Age | Commit message (Collapse) | Author | Files | Lines |
|
commit 7175f02c4e5f5a9430113ab9ca0fd0ce98b28a51 upstream.
Replace sa_family_t with __kernel_sa_family_t to fix the following
linux/nfc.h userspace compilation errors:
/usr/include/linux/nfc.h:266:2: error: unknown type name 'sa_family_t'
sa_family_t sa_family;
/usr/include/linux/nfc.h:274:2: error: unknown type name 'sa_family_t'
sa_family_t sa_family;
Fixes: 23b7869c0fd0 ("NFC: add the NFC socket raw protocol")
Fixes: d646960f7986 ("NFC: Initial LLCP support")
Cc: <stable@vger.kernel.org>
Signed-off-by: Dmitry V. Levin <ldv@altlinux.org>
Reviewed-by: Krzysztof Kozlowski <krzysztof.kozlowski@canonical.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 79b69a83705e621b258ac6d8ae6d3bfdb4b930aa upstream.
Fix user-space builds if it includes /usr/include/linux/nfc.h before
some of other headers:
/usr/include/linux/nfc.h:281:9: error: unknown type name ‘size_t’
281 | size_t service_name_len;
| ^~~~~~
Fixes: d646960f7986 ("NFC: Initial LLCP support")
Cc: <stable@vger.kernel.org>
Signed-off-by: Krzysztof Kozlowski <krzysztof.kozlowski@canonical.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 5ec7d18d1813a5bead0b495045606c93873aecbb ]
This patch is to delay the endpoint free by calling call_rcu() to fix
another use-after-free issue in sctp_sock_dump():
BUG: KASAN: use-after-free in __lock_acquire+0x36d9/0x4c20
Call Trace:
__lock_acquire+0x36d9/0x4c20 kernel/locking/lockdep.c:3218
lock_acquire+0x1ed/0x520 kernel/locking/lockdep.c:3844
__raw_spin_lock_bh include/linux/spinlock_api_smp.h:135 [inline]
_raw_spin_lock_bh+0x31/0x40 kernel/locking/spinlock.c:168
spin_lock_bh include/linux/spinlock.h:334 [inline]
__lock_sock+0x203/0x350 net/core/sock.c:2253
lock_sock_nested+0xfe/0x120 net/core/sock.c:2774
lock_sock include/net/sock.h:1492 [inline]
sctp_sock_dump+0x122/0xb20 net/sctp/diag.c:324
sctp_for_each_transport+0x2b5/0x370 net/sctp/socket.c:5091
sctp_diag_dump+0x3ac/0x660 net/sctp/diag.c:527
__inet_diag_dump+0xa8/0x140 net/ipv4/inet_diag.c:1049
inet_diag_dump+0x9b/0x110 net/ipv4/inet_diag.c:1065
netlink_dump+0x606/0x1080 net/netlink/af_netlink.c:2244
__netlink_dump_start+0x59a/0x7c0 net/netlink/af_netlink.c:2352
netlink_dump_start include/linux/netlink.h:216 [inline]
inet_diag_handler_cmd+0x2ce/0x3f0 net/ipv4/inet_diag.c:1170
__sock_diag_cmd net/core/sock_diag.c:232 [inline]
sock_diag_rcv_msg+0x31d/0x410 net/core/sock_diag.c:263
netlink_rcv_skb+0x172/0x440 net/netlink/af_netlink.c:2477
sock_diag_rcv+0x2a/0x40 net/core/sock_diag.c:274
This issue occurs when asoc is peeled off and the old sk is freed after
getting it by asoc->base.sk and before calling lock_sock(sk).
To prevent the sk free, as a holder of the sk, ep should be alive when
calling lock_sock(). This patch uses call_rcu() and moves sock_put and
ep free into sctp_endpoint_destroy_rcu(), so that it's safe to try to
hold the ep under rcu_read_lock in sctp_transport_traverse_process().
If sctp_endpoint_hold() returns true, it means this ep is still alive
and we have held it and can continue to dump it; If it returns false,
it means this ep is dead and can be freed after rcu_read_unlock, and
we should skip it.
In sctp_sock_dump(), after locking the sk, if this ep is different from
tsp->asoc->ep, it means during this dumping, this asoc was peeled off
before calling lock_sock(), and the sk should be skipped; If this ep is
the same with tsp->asoc->ep, it means no peeloff happens on this asoc,
and due to lock_sock, no peeloff will happen either until release_sock.
Note that delaying endpoint free won't delay the port release, as the
port release happens in sctp_endpoint_destroy() before calling call_rcu().
Also, freeing endpoint by call_rcu() makes it safe to access the sk by
asoc->base.sk in sctp_assocs_seq_show() and sctp_rcv().
Thanks Jones to bring this issue up.
v1->v2:
- improve the changelog.
- add kfree(ep) into sctp_endpoint_destroy_rcu(), as Jakub noticed.
Reported-by: syzbot+9276d76e83e3bcde6c99@syzkaller.appspotmail.com
Reported-by: Lee Jones <lee.jones@linaro.org>
Fixes: d25adbeb0cdb ("sctp: fix an use-after-free issue in sctp_sock_dump")
Signed-off-by: Xin Long <lucien.xin@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit d7f55471db2719629f773c2d6b5742a69595bfd3 ]
Fix modpost Section mismatch error in memblock_phys_alloc()
[...]
WARNING: modpost: vmlinux.o(.text.unlikely+0x1dcc): Section mismatch in reference
from the function memblock_phys_alloc() to the function .init.text:memblock_phys_alloc_range()
The function memblock_phys_alloc() references
the function __init memblock_phys_alloc_range().
This is often because memblock_phys_alloc lacks a __init
annotation or the annotation of memblock_phys_alloc_range is wrong.
ERROR: modpost: Section mismatches detected.
Set CONFIG_SECTION_MISMATCH_WARN_ONLY=y to allow them.
[...]
memblock_phys_alloc() is a one-line wrapper, make it __always_inline to
avoid these section mismatches.
Reported-by: k2ci <kernel-bot@kylinos.cn>
Suggested-by: Mike Rapoport <rppt@kernel.org>
Signed-off-by: Jackie Liu <liuyun01@kylinos.cn>
[rppt: slightly massaged changelog ]
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Link: https://lore.kernel.org/r/20211217020754.2874872-1-liu.yun@linux.dev
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit dfd0743f1d9ea76931510ed150334d571fbab49d upstream.
Since the tee subsystem does not keep a strong reference to its idle
shared memory buffers, it races with other threads that try to destroy a
shared memory through a close of its dma-buf fd or by unmapping the
memory.
In tee_shm_get_from_id() when a lookup in teedev->idr has been
successful, it is possible that the tee_shm is in the dma-buf teardown
path, but that path is blocked by the teedev mutex. Since we don't have
an API to tell if the tee_shm is in the dma-buf teardown path or not we
must find another way of detecting this condition.
Fix this by doing the reference counting directly on the tee_shm using a
new refcount_t refcount field. dma-buf is replaced by using
anon_inode_getfd() instead, this separates the life-cycle of the
underlying file from the tee_shm. tee_shm_put() is updated to hold the
mutex when decreasing the refcount to 0 and then remove the tee_shm from
teedev->idr before releasing the mutex. This means that the tee_shm can
never be found unless it has a refcount larger than 0.
Fixes: 967c9cca2cc5 ("tee: generic TEE subsystem")
Cc: stable@vger.kernel.org
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Lars Persson <larper@axis.com>
Reviewed-by: Sumit Garg <sumit.garg@linaro.org>
Reported-by: Patrik Lantz <patrik.lantz@axis.com>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 1ed1d592113959f00cc552c3b9f47ca2d157768f ]
virtio_net_hdr_set_proto infers skb->protocol from the virtio_net_hdr
gso_type, to avoid packets getting dropped for lack of a proto type.
Its protocol choice is a guess, especially in the case of UFO, where
the single VIRTIO_NET_HDR_GSO_UDP label covers both UFOv4 and UFOv6.
Skip this best effort if the field is already initialized. Whether
explicitly from userspace, or implicitly based on an earlier call to
dev_parse_header_protocol (which is more robust, but was introduced
after this patch).
Fixes: 9d2f67e43b73 ("net/packet: fix packet drop as of virtio gso")
Signed-off-by: Willem de Bruijn <willemb@google.com>
Link: https://lore.kernel.org/r/20211220145027.2784293-1-willemdebruijn.kernel@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 7e5cced9ca84df52d874aca6b632f930b3dc5bc6 ]
Skb with skb->protocol 0 at the time of virtio_net_hdr_to_skb may have
a protocol inferred from virtio_net_hdr with virtio_net_hdr_set_proto.
Unlike TCP, UDP does not have separate types for IPv4 and IPv6. Type
VIRTIO_NET_HDR_GSO_UDP is guessed to be IPv4/UDP. As of the below
commit, UFOv6 packets are dropped due to not matching the protocol as
obtained from dev_parse_header_protocol.
Invert the test to take that L2 protocol field as starting point and
pass both UFOv4 and UFOv6 for VIRTIO_NET_HDR_GSO_UDP.
Fixes: 924a9bc362a5 ("net: check if protocol extracted by virtio_net_hdr_set_proto is correct")
Link: https://lore.kernel.org/netdev/CABcq3pG9GRCYqFDBAJ48H1vpnnX=41u+MhQnayF1ztLH4WX0Fw@mail.gmail.com/
Reported-by: Andrew Melnichenko <andrew@daynix.com>
Signed-off-by: Willem de Bruijn <willemb@google.com>
Link: https://lore.kernel.org/r/20211220144901.2784030-1-willemdebruijn.kernel@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 444dd878e85fb33fcfb2682cfdab4c236f33ea3e upstream.
The kerneldoc comment of pm_runtime_active() does not reflect the
behavior of the function, so update it accordingly.
Fixes: 403d2d116ec0 ("PM: runtime: Add kerneldoc comments to multiple helpers")
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 50252e4b5e989ce64555c7aef7516bdefc2fea72 upstream.
signalfd_poll() and binder_poll() are special in that they use a
waitqueue whose lifetime is the current task, rather than the struct
file as is normally the case. This is okay for blocking polls, since a
blocking poll occurs within one task; however, non-blocking polls
require another solution. This solution is for the queue to be cleared
before it is freed, by sending a POLLFREE notification to all waiters.
Unfortunately, only eventpoll handles POLLFREE. A second type of
non-blocking poll, aio poll, was added in kernel v4.18, and it doesn't
handle POLLFREE. This allows a use-after-free to occur if a signalfd or
binder fd is polled with aio poll, and the waitqueue gets freed.
Fix this by making aio poll handle POLLFREE.
A patch by Ramji Jiyani <ramjiyani@google.com>
(https://lore.kernel.org/r/20211027011834.2497484-1-ramjiyani@google.com)
tried to do this by making aio_poll_wake() always complete the request
inline if POLLFREE is seen. However, that solution had two bugs.
First, it introduced a deadlock, as it unconditionally locked the aio
context while holding the waitqueue lock, which inverts the normal
locking order. Second, it didn't consider that POLLFREE notifications
are missed while the request has been temporarily de-queued.
The second problem was solved by my previous patch. This patch then
properly fixes the use-after-free by handling POLLFREE in a
deadlock-free way. It does this by taking advantage of the fact that
freeing of the waitqueue is RCU-delayed, similar to what eventpoll does.
Fixes: 2c14fa838cbe ("aio: implement IOCB_CMD_POLL")
Cc: <stable@vger.kernel.org> # v4.18+
Link: https://lore.kernel.org/r/20211209010455.42744-6-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 42288cb44c4b5fff7653bc392b583a2b8bd6a8c0 upstream.
Several ->poll() implementations are special in that they use a
waitqueue whose lifetime is the current task, rather than the struct
file as is normally the case. This is okay for blocking polls, since a
blocking poll occurs within one task; however, non-blocking polls
require another solution. This solution is for the queue to be cleared
before it is freed, using 'wake_up_poll(wq, EPOLLHUP | POLLFREE);'.
However, that has a bug: wake_up_poll() calls __wake_up() with
nr_exclusive=1. Therefore, if there are multiple "exclusive" waiters,
and the wakeup function for the first one returns a positive value, only
that one will be called. That's *not* what's needed for POLLFREE;
POLLFREE is special in that it really needs to wake up everyone.
Considering the three non-blocking poll systems:
- io_uring poll doesn't handle POLLFREE at all, so it is broken anyway.
- aio poll is unaffected, since it doesn't support exclusive waits.
However, that's fragile, as someone could add this feature later.
- epoll doesn't appear to be broken by this, since its wakeup function
returns 0 when it sees POLLFREE. But this is fragile.
Although there is a workaround (see epoll), it's better to define a
function which always sends POLLFREE to all waiters. Add such a
function. Also make it verify that the queue really becomes empty after
all waiters have been woken up.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20211209010455.42744-2-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 802a7dc5cf1bef06f7b290ce76d478138408d6b1 upstream.
(struct nf_conn)->timeout can be read/written locklessly,
add READ_ONCE()/WRITE_ONCE() to prevent load/store tearing.
BUG: KCSAN: data-race in __nf_conntrack_alloc / __nf_conntrack_find_get
write to 0xffff888132e78c08 of 4 bytes by task 6029 on cpu 0:
__nf_conntrack_alloc+0x158/0x280 net/netfilter/nf_conntrack_core.c:1563
init_conntrack+0x1da/0xb30 net/netfilter/nf_conntrack_core.c:1635
resolve_normal_ct+0x502/0x610 net/netfilter/nf_conntrack_core.c:1746
nf_conntrack_in+0x1c5/0x88f net/netfilter/nf_conntrack_core.c:1901
ipv6_conntrack_local+0x19/0x20 net/netfilter/nf_conntrack_proto.c:414
nf_hook_entry_hookfn include/linux/netfilter.h:142 [inline]
nf_hook_slow+0x72/0x170 net/netfilter/core.c:619
nf_hook include/linux/netfilter.h:262 [inline]
NF_HOOK include/linux/netfilter.h:305 [inline]
ip6_xmit+0xa3a/0xa60 net/ipv6/ip6_output.c:324
inet6_csk_xmit+0x1a2/0x1e0 net/ipv6/inet6_connection_sock.c:135
__tcp_transmit_skb+0x132a/0x1840 net/ipv4/tcp_output.c:1402
tcp_transmit_skb net/ipv4/tcp_output.c:1420 [inline]
tcp_write_xmit+0x1450/0x4460 net/ipv4/tcp_output.c:2680
__tcp_push_pending_frames+0x68/0x1c0 net/ipv4/tcp_output.c:2864
tcp_push_pending_frames include/net/tcp.h:1897 [inline]
tcp_data_snd_check+0x62/0x2e0 net/ipv4/tcp_input.c:5452
tcp_rcv_established+0x880/0x10e0 net/ipv4/tcp_input.c:5947
tcp_v6_do_rcv+0x36e/0xa50 net/ipv6/tcp_ipv6.c:1521
sk_backlog_rcv include/net/sock.h:1030 [inline]
__release_sock+0xf2/0x270 net/core/sock.c:2768
release_sock+0x40/0x110 net/core/sock.c:3300
sk_stream_wait_memory+0x435/0x700 net/core/stream.c:145
tcp_sendmsg_locked+0xb85/0x25a0 net/ipv4/tcp.c:1402
tcp_sendmsg+0x2c/0x40 net/ipv4/tcp.c:1440
inet6_sendmsg+0x5f/0x80 net/ipv6/af_inet6.c:644
sock_sendmsg_nosec net/socket.c:704 [inline]
sock_sendmsg net/socket.c:724 [inline]
__sys_sendto+0x21e/0x2c0 net/socket.c:2036
__do_sys_sendto net/socket.c:2048 [inline]
__se_sys_sendto net/socket.c:2044 [inline]
__x64_sys_sendto+0x74/0x90 net/socket.c:2044
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x44/0xd0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
read to 0xffff888132e78c08 of 4 bytes by task 17446 on cpu 1:
nf_ct_is_expired include/net/netfilter/nf_conntrack.h:286 [inline]
____nf_conntrack_find net/netfilter/nf_conntrack_core.c:776 [inline]
__nf_conntrack_find_get+0x1c7/0xac0 net/netfilter/nf_conntrack_core.c:807
resolve_normal_ct+0x273/0x610 net/netfilter/nf_conntrack_core.c:1734
nf_conntrack_in+0x1c5/0x88f net/netfilter/nf_conntrack_core.c:1901
ipv6_conntrack_local+0x19/0x20 net/netfilter/nf_conntrack_proto.c:414
nf_hook_entry_hookfn include/linux/netfilter.h:142 [inline]
nf_hook_slow+0x72/0x170 net/netfilter/core.c:619
nf_hook include/linux/netfilter.h:262 [inline]
NF_HOOK include/linux/netfilter.h:305 [inline]
ip6_xmit+0xa3a/0xa60 net/ipv6/ip6_output.c:324
inet6_csk_xmit+0x1a2/0x1e0 net/ipv6/inet6_connection_sock.c:135
__tcp_transmit_skb+0x132a/0x1840 net/ipv4/tcp_output.c:1402
__tcp_send_ack+0x1fd/0x300 net/ipv4/tcp_output.c:3956
tcp_send_ack+0x23/0x30 net/ipv4/tcp_output.c:3962
__tcp_ack_snd_check+0x2d8/0x510 net/ipv4/tcp_input.c:5478
tcp_ack_snd_check net/ipv4/tcp_input.c:5523 [inline]
tcp_rcv_established+0x8c2/0x10e0 net/ipv4/tcp_input.c:5948
tcp_v6_do_rcv+0x36e/0xa50 net/ipv6/tcp_ipv6.c:1521
sk_backlog_rcv include/net/sock.h:1030 [inline]
__release_sock+0xf2/0x270 net/core/sock.c:2768
release_sock+0x40/0x110 net/core/sock.c:3300
tcp_sendpage+0x94/0xb0 net/ipv4/tcp.c:1114
inet_sendpage+0x7f/0xc0 net/ipv4/af_inet.c:833
rds_tcp_xmit+0x376/0x5f0 net/rds/tcp_send.c:118
rds_send_xmit+0xbed/0x1500 net/rds/send.c:367
rds_send_worker+0x43/0x200 net/rds/threads.c:200
process_one_work+0x3fc/0x980 kernel/workqueue.c:2298
worker_thread+0x616/0xa70 kernel/workqueue.c:2445
kthread+0x2c7/0x2e0 kernel/kthread.c:327
ret_from_fork+0x1f/0x30
value changed: 0x00027cc2 -> 0x00000000
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 17446 Comm: kworker/u4:5 Tainted: G W 5.16.0-rc4-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Workqueue: krdsd rds_send_worker
Note: I chose an arbitrary commit for the Fixes: tag,
because I do not think we need to backport this fix to very old kernels.
Fixes: e37542ba111f ("netfilter: conntrack: avoid possible false sharing")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dac8e00fb640e9569cdeefd3ce8a75639e5d0711 upstream.
KCSAN reported a data-race [1] around tx_rebalance_counter
which can be accessed from different contexts, without
the protection of a lock/mutex.
[1]
BUG: KCSAN: data-race in bond_alb_init_slave / bond_alb_monitor
write to 0xffff888157e8ca24 of 4 bytes by task 7075 on cpu 0:
bond_alb_init_slave+0x713/0x860 drivers/net/bonding/bond_alb.c:1613
bond_enslave+0xd94/0x3010 drivers/net/bonding/bond_main.c:1949
do_set_master net/core/rtnetlink.c:2521 [inline]
__rtnl_newlink net/core/rtnetlink.c:3475 [inline]
rtnl_newlink+0x1298/0x13b0 net/core/rtnetlink.c:3506
rtnetlink_rcv_msg+0x745/0x7e0 net/core/rtnetlink.c:5571
netlink_rcv_skb+0x14e/0x250 net/netlink/af_netlink.c:2491
rtnetlink_rcv+0x18/0x20 net/core/rtnetlink.c:5589
netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline]
netlink_unicast+0x5fc/0x6c0 net/netlink/af_netlink.c:1345
netlink_sendmsg+0x6e1/0x7d0 net/netlink/af_netlink.c:1916
sock_sendmsg_nosec net/socket.c:704 [inline]
sock_sendmsg net/socket.c:724 [inline]
____sys_sendmsg+0x39a/0x510 net/socket.c:2409
___sys_sendmsg net/socket.c:2463 [inline]
__sys_sendmsg+0x195/0x230 net/socket.c:2492
__do_sys_sendmsg net/socket.c:2501 [inline]
__se_sys_sendmsg net/socket.c:2499 [inline]
__x64_sys_sendmsg+0x42/0x50 net/socket.c:2499
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x44/0xd0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
read to 0xffff888157e8ca24 of 4 bytes by task 1082 on cpu 1:
bond_alb_monitor+0x8f/0xc00 drivers/net/bonding/bond_alb.c:1511
process_one_work+0x3fc/0x980 kernel/workqueue.c:2298
worker_thread+0x616/0xa70 kernel/workqueue.c:2445
kthread+0x2c7/0x2e0 kernel/kthread.c:327
ret_from_fork+0x1f/0x30
value changed: 0x00000001 -> 0x00000064
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 1082 Comm: kworker/u4:3 Not tainted 5.16.0-rc3-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Workqueue: bond1 bond_alb_monitor
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f45b2974cc0ae959a4c503a071e38a56bd64372f upstream.
The arch_prepare_bpf_dispatcher function does not have a prototype, and
yields the following warning when W=1 is enabled for the kernel build.
>> arch/x86/net/bpf_jit_comp.c:2188:5: warning: no previous \
prototype for 'arch_prepare_bpf_dispatcher' [-Wmissing-prototypes]
2188 | int arch_prepare_bpf_dispatcher(void *image, s64 *funcs, \
int num_funcs)
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~
Remove the warning by adding a function declaration to include/linux/bpf.h.
Fixes: 75ccbef6369e ("bpf: Introduce BPF dispatcher")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Björn Töpel <bjorn@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20211117125708.769168-1-bjorn@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f83baa0cb6cfc92ebaf7f9d3a99d7e34f2e77a8a upstream.
A number of HID drivers already call hid_is_using_ll_driver() but only
for the detection of if this is a USB device or not. Make this more
obvious by creating hid_is_usb() and calling the function that way.
Also converts the existing hid_is_using_ll_driver() functions to use the
new call.
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Cc: linux-input@vger.kernel.org
Cc: stable@vger.kernel.org
Tested-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Link: https://lore.kernel.org/r/20211201183503.2373082-1-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 213f5f8f31f10aa1e83187ae20fb7fa4e626b724 upstream.
Before commit faa041a40b9f ("ipv4: Create cleanup helper for fib_nh")
changes to net->ipv4.fib_num_tclassid_users were protected by RTNL.
After the change, this is no longer the case, as free_fib_info_rcu()
runs after rcu grace period, without rtnl being held.
Fixes: faa041a40b9f ("ipv4: Create cleanup helper for fib_nh")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: David Ahern <dsahern@kernel.org>
Reviewed-by: David Ahern <dsahern@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 7a10d8c810cfad3e79372d7d1c77899d86cd6662 upstream.
syzbot found that __dev_queue_xmit() is reading txq->xmit_lock_owner
without annotations.
No serious issue there, let's document what is happening there.
BUG: KCSAN: data-race in __dev_queue_xmit / __dev_queue_xmit
write to 0xffff888139d09484 of 4 bytes by interrupt on cpu 0:
__netif_tx_unlock include/linux/netdevice.h:4437 [inline]
__dev_queue_xmit+0x948/0xf70 net/core/dev.c:4229
dev_queue_xmit_accel+0x19/0x20 net/core/dev.c:4265
macvlan_queue_xmit drivers/net/macvlan.c:543 [inline]
macvlan_start_xmit+0x2b3/0x3d0 drivers/net/macvlan.c:567
__netdev_start_xmit include/linux/netdevice.h:4987 [inline]
netdev_start_xmit include/linux/netdevice.h:5001 [inline]
xmit_one+0x105/0x2f0 net/core/dev.c:3590
dev_hard_start_xmit+0x72/0x120 net/core/dev.c:3606
sch_direct_xmit+0x1b2/0x7c0 net/sched/sch_generic.c:342
__dev_xmit_skb+0x83d/0x1370 net/core/dev.c:3817
__dev_queue_xmit+0x590/0xf70 net/core/dev.c:4194
dev_queue_xmit+0x13/0x20 net/core/dev.c:4259
neigh_hh_output include/net/neighbour.h:511 [inline]
neigh_output include/net/neighbour.h:525 [inline]
ip6_finish_output2+0x995/0xbb0 net/ipv6/ip6_output.c:126
__ip6_finish_output net/ipv6/ip6_output.c:191 [inline]
ip6_finish_output+0x444/0x4c0 net/ipv6/ip6_output.c:201
NF_HOOK_COND include/linux/netfilter.h:296 [inline]
ip6_output+0x10e/0x210 net/ipv6/ip6_output.c:224
dst_output include/net/dst.h:450 [inline]
NF_HOOK include/linux/netfilter.h:307 [inline]
ndisc_send_skb+0x486/0x610 net/ipv6/ndisc.c:508
ndisc_send_rs+0x3b0/0x3e0 net/ipv6/ndisc.c:702
addrconf_rs_timer+0x370/0x540 net/ipv6/addrconf.c:3898
call_timer_fn+0x2e/0x240 kernel/time/timer.c:1421
expire_timers+0x116/0x240 kernel/time/timer.c:1466
__run_timers+0x368/0x410 kernel/time/timer.c:1734
run_timer_softirq+0x2e/0x60 kernel/time/timer.c:1747
__do_softirq+0x158/0x2de kernel/softirq.c:558
__irq_exit_rcu kernel/softirq.c:636 [inline]
irq_exit_rcu+0x37/0x70 kernel/softirq.c:648
sysvec_apic_timer_interrupt+0x3e/0xb0 arch/x86/kernel/apic/apic.c:1097
asm_sysvec_apic_timer_interrupt+0x12/0x20
read to 0xffff888139d09484 of 4 bytes by interrupt on cpu 1:
__dev_queue_xmit+0x5e3/0xf70 net/core/dev.c:4213
dev_queue_xmit_accel+0x19/0x20 net/core/dev.c:4265
macvlan_queue_xmit drivers/net/macvlan.c:543 [inline]
macvlan_start_xmit+0x2b3/0x3d0 drivers/net/macvlan.c:567
__netdev_start_xmit include/linux/netdevice.h:4987 [inline]
netdev_start_xmit include/linux/netdevice.h:5001 [inline]
xmit_one+0x105/0x2f0 net/core/dev.c:3590
dev_hard_start_xmit+0x72/0x120 net/core/dev.c:3606
sch_direct_xmit+0x1b2/0x7c0 net/sched/sch_generic.c:342
__dev_xmit_skb+0x83d/0x1370 net/core/dev.c:3817
__dev_queue_xmit+0x590/0xf70 net/core/dev.c:4194
dev_queue_xmit+0x13/0x20 net/core/dev.c:4259
neigh_resolve_output+0x3db/0x410 net/core/neighbour.c:1523
neigh_output include/net/neighbour.h:527 [inline]
ip6_finish_output2+0x9be/0xbb0 net/ipv6/ip6_output.c:126
__ip6_finish_output net/ipv6/ip6_output.c:191 [inline]
ip6_finish_output+0x444/0x4c0 net/ipv6/ip6_output.c:201
NF_HOOK_COND include/linux/netfilter.h:296 [inline]
ip6_output+0x10e/0x210 net/ipv6/ip6_output.c:224
dst_output include/net/dst.h:450 [inline]
NF_HOOK include/linux/netfilter.h:307 [inline]
ndisc_send_skb+0x486/0x610 net/ipv6/ndisc.c:508
ndisc_send_rs+0x3b0/0x3e0 net/ipv6/ndisc.c:702
addrconf_rs_timer+0x370/0x540 net/ipv6/addrconf.c:3898
call_timer_fn+0x2e/0x240 kernel/time/timer.c:1421
expire_timers+0x116/0x240 kernel/time/timer.c:1466
__run_timers+0x368/0x410 kernel/time/timer.c:1734
run_timer_softirq+0x2e/0x60 kernel/time/timer.c:1747
__do_softirq+0x158/0x2de kernel/softirq.c:558
__irq_exit_rcu kernel/softirq.c:636 [inline]
irq_exit_rcu+0x37/0x70 kernel/softirq.c:648
sysvec_apic_timer_interrupt+0x8d/0xb0 arch/x86/kernel/apic/apic.c:1097
asm_sysvec_apic_timer_interrupt+0x12/0x20
kcsan_setup_watchpoint+0x94/0x420 kernel/kcsan/core.c:443
folio_test_anon include/linux/page-flags.h:581 [inline]
PageAnon include/linux/page-flags.h:586 [inline]
zap_pte_range+0x5ac/0x10e0 mm/memory.c:1347
zap_pmd_range mm/memory.c:1467 [inline]
zap_pud_range mm/memory.c:1496 [inline]
zap_p4d_range mm/memory.c:1517 [inline]
unmap_page_range+0x2dc/0x3d0 mm/memory.c:1538
unmap_single_vma+0x157/0x210 mm/memory.c:1583
unmap_vmas+0xd0/0x180 mm/memory.c:1615
exit_mmap+0x23d/0x470 mm/mmap.c:3170
__mmput+0x27/0x1b0 kernel/fork.c:1113
mmput+0x3d/0x50 kernel/fork.c:1134
exit_mm+0xdb/0x170 kernel/exit.c:507
do_exit+0x608/0x17a0 kernel/exit.c:819
do_group_exit+0xce/0x180 kernel/exit.c:929
get_signal+0xfc3/0x1550 kernel/signal.c:2852
arch_do_signal_or_restart+0x8c/0x2e0 arch/x86/kernel/signal.c:868
handle_signal_work kernel/entry/common.c:148 [inline]
exit_to_user_mode_loop kernel/entry/common.c:172 [inline]
exit_to_user_mode_prepare+0x113/0x190 kernel/entry/common.c:207
__syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline]
syscall_exit_to_user_mode+0x20/0x40 kernel/entry/common.c:300
do_syscall_64+0x50/0xd0 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x44/0xae
value changed: 0x00000000 -> 0xffffffff
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 28712 Comm: syz-executor.0 Tainted: G W 5.16.0-rc1-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Link: https://lore.kernel.org/r/20211130170155.2331929-1-eric.dumazet@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit f7e5b9bfa6c8820407b64eabc1f29c9a87e8993d upstream.
On ARM v6 and later, we define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
because the ordinary load/store instructions (ldr, ldrh, ldrb) can
tolerate any misalignment of the memory address. However, load/store
double and load/store multiple instructions (ldrd, ldm) may still only
be used on memory addresses that are 32-bit aligned, and so we have to
use the CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS macro with care, or we
may end up with a severe performance hit due to alignment traps that
require fixups by the kernel. Testing shows that this currently happens
with clang-13 but not gcc-11. In theory, any compiler version can
produce this bug or other problems, as we are dealing with undefined
behavior in C99 even on architectures that support this in hardware,
see also https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100363.
Fortunately, the get_unaligned() accessors do the right thing: when
building for ARMv6 or later, the compiler will emit unaligned accesses
using the ordinary load/store instructions (but avoid the ones that
require 32-bit alignment). When building for older ARM, those accessors
will emit the appropriate sequence of ldrb/mov/orr instructions. And on
architectures that can truly tolerate any kind of misalignment, the
get_unaligned() accessors resolve to the leXX_to_cpup accessors that
operate on aligned addresses.
Since the compiler will in fact emit ldrd or ldm instructions when
building this code for ARM v6 or later, the solution is to use the
unaligned accessors unconditionally on architectures where this is
known to be fast. The _aligned version of the hash function is
however still needed to get the best performance on architectures
that cannot do any unaligned access in hardware.
This new version avoids the undefined behavior and should produce
the fastest hash on all architectures we support.
Link: https://lore.kernel.org/linux-arm-kernel/20181008211554.5355-4-ard.biesheuvel@linaro.org/
Link: https://lore.kernel.org/linux-crypto/CAK8P3a2KfmmGDbVHULWevB0hv71P2oi2ZCHEAqT=8dQfa0=cqQ@mail.gmail.com/
Reported-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Fixes: 2c956a60778c ("siphash: add cryptographically secure PRF")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Jason A. Donenfeld <Jason@zx2c4.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit dacb5d8875cc6cd3a553363b4d6f06760fcbe70c upstream.
Steffen reported a TCP stream corruption for HTTP requests
served by the apache web-server using a cifs mount-point
and memory mapping the relevant file.
The root cause is quite similar to the one addressed by
commit 20eb4f29b602 ("net: fix sk_page_frag() recursion from
memory reclaim"). Here the nested access to the task page frag
is caused by a page fault on the (mmapped) user-space memory
buffer coming from the cifs file.
The page fault handler performs an smb transaction on a different
socket, inside the same process context. Since sk->sk_allaction
for such socket does not prevent the usage for the task_frag,
the nested allocation modify "under the hood" the page frag
in use by the outer sendmsg call, corrupting the stream.
The overall relevant stack trace looks like the following:
httpd 78268 [001] 3461630.850950: probe:tcp_sendmsg_locked:
ffffffff91461d91 tcp_sendmsg_locked+0x1
ffffffff91462b57 tcp_sendmsg+0x27
ffffffff9139814e sock_sendmsg+0x3e
ffffffffc06dfe1d smb_send_kvec+0x28
[...]
ffffffffc06cfaf8 cifs_readpages+0x213
ffffffff90e83c4b read_pages+0x6b
ffffffff90e83f31 __do_page_cache_readahead+0x1c1
ffffffff90e79e98 filemap_fault+0x788
ffffffff90eb0458 __do_fault+0x38
ffffffff90eb5280 do_fault+0x1a0
ffffffff90eb7c84 __handle_mm_fault+0x4d4
ffffffff90eb8093 handle_mm_fault+0xc3
ffffffff90c74f6d __do_page_fault+0x1ed
ffffffff90c75277 do_page_fault+0x37
ffffffff9160111e page_fault+0x1e
ffffffff9109e7b5 copyin+0x25
ffffffff9109eb40 _copy_from_iter_full+0xe0
ffffffff91462370 tcp_sendmsg_locked+0x5e0
ffffffff91462370 tcp_sendmsg_locked+0x5e0
ffffffff91462b57 tcp_sendmsg+0x27
ffffffff9139815c sock_sendmsg+0x4c
ffffffff913981f7 sock_write_iter+0x97
ffffffff90f2cc56 do_iter_readv_writev+0x156
ffffffff90f2dff0 do_iter_write+0x80
ffffffff90f2e1c3 vfs_writev+0xa3
ffffffff90f2e27c do_writev+0x5c
ffffffff90c042bb do_syscall_64+0x5b
ffffffff916000ad entry_SYSCALL_64_after_hwframe+0x65
The cifs filesystem rightfully sets sk_allocations to GFP_NOFS,
we can avoid the nesting using the sk page frag for allocation
lacking the __GFP_FS flag. Do not define an additional mm-helper
for that, as this is strictly tied to the sk page frag usage.
v1 -> v2:
- use a stricted sk_page_frag() check instead of reordering the
code (Eric)
Reported-by: Steffen Froemer <sfroemer@redhat.com>
Fixes: 5640f7685831 ("net: use a per task frag allocator")
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 20ae1d6aa159eb91a9bf09ff92ccaa94dbea92c2 upstream.
Each peer's endpoint contains a dst_cache entry that takes a reference
to another netdev. When the containing namespace exits, we take down the
socket and prevent future sockets from being created (by setting
creating_net to NULL), which removes that potential reference on the
netns. However, it doesn't release references to the netns that a netdev
cached in dst_cache might be taking, so the netns still might fail to
exit. Since the socket is gimped anyway, we can simply clear all the
dst_caches (by way of clearing the endpoint src), which will release all
references.
However, the current dst_cache_reset function only releases those
references lazily. But it turns out that all of our usages of
wg_socket_clear_peer_endpoint_src are called from contexts that are not
exactly high-speed or bottle-necked. For example, when there's
connection difficulty, or when userspace is reconfiguring the interface.
And in particular for this patch, when the netns is exiting. So for
those cases, it makes more sense to call dst_release immediately. For
that, we add a small helper function to dst_cache.
This patch also adds a test to netns.sh from Hangbin Liu to ensure this
doesn't regress.
Tested-by: Hangbin Liu <liuhangbin@gmail.com>
Reported-by: Xiumei Mu <xmu@redhat.com>
Cc: Toke Høiland-Jørgensen <toke@redhat.com>
Cc: Paolo Abeni <pabeni@redhat.com>
Fixes: 900575aa33a3 ("wireguard: device: avoid circular netns references")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit cdef485217d30382f3bf6448c54b4401648fe3f1 upstream.
The kernel leaks memory when a `fib` rule is present in IPv6 nftables
firewall rules and a suppress_prefix rule is present in the IPv6 routing
rules (used by certain tools such as wg-quick). In such scenarios, every
incoming packet will leak an allocation in `ip6_dst_cache` slab cache.
After some hours of `bpftrace`-ing and source code reading, I tracked
down the issue to ca7a03c41753 ("ipv6: do not free rt if
FIB_LOOKUP_NOREF is set on suppress rule").
The problem with that change is that the generic `args->flags` always have
`FIB_LOOKUP_NOREF` set[1][2] but the IPv6-specific flag
`RT6_LOOKUP_F_DST_NOREF` might not be, leading to `fib6_rule_suppress` not
decreasing the refcount when needed.
How to reproduce:
- Add the following nftables rule to a prerouting chain:
meta nfproto ipv6 fib saddr . mark . iif oif missing drop
This can be done with:
sudo nft create table inet test
sudo nft create chain inet test test_chain '{ type filter hook prerouting priority filter + 10; policy accept; }'
sudo nft add rule inet test test_chain meta nfproto ipv6 fib saddr . mark . iif oif missing drop
- Run:
sudo ip -6 rule add table main suppress_prefixlength 0
- Watch `sudo slabtop -o | grep ip6_dst_cache` to see memory usage increase
with every incoming ipv6 packet.
This patch exposes the protocol-specific flags to the protocol
specific `suppress` function, and check the protocol-specific `flags`
argument for RT6_LOOKUP_F_DST_NOREF instead of the generic
FIB_LOOKUP_NOREF when decreasing the refcount, like this.
[1]: https://github.com/torvalds/linux/blob/ca7a03c4175366a92cee0ccc4fec0038c3266e26/net/ipv6/fib6_rules.c#L71
[2]: https://github.com/torvalds/linux/blob/ca7a03c4175366a92cee0ccc4fec0038c3266e26/net/ipv6/fib6_rules.c#L99
Link: https://bugzilla.kernel.org/show_bug.cgi?id=215105
Fixes: ca7a03c41753 ("ipv6: do not free rt if FIB_LOOKUP_NOREF is set on suppress rule")
Cc: stable@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6bbfa44116689469267f1a6e3d233b52114139d2 upstream.
The 'kprobe::data_size' is unsigned, thus it can not be negative. But if
user sets it enough big number (e.g. (size_t)-8), the result of 'data_size
+ sizeof(struct kretprobe_instance)' becomes smaller than sizeof(struct
kretprobe_instance) or zero. In result, the kretprobe_instance are
allocated without enough memory, and kretprobe accesses outside of
allocated memory.
To avoid this issue, introduce a max limitation of the
kretprobe::data_size. 4KB per instance should be OK.
Link: https://lkml.kernel.org/r/163836995040.432120.10322772773821182925.stgit@devnote2
Cc: stable@vger.kernel.org
Fixes: f47cd9b553aa ("kprobes: kretprobe user entry-handler")
Reported-by: zhangyue <zhangyue1@kylinos.cn>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit e9380df851878cee71df5a1c7611584421527f7e ]
The commit ddfd9dcf270c ("ACPI: PM: Add acpi_[un]register_wakeup_handler()")
added new functions for drivers to use during the s2idle wakeup path, but
didn't add stubs for when CONFIG_ACPI wasn't set.
Add those stubs in for other drivers to be able to use.
Fixes: ddfd9dcf270c ("ACPI: PM: Add acpi_[un]register_wakeup_handler()")
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Link: https://lore.kernel.org/r/20211101014853.6177-1-mario.limonciello@amd.com
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 85b6d24646e4125c591639841169baa98a2da503 upstream.
Currently, the exit_shm() function not designed to work properly when
task->sysvshm.shm_clist holds shm objects from different IPC namespaces.
This is a real pain when sysctl kernel.shm_rmid_forced = 1, because it
leads to use-after-free (reproducer exists).
This is an attempt to fix the problem by extending exit_shm mechanism to
handle shm's destroy from several IPC ns'es.
To achieve that we do several things:
1. add a namespace (non-refcounted) pointer to the struct shmid_kernel
2. during new shm object creation (newseg()/shmget syscall) we
initialize this pointer by current task IPC ns
3. exit_shm() fully reworked such that it traverses over all shp's in
task->sysvshm.shm_clist and gets IPC namespace not from current task
as it was before but from shp's object itself, then call
shm_destroy(shp, ns).
Note: We need to be really careful here, because as it was said before
(1), our pointer to IPC ns non-refcnt'ed. To be on the safe side we
using special helper get_ipc_ns_not_zero() which allows to get IPC ns
refcounter only if IPC ns not in the "state of destruction".
Q/A
Q: Why can we access shp->ns memory using non-refcounted pointer?
A: Because shp object lifetime is always shorther than IPC namespace
lifetime, so, if we get shp object from the task->sysvshm.shm_clist
while holding task_lock(task) nobody can steal our namespace.
Q: Does this patch change semantics of unshare/setns/clone syscalls?
A: No. It's just fixes non-covered case when process may leave IPC
namespace without getting task->sysvshm.shm_clist list cleaned up.
Link: https://lkml.kernel.org/r/67bb03e5-f79c-1815-e2bf-949c67047418@colorfullife.com
Link: https://lkml.kernel.org/r/20211109151501.4921-1-manfred@colorfullife.com
Fixes: ab602f79915 ("shm: make exit_shm work proportional to task activity")
Co-developed-by: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Alexander Mikhalitsyn <alexander.mikhalitsyn@virtuozzo.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Pavel Tikhomirov <ptikhomirov@virtuozzo.com>
Cc: Vasily Averin <vvs@virtuozzo.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 629a5d87e26fe96bcaab44cbb81f5866af6f7008 upstream.
Sync include/xen/interface/io/ring.h with Xen's newest version in
order to get the RING_COPY_RESPONSE() and RING_RESPONSE_PROD_OVERFLOW()
macros.
Note that this will correct the wrong license info by adding the
missing original copyright notice.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 8837cbbf854246f5f4d565f21e6baa945d37aded ]
We need a way to release a fib6_nh's per-cpu dsts when replacing
nexthops otherwise we can end up with stale per-cpu dsts which hold net
device references, so add a new IPv6 stub called fib6_nh_release_dsts.
It must be used after an RCU grace period, so no new dsts can be created
through a group's nexthop entry.
Similar to fib6_nh_release it shouldn't be used if fib6_nh_init has failed
so it doesn't need a dummy stub when IPv6 is not enabled.
Fixes: 7bf4796dd099 ("nexthops: add support for replace")
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 451dc48c806a7ce9fbec5e7a24ccf4b2c936e834 ]
This patch fixes an issue that an u32 netlink value is handled as a
signed enum value which doesn't fit into the range of u32 netlink type.
If it's handled as -1 value some BIT() evaluation ends in a
shift-out-of-bounds issue. To solve the issue we set the to u32 max which
is s32 "-1" value to keep backwards compatibility and let the followed enum
values start counting at 0. This brings the compiler to never handle the
enum as signed and a check if the value is above NL802154_IFTYPE_MAX should
filter -1 out.
Fixes: f3ea5e44231a ("ieee802154: add new interface command")
Signed-off-by: Alexander Aring <aahringo@redhat.com>
Link: https://lore.kernel.org/r/20211112030916.685793-1-aahringo@redhat.com
Signed-off-by: Stefan Schmidt <stefan@datenfreihafen.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 353050be4c19e102178ccc05988101887c25ae53 upstream.
Commit a23740ec43ba ("bpf: Track contents of read-only maps as scalars") is
checking whether maps are read-only both from BPF program side and user space
side, and then, given their content is constant, reading out their data via
map->ops->map_direct_value_addr() which is then subsequently used as known
scalar value for the register, that is, it is marked as __mark_reg_known()
with the read value at verification time. Before a23740ec43ba, the register
content was marked as an unknown scalar so the verifier could not make any
assumptions about the map content.
The current implementation however is prone to a TOCTOU race, meaning, the
value read as known scalar for the register is not guaranteed to be exactly
the same at a later point when the program is executed, and as such, the
prior made assumptions of the verifier with regards to the program will be
invalid which can cause issues such as OOB access, etc.
While the BPF_F_RDONLY_PROG map flag is always fixed and required to be
specified at map creation time, the map->frozen property is initially set to
false for the map given the map value needs to be populated, e.g. for global
data sections. Once complete, the loader "freezes" the map from user space
such that no subsequent updates/deletes are possible anymore. For the rest
of the lifetime of the map, this freeze one-time trigger cannot be undone
anymore after a successful BPF_MAP_FREEZE cmd return. Meaning, any new BPF_*
cmd calls which would update/delete map entries will be rejected with -EPERM
since map_get_sys_perms() removes the FMODE_CAN_WRITE permission. This also
means that pending update/delete map entries must still complete before this
guarantee is given. This corner case is not an issue for loaders since they
create and prepare such program private map in successive steps.
However, a malicious user is able to trigger this TOCTOU race in two different
ways: i) via userfaultfd, and ii) via batched updates. For i) userfaultfd is
used to expand the competition interval, so that map_update_elem() can modify
the contents of the map after map_freeze() and bpf_prog_load() were executed.
This works, because userfaultfd halts the parallel thread which triggered a
map_update_elem() at the time where we copy key/value from the user buffer and
this already passed the FMODE_CAN_WRITE capability test given at that time the
map was not "frozen". Then, the main thread performs the map_freeze() and
bpf_prog_load(), and once that had completed successfully, the other thread
is woken up to complete the pending map_update_elem() which then changes the
map content. For ii) the idea of the batched update is similar, meaning, when
there are a large number of updates to be processed, it can increase the
competition interval between the two. It is therefore possible in practice to
modify the contents of the map after executing map_freeze() and bpf_prog_load().
One way to fix both i) and ii) at the same time is to expand the use of the
map's map->writecnt. The latter was introduced in fc9702273e2e ("bpf: Add mmap()
support for BPF_MAP_TYPE_ARRAY") and further refined in 1f6cb19be2e2 ("bpf:
Prevent re-mmap()'ing BPF map as writable for initially r/o mapping") with
the rationale to make a writable mmap()'ing of a map mutually exclusive with
read-only freezing. The counter indicates writable mmap() mappings and then
prevents/fails the freeze operation. Its semantics can be expanded beyond
just mmap() by generally indicating ongoing write phases. This would essentially
span any parallel regular and batched flavor of update/delete operation and
then also have map_freeze() fail with -EBUSY. For the check_mem_access() in
the verifier we expand upon the bpf_map_is_rdonly() check ensuring that all
last pending writes have completed via bpf_map_write_active() test. Once the
map->frozen is set and bpf_map_write_active() indicates a map->writecnt of 0
only then we are really guaranteed to use the map's data as known constants.
For map->frozen being set and pending writes in process of still being completed
we fall back to marking that register as unknown scalar so we don't end up
making assumptions about it. With this, both TOCTOU reproducers from i) and
ii) are fixed.
Note that the map->writecnt has been converted into a atomic64 in the fix in
order to avoid a double freeze_mutex mutex_{un,}lock() pair when updating
map->writecnt in the various map update/delete BPF_* cmd flavors. Spanning
the freeze_mutex over entire map update/delete operations in syscall side
would not be possible due to then causing everything to be serialized.
Similarly, something like synchronize_rcu() after setting map->frozen to wait
for update/deletes to complete is not possible either since |