this time after the store
// forward prediction training.
2068: (7b) *(u64 *)(r10 -16) = r2
// preoccupy the CPU store port by running sequence of dummy stores.
2069: (63) *(u32 *)(r7 +29696) = r0
2070: (63) *(u32 *)(r7 +29700) = r0
2071: (63) *(u32 *)(r7 +29704) = r0
2072: (63) *(u32 *)(r7 +29708) = r0
2073: (63) *(u32 *)(r7 +29712) = r0
2074: (63) *(u32 *)(r7 +29716) = r0
2075: (63) *(u32 *)(r7 +29720) = r0
2076: (63) *(u32 *)(r7 +29724) = r0
2077: (63) *(u32 *)(r7 +29728) = r0
2078: (63) *(u32 *)(r7 +29732) = r0
2079: (63) *(u32 *)(r7 +29736) = r0
2080: (63) *(u32 *)(r7 +29740) = r0
2081: (63) *(u32 *)(r7 +29744) = r0
2082: (63) *(u32 *)(r7 +29748) = r0
2083: (63) *(u32 *)(r7 +29752) = r0
2084: (63) *(u32 *)(r7 +29756) = r0
2085: (63) *(u32 *)(r7 +29760) = r0
2086: (63) *(u32 *)(r7 +29764) = r0
2087: (63) *(u32 *)(r7 +29768) = r0
2088: (63) *(u32 *)(r7 +29772) = r0
2089: (63) *(u32 *)(r7 +29776) = r0
2090: (63) *(u32 *)(r7 +29780) = r0
2091: (63) *(u32 *)(r7 +29784) = r0
2092: (63) *(u32 *)(r7 +29788) = r0
2093: (63) *(u32 *)(r7 +29792) = r0
2094: (63) *(u32 *)(r7 +29796) = r0
2095: (63) *(u32 *)(r7 +29800) = r0
2096: (63) *(u32 *)(r7 +29804) = r0
2097: (63) *(u32 *)(r7 +29808) = r0
2098: (63) *(u32 *)(r7 +29812) = r0
// overwrite scalar with dummy pointer; same as before, also including the
// sanitation store with 0 from the current mitigation by the verifier.
2099: (7a) *(u64 *)(r10 -16) = 0 | /both/ are now slow stores here
2100: (7b) *(u64 *)(r10 -16) = r7 | since store unit is still busy.
// load from stack intended to bypass stores.
2101: (79) r2 = *(u64 *)(r10 -16)
2102: (71) r3 = *(u8 *)(r2 +0)
// leak r3
[...]
Looking at the CPU microarchitecture, the scheduler might issue loads (such
as seen in line 2101) before stores (line 2099,2100) because the load execution
units become available while the store execution unit is still busy with the
sequence of dummy stores (line 2069-2098). And so the load may use the prior
stored scalar from r2 at address r10 -16 for speculation. The updated attack
may work less reliable on CPU microarchitectures where loads and stores share
execution resources.
This concludes that the sanitizing with zero stores from af86ca4e3088 ("bpf:
Prevent memory disambiguation attack") is insufficient. Moreover, the detection
of stack reuse from af86ca4e3088 where previously data (STACK_MISC) has been
written to a given stack slot where a pointer value is now to be stored does
not have sufficient coverage as precondition for the mitigation either; for
several reasons outlined as follows:
1) Stack content from prior program runs could still be preserved and is
therefore not "random", best example is to split a speculative store
bypass attack between tail calls, program A would prepare and store the
oob address at a given stack slot and then tail call into program B which
does the "slow" store of a pointer to the stack with subsequent "fast"
read. From program B PoV such stack slot type is STACK_INVALID, and
therefore also must be subject to mitigation.
2) The STACK_SPILL must not be coupled to register_is_const(&stack->spilled_ptr)
condition, for example, the previous content of that memory location could
also be a pointer to map or map value. Without the fix, a speculative
store bypass is not mitigated in such precondition and can then lead to
a type confusion in the speculative domain leaking kernel memory near
these pointer types.
While brainstorming on various alternative mitigation possibilities, we also
stumbled upon a retrospective from Chrome developers [0]:
[...] For variant 4, we implemented a mitigation to zero the unused memory
of the heap prior to allocation, which cost about 1% when done concurrently
and 4% for scavenging. Variant 4 defeats everything we could think of. We
explored more mitigations for variant 4 but the threat proved to be more
pervasive and dangerous than we anticipated. For example, stack slots used
by the register allocator in the optimizing compiler could be subject to
type confusion, leading to pointer crafting. Mitigating type confusion for
stack slots alone would have required a complete redesign of the backend of
the optimizing compiler, perhaps man years of work, without a guarantee of
completeness. [...]
From BPF side, the problem space is reduced, however, options are rather
limited. One idea that has been explored was to xor-obfuscate pointer spills
to the BPF stack:
[...]
// preoccupy the CPU store port by running sequence of dummy stores.
[...]
2106: (63) *(u32 *)(r7 +29796) = r0
2107: (63) *(u32 *)(r7 +29800) = r0
2108: (63) *(u32 *)(r7 +29804) = r0
2109: (63) *(u32 *)(r7 +29808) = r0
2110: (63) *(u32 *)(r7 +29812) = r0
// overwrite scalar with dummy pointer; xored with random 'secret' value
// of 943576462 before store ...
2111: (b4) w11 = 943576462
2112: (af) r11 ^= r7
2113: (7b) *(u64 *)(r10 -16) = r11
2114: (79) r11 = *(u64 *)(r10 -16)
2115: (b4) w2 = 943576462
2116: (af) r2 ^= r11
// ... and restored with the same 'secret' value with the help of AX reg.
2117: (71) r3 = *(u8 *)(r2 +0)
[...]
While the above would not prevent speculation, it would make data leakage
infeasible by directing it to random locations. In order to be effective
and prevent type confusion under speculation, such random secret would have
to be regenerated for each store. The additional complexity involved for a
tracking mechanism that prevents jumps such that restoring spilled pointers
would not get corrupted is not worth the gain for unprivileged. Hence, the
fix in here eventually opted for emitting a non-public BPF_ST | BPF_NOSPEC
instruction which the x86 JIT translates into a lfence opcode. Inserting the
latter in between the store and load instruction is one of the mitigations
options [1]. The x86 instruction manual notes:
[...] An LFENCE that follows an instruction that stores to memory might
complete before the data being stored have become globally visible. [...]
The latter meaning that the preceding store instruction finished execution
and the store is at minimum guaranteed to be in the CPU's store queue, but
it's not guaranteed to be in that CPU's L1 cache at that point (globally
visible). The latter would only be guaranteed via sfence. So the load which
is guaranteed to execute after the lfence for that local CPU would have to
rely on store-to-load forwarding. [2], in section 2.3 on store buffers says:
[...] For every store operation that is added to the ROB, an entry is
allocated in the store buffer. This entry requires both the virtual and
physical address of the target. Only if there is no free entry in the store
buffer, the frontend stalls until there is an empty slot available in the
store buffer again. Otherwise, the CPU can immediately continue adding
subsequent instructions to the ROB and execute them out of order. On Intel
CPUs, the store buffer has up to 56 entries. [...]
One small upside on the fix is that it lifts constraints from af86ca4e3088
where the sanitize_stack_off relative to r10 must be the same when coming
from different paths. The BPF_ST | BPF_NOSPEC gets emitted after a BPF_STX
or BPF_ST instruction. This happens either when we store a pointer or data
value to the BPF stack for the first time, or upon later pointer spills.
The former needs to be enforced since otherwise stale stack data could be
leaked under speculation as outlined earlier. For non-x86 JITs the BPF_ST |
BPF_NOSPEC mapping is currently optimized away, but others could emit a
speculation barrier as well if necessary. For real-world unprivileged
programs e.g. generated by LLVM, pointer spill/fill is only generated upon
register pressure and LLVM only tries to do that for pointers which are not
used often. The program main impact will be the initial BPF_ST | BPF_NOSPEC
sanitation for the STACK_INVALID case when the first write to a stack slot
occurs e.g. upon map lookup. In future we might refine ways to mitigate
the latter cost.
[0] https://arxiv.org/pdf/1902.05178.pdf
[1] https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
[2] https://arxiv.org/pdf/1905.05725.pdf
Fixes: af86ca4e3088 ("bpf: Prevent memory disambiguation attack")
Fixes: f7cf25b2026d ("bpf: track spill/fill of constants")
Co-developed-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Benedict Schlueter <benedict.schlueter@rub.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Benedict Schlueter <benedict.schlueter@rub.de>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit f5e81d1117501546b7be050c5fbafa6efd2c722c ]
In case of JITs, each of the JIT backends compiles the BPF nospec instruction
/either/ to a machine instruction which emits a speculation barrier /or/ to
/no/ machine instruction in case the underlying architecture is not affected
by Speculative Store Bypass or has different mitigations in place already.
This covers both x86 and (implicitly) arm64: In case of x86, we use 'lfence'
instruction for mitigation. In case of arm64, we rely on the firmware mitigation
as controlled via the ssbd kernel parameter. Whenever the mitigation is enabled,
it works for all of the kernel code with no need to provide any additional
instructions here (hence only comment in arm64 JIT). Other archs can follow
as needed. The BPF nospec instruction is specifically targeting Spectre v4
since i) we don't use a serialization barrier for the Spectre v1 case, and
ii) mitigation instructions for v1 and v4 might be different on some archs.
The BPF nospec is required for a future commit, where the BPF verifier does
annotate intermediate BPF programs with speculation barriers.
Co-developed-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Benedict Schlueter <benedict.schlueter@rub.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Signed-off-by: Benedict Schlueter <benedict.schlueter@rub.de>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 8063e184e49011f6f3f34f6c358dc8a83890bb5b ]
sk_psock_destroy() is a RCU callback, I can't see any reason why
it could be used outside.
Signed-off-by: Cong Wang <cong.wang@bytedance.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: Jakub Sitnicki <jakub@cloudflare.com>
Cc: Lorenz Bauer <lmb@cloudflare.com>
Link: https://lore.kernel.org/bpf/20210127221501.46866-1-xiyou.wangcong@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|