summaryrefslogtreecommitdiff
path: root/kernel/bpf/helpers.c
AgeCommit message (Collapse)AuthorFilesLines
2024-02-19bpf: Fix racing between bpf_timer_cancel_and_free and bpf_timer_cancelMartin KaFai Lau1-1/+4
The following race is possible between bpf_timer_cancel_and_free and bpf_timer_cancel. It will lead a UAF on the timer->timer. bpf_timer_cancel(); spin_lock(); t = timer->time; spin_unlock(); bpf_timer_cancel_and_free(); spin_lock(); t = timer->timer; timer->timer = NULL; spin_unlock(); hrtimer_cancel(&t->timer); kfree(t); /* UAF on t */ hrtimer_cancel(&t->timer); In bpf_timer_cancel_and_free, this patch frees the timer->timer after a rcu grace period. This requires a rcu_head addition to the "struct bpf_hrtimer". Another kfree(t) happens in bpf_timer_init, this does not need a kfree_rcu because it is still under the spin_lock and timer->timer has not been visible by others yet. In bpf_timer_cancel, rcu_read_lock() is added because this helper can be used in a non rcu critical section context (e.g. from a sleepable bpf prog). Other timer->timer usages in helpers.c have been audited, bpf_timer_cancel() is the only place where timer->timer is used outside of the spin_lock. Another solution considered is to mark a t->flag in bpf_timer_cancel and clear it after hrtimer_cancel() is done. In bpf_timer_cancel_and_free, it busy waits for the flag to be cleared before kfree(t). This patch goes with a straight forward solution and frees timer->timer after a rcu grace period. Fixes: b00628b1c7d5 ("bpf: Introduce bpf timers.") Suggested-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Hou Tao <houtao1@huawei.com> Link: https://lore.kernel.org/bpf/20240215211218.990808-1-martin.lau@linux.dev
2023-12-19Revert BPF token-related functionalityAndrii Nakryiko1-3/+3
This patch includes the following revert (one conflicting BPF FS patch and three token patch sets, represented by merge commits): - revert 0f5d5454c723 "Merge branch 'bpf-fs-mount-options-parsing-follow-ups'"; - revert 750e785796bb "bpf: Support uid and gid when mounting bpffs"; - revert 733763285acf "Merge branch 'bpf-token-support-in-libbpf-s-bpf-object'"; - revert c35919dcce28 "Merge branch 'bpf-token-and-bpf-fs-based-delegation'". Link: https://lore.kernel.org/bpf/CAHk-=wg7JuFYwGy=GOMbRCtOL+jwSQsdUaBsRWkDVYbxipbM5A@mail.gmail.com Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
2023-12-15x86/cfi,bpf: Fix bpf_exception_cb() signatureAlexei Starovoitov1-1/+1
As per the earlier patches, BPF sub-programs have bpf_callback_t signature and CFI expects callers to have matching signature. This is violated by bpf_prog_aux::bpf_exception_cb(). [peterz: Changelog] Reported-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/CAADnVQ+Z7UcXXBBhMubhcMM=R-dExk-uHtfOLtoLxQ1XxEpqEA@mail.gmail.com Link: https://lore.kernel.org/r/20231215092707.910319166@infradead.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-15bpf: Fix dtor CFIPeter Zijlstra1-2/+14
Ensure the various dtor functions match their prototype and retain their CFI signatures, since they don't have their address taken, they are prone to not getting CFI, making them impossible to call indirectly. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20231215092707.799451071@infradead.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-14bpf: xdp: Register generic_kfunc_set with XDP programsDaniel Xu1-0/+1
Registering generic_kfunc_set with XDP programs enables some of the newer BPF features inside XDP -- namely tree based data structures and BPF exceptions. The current motivation for this commit is to enable assertions inside XDP bpf progs. Assertions are a standard and useful tool to encode intent. Signed-off-by: Daniel Xu <dxu@dxuuu.xyz> Link: https://lore.kernel.org/r/d07d4614b81ca6aada44fcb89bb6b618fb66e4ca.1702594357.git.dxu@dxuuu.xyz Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-06bpf: take into account BPF token when fetching helper protosAndrii Nakryiko1-3/+3
Instead of performing unconditional system-wide bpf_capable() and perfmon_capable() calls inside bpf_base_func_proto() function (and other similar ones) to determine eligibility of a given BPF helper for a given program, use previously recorded BPF token during BPF_PROG_LOAD command handling to inform the decision. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20231130185229.2688956-8-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-04bpf: Check rcu_read_lock_trace_held() before calling bpf map helpersHou Tao1-5/+8
These three bpf_map_{lookup,update,delete}_elem() helpers are also available for sleepable bpf program, so add the corresponding lock assertion for sleepable bpf program, otherwise the following warning will be reported when a sleepable bpf program manipulates bpf map under interpreter mode (aka bpf_jit_enable=0): WARNING: CPU: 3 PID: 4985 at kernel/bpf/helpers.c:40 ...... CPU: 3 PID: 4985 Comm: test_progs Not tainted 6.6.0+ #2 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) ...... RIP: 0010:bpf_map_lookup_elem+0x54/0x60 ...... Call Trace: <TASK> ? __warn+0xa5/0x240 ? bpf_map_lookup_elem+0x54/0x60 ? report_bug+0x1ba/0x1f0 ? handle_bug+0x40/0x80 ? exc_invalid_op+0x18/0x50 ? asm_exc_invalid_op+0x1b/0x20 ? __pfx_bpf_map_lookup_elem+0x10/0x10 ? rcu_lockdep_current_cpu_online+0x65/0xb0 ? rcu_is_watching+0x23/0x50 ? bpf_map_lookup_elem+0x54/0x60 ? __pfx_bpf_map_lookup_elem+0x10/0x10 ___bpf_prog_run+0x513/0x3b70 __bpf_prog_run32+0x9d/0xd0 ? __bpf_prog_enter_sleepable_recur+0xad/0x120 ? __bpf_prog_enter_sleepable_recur+0x3e/0x120 bpf_trampoline_6442580665+0x4d/0x1000 __x64_sys_getpgid+0x5/0x30 ? do_syscall_64+0x36/0xb0 entry_SYSCALL_64_after_hwframe+0x6e/0x76 </TASK> Signed-off-by: Hou Tao <houtao1@huawei.com> Link: https://lore.kernel.org/r/20231204140425.1480317-2-houtao@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-11-14bpf: Add a new kfunc for cgroup1 hierarchyYafang Shao1-0/+20
A new kfunc is added to acquire cgroup1 of a task: - bpf_task_get_cgroup1 Acquires the associated cgroup of a task whithin a specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its hierarchy ID. This new kfunc enables the tracing of tasks within a designated container or cgroup directory in BPF programs. Suggested-by: Tejun Heo <tj@kernel.org> Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Acked-by: Tejun Heo <tj@kernel.org> Link: https://lore.kernel.org/r/20231111090034.4248-2-laoar.shao@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-11-09bpf: Use bpf_mem_free_rcu when bpf_obj_dropping non-refcounted nodesDave Marchevsky1-4/+1
The use of bpf_mem_free_rcu to free refcounted local kptrs was added in commit 7e26cd12ad1c ("bpf: Use bpf_mem_free_rcu when bpf_obj_dropping refcounted nodes"). In the cover letter for the series containing that patch [0] I commented: Perhaps it makes sense to move to mem_free_rcu for _all_ non-owning refs in the future, not just refcounted. This might allow custom non-owning ref lifetime + invalidation logic to be entirely subsumed by MEM_RCU handling. IMO this needs a bit more thought and should be tackled outside of a fix series, so it's not attempted here. It's time to start moving in the "non-owning refs have MEM_RCU lifetime" direction. As mentioned in that comment, using bpf_mem_free_rcu for all local kptrs - not just refcounted - is necessarily the first step towards that goal. This patch does so. After this patch the memory pointed to by all local kptrs will not be reused until RCU grace period elapses. The verifier's understanding of non-owning ref validity and the clobbering logic it uses to enforce that understanding are not changed here, that'll happen gradually in future work, including further patches in the series. [0]: https://lore.kernel.org/all/20230821193311.3290257-1-davemarchevsky@fb.com/ Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Link: https://lore.kernel.org/r/20231107085639.3016113-4-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-11-09bpf: Add KF_RCU flag to bpf_refcount_acquire_implDave Marchevsky1-1/+1
Refcounted local kptrs are kptrs to user-defined types with a bpf_refcount field. Recent commits ([0], [1]) modified the lifetime of refcounted local kptrs such that the underlying memory is not reused until RCU grace period has elapsed. Separately, verification of bpf_refcount_acquire calls currently succeeds for MAYBE_NULL non-owning reference input, which is a problem as bpf_refcount_acquire_impl has no handling for this case. This patch takes advantage of aforementioned lifetime changes to tag bpf_refcount_acquire_impl kfunc KF_RCU, thereby preventing MAYBE_NULL input to the kfunc. The KF_RCU flag applies to all kfunc params; it's fine for it to apply to the void *meta__ign param as that's populated by the verifier and is tagged __ign regardless. [0]: commit 7e26cd12ad1c ("bpf: Use bpf_mem_free_rcu when bpf_obj_dropping refcounted nodes") is the actual change to allocation behaivor [1]: commit 0816b8c6bf7f ("bpf: Consider non-owning refs to refcounted nodes RCU protected") modified verifier understanding of refcounted local kptrs to match [0]'s changes Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Fixes: 7c50b1cb76ac ("bpf: Add bpf_refcount_acquire kfunc") Link: https://lore.kernel.org/r/20231107085639.3016113-2-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-11-09bpf: Add __bpf_dynptr_data* for in kernel useSong Liu1-0/+19
Different types of bpf dynptr have different internal data storage. Specifically, SKB and XDP type of dynptr may have non-continuous data. Therefore, it is not always safe to directly access dynptr->data. Add __bpf_dynptr_data and __bpf_dynptr_data_rw to replace direct access to dynptr->data. Update bpf_verify_pkcs7_signature to use __bpf_dynptr_data instead of dynptr->data. Signed-off-by: Song Liu <song@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Vadim Fedorenko <vadim.fedorenko@linux.dev> Link: https://lore.kernel.org/bpf/20231107045725.2278852-2-song@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-11-01bpf: Check map->usercnt after timer->timer is assignedHou Tao1-9/+16
When there are concurrent uref release and bpf timer init operations, the following sequence diagram is possible. It will break the guarantee provided by bpf_timer: bpf_timer will still be alive after userspace application releases or unpins the map. It also will lead to kmemleak for old kernel version which doesn't release bpf_timer when map is released. bpf program X: bpf_timer_init() lock timer->lock read timer->timer as NULL read map->usercnt != 0 process Y: close(map_fd) // put last uref bpf_map_put_uref() atomic_dec_and_test(map->usercnt) array_map_free_timers() bpf_timer_cancel_and_free() // just return read timer->timer is NULL t = bpf_map_kmalloc_node() timer->timer = t unlock timer->lock Fix the problem by checking map->usercnt after timer->timer is assigned, so when there are concurrent uref release and bpf timer init, either bpf_timer_cancel_and_free() from uref release reads a no-NULL timer or the newly-added atomic64_read() returns a zero usercnt. Because atomic_dec_and_test(map->usercnt) and READ_ONCE(timer->timer) in bpf_timer_cancel_and_free() are not protected by a lock, so add a memory barrier to guarantee the order between map->usercnt and timer->timer. Also use WRITE_ONCE(timer->timer, x) to match the lockless read of timer->timer in bpf_timer_cancel_and_free(). Reported-by: Hsin-Wei Hung <hsinweih@uci.edu> Closes: https://lore.kernel.org/bpf/CABcoxUaT2k9hWsS1tNgXyoU3E-=PuOgMn737qK984fbFmfYixQ@mail.gmail.com Fixes: b00628b1c7d5 ("bpf: Introduce bpf timers.") Signed-off-by: Hou Tao <houtao1@huawei.com> Link: https://lore.kernel.org/r/20231030063616.1653024-1-houtao@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-11-01bpf: Add __bpf_kfunc_{start,end}_defs macrosDave Marchevsky1-4/+2
BPF kfuncs are meant to be called from BPF programs. Accordingly, most kfuncs are not called from anywhere in the kernel, which the -Wmissing-prototypes warning is unhappy about. We've peppered __diag_ignore_all("-Wmissing-prototypes", ... everywhere kfuncs are defined in the codebase to suppress this warning. This patch adds two macros meant to bound one or many kfunc definitions. All existing kfunc definitions which use these __diag calls to suppress -Wmissing-prototypes are migrated to use the newly-introduced macros. A new __diag_ignore_all - for "-Wmissing-declarations" - is added to the __bpf_kfunc_start_defs macro based on feedback from Andrii on an earlier version of this patch [0] and another recent mailing list thread [1]. In the future we might need to ignore different warnings or do other kfunc-specific things. This change will make it easier to make such modifications for all kfunc defs. [0]: https://lore.kernel.org/bpf/CAEf4BzaE5dRWtK6RPLnjTW-MW9sx9K3Fn6uwqCTChK2Dcb1Xig@mail.gmail.com/ [1]: https://lore.kernel.org/bpf/ZT+2qCc%2FaXep0%2FLf@krava/ Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Suggested-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Cc: Jiri Olsa <olsajiri@gmail.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Acked-by: David Vernet <void@manifault.com> Acked-by: Yafang Shao <laoar.shao@gmail.com> Link: https://lore.kernel.org/r/20231031215625.2343848-1-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-11-01bpf: fix compilation error without CGROUPSMatthieu Baerts1-3/+5
Our MPTCP CI complained [1] -- and KBuild too -- that it was no longer possible to build the kernel without CONFIG_CGROUPS: kernel/bpf/task_iter.c: In function 'bpf_iter_css_task_new': kernel/bpf/task_iter.c:919:14: error: 'CSS_TASK_ITER_PROCS' undeclared (first use in this function) 919 | case CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED: | ^~~~~~~~~~~~~~~~~~~ kernel/bpf/task_iter.c:919:14: note: each undeclared identifier is reported only once for each function it appears in kernel/bpf/task_iter.c:919:36: error: 'CSS_TASK_ITER_THREADED' undeclared (first use in this function) 919 | case CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED: | ^~~~~~~~~~~~~~~~~~~~~~ kernel/bpf/task_iter.c:927:60: error: invalid application of 'sizeof' to incomplete type 'struct css_task_iter' 927 | kit->css_it = bpf_mem_alloc(&bpf_global_ma, sizeof(struct css_task_iter)); | ^~~~~~ kernel/bpf/task_iter.c:930:9: error: implicit declaration of function 'css_task_iter_start'; did you mean 'task_seq_start'? [-Werror=implicit-function-declaration] 930 | css_task_iter_start(css, flags, kit->css_it); | ^~~~~~~~~~~~~~~~~~~ | task_seq_start kernel/bpf/task_iter.c: In function 'bpf_iter_css_task_next': kernel/bpf/task_iter.c:940:16: error: implicit declaration of function 'css_task_iter_next'; did you mean 'class_dev_iter_next'? [-Werror=implicit-function-declaration] 940 | return css_task_iter_next(kit->css_it); | ^~~~~~~~~~~~~~~~~~ | class_dev_iter_next kernel/bpf/task_iter.c:940:16: error: returning 'int' from a function with return type 'struct task_struct *' makes pointer from integer without a cast [-Werror=int-conversion] 940 | return css_task_iter_next(kit->css_it); | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ kernel/bpf/task_iter.c: In function 'bpf_iter_css_task_destroy': kernel/bpf/task_iter.c:949:9: error: implicit declaration of function 'css_task_iter_end' [-Werror=implicit-function-declaration] 949 | css_task_iter_end(kit->css_it); | ^~~~~~~~~~~~~~~~~ This patch simply surrounds with a #ifdef the new code requiring CGroups support. It seems enough for the compiler and this is similar to bpf_iter_css_{new,next,destroy}() functions where no other #ifdef have been added in kernel/bpf/helpers.c and in the selftests. Fixes: 9c66dc94b62a ("bpf: Introduce css_task open-coded iterator kfuncs") Link: https://github.com/multipath-tcp/mptcp_net-next/actions/runs/6665206927 Reported-by: kernel test robot <lkp@intel.com> Closes: https://lore.kernel.org/oe-kbuild-all/202310260528.aHWgVFqq-lkp@intel.com/ Signed-off-by: Matthieu Baerts <matttbe@kernel.org> [ added missing ifdefs for BTF_ID cgroup definitions ] Signed-off-by: Jiri Olsa <jolsa@kernel.org> Link: https://lore.kernel.org/r/20231101181601.1493271-1-jolsa@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-10-20bpf: Use bpf_global_percpu_ma for per-cpu kptr in __bpf_obj_drop_impl()Hou Tao1-8/+14
The following warning was reported when running "./test_progs -t test_bpf_ma/percpu_free_through_map_free": ------------[ cut here ]------------ WARNING: CPU: 1 PID: 68 at kernel/bpf/memalloc.c:342 CPU: 1 PID: 68 Comm: kworker/u16:2 Not tainted 6.6.0-rc2+ #222 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) Workqueue: events_unbound bpf_map_free_deferred RIP: 0010:bpf_mem_refill+0x21c/0x2a0 ...... Call Trace: <IRQ> ? bpf_mem_refill+0x21c/0x2a0 irq_work_single+0x27/0x70 irq_work_run_list+0x2a/0x40 irq_work_run+0x18/0x40 __sysvec_irq_work+0x1c/0xc0 sysvec_irq_work+0x73/0x90 </IRQ> <TASK> asm_sysvec_irq_work+0x1b/0x20 RIP: 0010:unit_free+0x50/0x80 ...... bpf_mem_free+0x46/0x60 __bpf_obj_drop_impl+0x40/0x90 bpf_obj_free_fields+0x17d/0x1a0 array_map_free+0x6b/0x170 bpf_map_free_deferred+0x54/0xa0 process_scheduled_works+0xba/0x370 worker_thread+0x16d/0x2e0 kthread+0x105/0x140 ret_from_fork+0x39/0x60 ret_from_fork_asm+0x1b/0x30 </TASK> ---[ end trace 0000000000000000 ]--- The reason is simple: __bpf_obj_drop_impl() does not know the freeing field is a per-cpu pointer and it uses bpf_global_ma to free the pointer. Because bpf_global_ma is not a per-cpu allocator, so ksize() is used to select the corresponding cache. The bpf_mem_cache with 16-bytes unit_size will always be selected to do the unmatched free and it will trigger the warning in free_bulk() eventually. Because per-cpu kptr doesn't support list or rb-tree now, so fix the problem by only checking whether or not the type of kptr is per-cpu in bpf_obj_free_fields(), and using bpf_global_percpu_ma to these kptrs. Signed-off-by: Hou Tao <houtao1@huawei.com> Link: https://lore.kernel.org/r/20231020133202.4043247-7-houtao@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-10-20bpf: Move the declaration of __bpf_obj_drop_impl() to bpf.hHou Tao1-2/+0
both syscall.c and helpers.c have the declaration of __bpf_obj_drop_impl(), so just move it to a common header file. Signed-off-by: Hou Tao <houtao1@huawei.com> Link: https://lore.kernel.org/r/20231020133202.4043247-6-houtao@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-10-19bpf: teach the verifier to enforce css_iter and task_iter in RCU CSChuyi Zhou1-2/+2
css_iter and task_iter should be used in rcu section. Specifically, in sleepable progs explicit bpf_rcu_read_lock() is needed before use these iters. In normal bpf progs that have implicit rcu_read_lock(), it's OK to use them directly. This patch adds a new a KF flag KF_RCU_PROTECTED for bpf_iter_task_new and bpf_iter_css_new. It means the kfunc should be used in RCU CS. We check whether we are in rcu cs before we want to invoke this kfunc. If the rcu protection is guaranteed, we would let st->type = PTR_TO_STACK | MEM_RCU. Once user do rcu_unlock during the iteration, state MEM_RCU of regs would be cleared. is_iter_reg_valid_init() will reject if reg->type is UNTRUSTED. It is worth noting that currently, bpf_rcu_read_unlock does not clear the state of the STACK_ITER reg, since bpf_for_each_spilled_reg only considers STACK_SPILL. This patch also let bpf_for_each_spilled_reg search STACK_ITER. Signed-off-by: Chuyi Zhou <zhouchuyi@bytedance.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20231018061746.111364-6-zhouchuyi@bytedance.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-10-19bpf: Introduce css open-coded iterator kfuncsChuyi Zhou1-0/+3
This Patch adds kfuncs bpf_iter_css_{new,next,destroy} which allow creation and manipulation of struct bpf_iter_css in open-coded iterator style. These kfuncs actually wrapps css_next_descendant_{pre, post}. css_iter can be used to: 1) iterating a sepcific cgroup tree with pre/post/up order 2) iterating cgroup_subsystem in BPF Prog, like for_each_mem_cgroup_tree/cpuset_for_each_descendant_pre in kernel. The API design is consistent with cgroup_iter. bpf_iter_css_new accepts parameters defining iteration order and starting css. Here we also reuse BPF_CGROUP_ITER_DESCENDANTS_PRE, BPF_CGROUP_ITER_DESCENDANTS_POST, BPF_CGROUP_ITER_ANCESTORS_UP enums. Signed-off-by: Chuyi Zhou <zhouchuyi@bytedance.com> Acked-by: Tejun Heo <tj@kernel.org> Link: https://lore.kernel.org/r/20231018061746.111364-5-zhouchuyi@bytedance.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-10-19bpf: Introduce task open coded iterator kfuncsChuyi Zhou1-0/+3
This patch adds kfuncs bpf_iter_task_{new,next,destroy} which allow creation and manipulation of struct bpf_iter_task in open-coded iterator style. BPF programs can use these kfuncs or through bpf_for_each macro to iterate all processes in the system. The API design keep consistent with SEC("iter/task"). bpf_iter_task_new() accepts a specific task and iterating type which allows: 1. iterating all process in the system (BPF_TASK_ITER_ALL_PROCS) 2. iterating all threads in the system (BPF_TASK_ITER_ALL_THREADS) 3. iterating all threads of a specific task (BPF_TASK_ITER_PROC_THREADS) Signed-off-by: Chuyi Zhou <zhouchuyi@bytedance.com> Link: https://lore.kernel.org/r/20231018061746.111364-4-zhouchuyi@bytedance.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-10-19bpf: Introduce css_task open-coded iterator kfuncsChuyi Zhou1-0/+3
This patch adds kfuncs bpf_iter_css_task_{new,next,destroy} which allow creation and manipulation of struct bpf_iter_css_task in open-coded iterator style. These kfuncs actually wrapps css_task_iter_{start,next, end}. BPF programs can use these kfuncs through bpf_for_each macro for iteration of all tasks under a css. css_task_iter_*() would try to get the global spin-lock *css_set_lock*, so the bpf side has to be careful in where it allows to use this iter. Currently we only allow it in bpf_lsm and bpf iter-s. Signed-off-by: Chuyi Zhou <zhouchuyi@bytedance.com> Acked-by: Tejun Heo <tj@kernel.org> Link: https://lore.kernel.org/r/20231018061746.111364-3-zhouchuyi@bytedance.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-10-17bpf: Fix missed rcu read lock in bpf_task_under_cgroup()Yafang Shao1-1/+6
When employed within a sleepable program not under RCU protection, the use of 'bpf_task_under_cgroup()' may trigger a warning in the kernel log, particularly when CONFIG_PROVE_RCU is enabled: [ 1259.662357] WARNING: suspicious RCU usage [ 1259.662358] 6.5.0+ #33 Not tainted [ 1259.662360] ----------------------------- [ 1259.662361] include/linux/cgroup.h:423 suspicious rcu_dereference_check() usage! Other info that might help to debug this: [ 1259.662366] rcu_scheduler_active = 2, debug_locks = 1 [ 1259.662368] 1 lock held by trace/72954: [ 1259.662369] #0: ffffffffb5e3eda0 (rcu_read_lock_trace){....}-{0:0}, at: __bpf_prog_enter_sleepable+0x0/0xb0 Stack backtrace: [ 1259.662385] CPU: 50 PID: 72954 Comm: trace Kdump: loaded Not tainted 6.5.0+ #33 [ 1259.662391] Call Trace: [ 1259.662393] <TASK> [ 1259.662395] dump_stack_lvl+0x6e/0x90 [ 1259.662401] dump_stack+0x10/0x20 [ 1259.662404] lockdep_rcu_suspicious+0x163/0x1b0 [ 1259.662412] task_css_set.part.0+0x23/0x30 [ 1259.662417] bpf_task_under_cgroup+0xe7/0xf0 [ 1259.662422] bpf_prog_7fffba481a3bcf88_lsm_run+0x5c/0x93 [ 1259.662431] bpf_trampoline_6442505574+0x60/0x1000 [ 1259.662439] bpf_lsm_bpf+0x5/0x20 [ 1259.662443] ? security_bpf+0x32/0x50 [ 1259.662452] __sys_bpf+0xe6/0xdd0 [ 1259.662463] __x64_sys_bpf+0x1a/0x30 [ 1259.662467] do_syscall_64+0x38/0x90 [ 1259.662472] entry_SYSCALL_64_after_hwframe+0x6e/0xd8 [ 1259.662479] RIP: 0033:0x7f487baf8e29 [...] [ 1259.662504] </TASK> This issue can be reproduced by executing a straightforward program, as demonstrated below: SEC("lsm.s/bpf") int BPF_PROG(lsm_run, int cmd, union bpf_attr *attr, unsigned int size) { struct cgroup *cgrp = NULL; struct task_struct *task; int ret = 0; if (cmd != BPF_LINK_CREATE) return 0; // The cgroup2 should be mounted first cgrp = bpf_cgroup_from_id(1); if (!cgrp) goto out; task = bpf_get_current_task_btf(); if (bpf_task_under_cgroup(task, cgrp)) ret = -1; bpf_cgroup_release(cgrp); out: return ret; } After running the program, if you subsequently execute another BPF program, you will encounter the warning. It's worth noting that task_under_cgroup_hierarchy() is also utilized by bpf_current_task_under_cgroup(). However, bpf_current_task_under_cgroup() doesn't exhibit this issue because it cannot be used in sleepable BPF programs. Fixes: b5ad4cdc46c7 ("bpf: Add bpf_task_under_cgroup() kfunc") Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Stanislav Fomichev <sdf@google.com> Cc: Feng Zhou <zhoufeng.zf@bytedance.com> Cc: KP Singh <kpsingh@kernel.org> Link: https://lore.kernel.org/bpf/20231007135945.4306-1-laoar.shao@gmail.com
2023-10-13bpf: Introduce task_vma open-coded iterator kfuncsDave Marchevsky1-0/+3
This patch adds kfuncs bpf_iter_task_vma_{new,next,destroy} which allow creation and manipulation of struct bpf_iter_task_vma in open-coded iterator style. BPF programs can use these kfuncs directly or through bpf_for_each macro for natural-looking iteration of all task vmas. The implementation borrows heavily from bpf_find_vma helper's locking - differing only in that it holds the mmap_read lock for all iterations while the helper only executes its provided callback on a maximum of 1 vma. Aside from locking, struct vma_iterator and vma_next do all the heavy lifting. A pointer to an inner data struct, struct bpf_iter_task_vma_data, is the only field in struct bpf_iter_task_vma. This is because the inner data struct contains a struct vma_iterator (not ptr), whose size is likely to change under us. If bpf_iter_task_vma_kern contained vma_iterator directly such a change would require change in opaque bpf_iter_task_vma struct's size. So better to allocate vma_iterator using BPF allocator, and since that alloc must already succeed, might as well allocate all iter fields, thereby freezing struct bpf_iter_task_vma size. Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20231013204426.1074286-4-davemarchevsky@fb.com
2023-10-09bpf: Add ability to pin bpf timer to calling CPUDavid Vernet1-1/+4
BPF supports creating high resolution timers using bpf_timer_* helper functions. Currently, only the BPF_F_TIMER_ABS flag is supported, which specifies that the timeout should be interpreted as absolute time. It would also be useful to be able to pin that timer to a core. For example, if you wanted to make a subset of cores run without timer interrupts, and only have the timer be invoked on a single core. This patch adds support for this with a new BPF_F_TIMER_CPU_PIN flag. When specified, the HRTIMER_MODE_PINNED flag is passed to hrtimer_start(). A subsequent patch will update selftests to validate. Signed-off-by: David Vernet <void@manifault.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <song@kernel.org> Acked-by: Hou Tao <houtao1@huawei.com> Link: https://lore.kernel.org/bpf/20231004162339.200702-2-void@manifault.com
2023-09-19bpf: Fix bpf_throw warning on 32-bit archKumar Kartikeya Dwivedi1-1/+1
On 32-bit architectures, the pointer width is 32-bit, while we try to cast from a u64 down to it, the compiler complains on mismatch in integer size. Fix this by first casting to long which should match the pointer width on targets supported by Linux. Fixes: ec5290a178b7 ("bpf: Prevent KASAN false positive with bpf_throw") Reported-by: Matthieu Baerts <matthieu.baerts@tessares.net> Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Tested-by: Matthieu Baerts <matthieu.baerts@tessares.net> Link: https://lore.kernel.org/r/20230918155233.297024-3-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-09-16bpf: Disallow fentry/fexit/freplace for exception callbacksKumar Kartikeya Dwivedi1-0/+1
During testing, it was discovered that extensions to exception callbacks had no checks, upon running a testcase, the kernel ended up running off the end of a program having final call as bpf_throw, and hitting int3 instructions. The reason is that while the default exception callback would have reset the stack frame to return back to the main program's caller, the replacing extension program will simply return back to bpf_throw, which will instead return back to the program and the program will continue execution, now in an undefined state where anything could happen. The way to support extensions to an exception callback would be to mark the BPF_PROG_TYPE_EXT main subprog as an exception_cb, and prevent it from calling bpf_throw. This would make the JIT produce a prologue that restores saved registers and reset the stack frame. But let's not do that until there is a concrete use case for this, and simply disallow this for now. Similar issues will exist for fentry and fexit cases, where trampoline saves data on the stack when invoking exception callback, which however will then end up resetting the stack frame, and on return, the fexit program will never will invoked as the return address points to the main program's caller in the kernel. Instead of additional complexity and back and forth between the two stacks to enable such a use case, simply forbid it. One key point here to note is that currently X86_TAIL_CALL_OFFSET didn't require any modifications, even though we emit instructions before the corresponding endbr64 instruction. This is because we ensure that a main subprog never serves as an exception callback, and therefore the exception callback (which will be a global subprog) can never serve as the tail call target, eliminating any discrepancies. However, once we support a BPF_PROG_TYPE_EXT to also act as an exception callback, it will end up requiring change to the tail call offset to account for the extra instructions. For simplicitly, tail calls could be disabled for such targets. Noting the above, it appears better to wait for a concrete use case before choosing to permit extension programs to replace exception callbacks. As a precaution, we disable fentry and fexit for exception callbacks as well. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20230912233214.1518551-13-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-09-16bpf: Prevent KASAN false positive with bpf_throwKumar Kartikeya Dwivedi1-0/+6
The KASAN stack instrumentation when CONFIG_KASAN_STACK is true poisons the stack of a function when it is entered and unpoisons it when leaving. However, in the case of bpf_throw, we will never return as we switch our stack frame to the BPF exception callback. Later, this discrepancy will lead to confusing KASAN splats when kernel resumes execution on return from the BPF program. Fix this by unpoisoning everything below the stack pointer of the BPF program, which should cover the range that would not be unpoisoned. An example splat is below: BUG: KASAN: stack-out-of-bounds in stack_trace_consume_entry+0x14e/0x170 Write of size 8 at addr ffffc900013af958 by task test_progs/227 CPU: 0 PID: 227 Comm: test_progs Not tainted 6.5.0-rc2-g43f1c6c9052a-dirty #26 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-2.fc39 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x4a/0x80 print_report+0xcf/0x670 ? arch_stack_walk+0x79/0x100 kasan_report+0xda/0x110 ? stack_trace_consume_entry+0x14e/0x170 ? stack_trace_consume_entry+0x14e/0x170 ? __pfx_stack_trace_consume_entry+0x10/0x10 stack_trace_consume_entry+0x14e/0x170 ? __sys_bpf+0xf2e/0x41b0 arch_stack_walk+0x8b/0x100 ? __sys_bpf+0xf2e/0x41b0 ? bpf_prog_test_run_skb+0x341/0x1c70 ? bpf_prog_test_run_skb+0x341/0x1c70 stack_trace_save+0x9b/0xd0 ? __pfx_stack_trace_save+0x10/0x10 ? __kasan_slab_free+0x109/0x180 ? bpf_prog_test_run_skb+0x341/0x1c70 ? __sys_bpf+0xf2e/0x41b0 ? __x64_sys_bpf+0x78/0xc0 ? do_syscall_64+0x3c/0x90 ? entry_SYSCALL_64_after_hwframe+0x6e/0xd8 kasan_save_stack+0x33/0x60 ? kasan_save_stack+0x33/0x60 ? kasan_set_track+0x25/0x30 ? kasan_save_free_info+0x2b/0x50 ? __kasan_slab_free+0x109/0x180 ? kmem_cache_free+0x191/0x460 ? bpf_prog_test_run_skb+0x341/0x1c70 kasan_set_track+0x25/0x30 kasan_save_free_info+0x2b/0x50 __kasan_slab_free+0x109/0x180 kmem_cache_free+0x191/0x460 bpf_prog_test_run_skb+0x341/0x1c70 ? __pfx_bpf_prog_test_run_skb+0x10/0x10 ? __fget_light+0x51/0x220 __sys_bpf+0xf2e/0x41b0 ? __might_fault+0xa2/0x170 ? __pfx___sys_bpf+0x10/0x10 ? lock_release+0x1de/0x620 ? __might_fault+0xcd/0x170 ? __pfx_lock_release+0x10/0x10 ? __pfx_blkcg_maybe_throttle_current+0x10/0x10 __x64_sys_bpf+0x78/0xc0 ? syscall_enter_from_user_mode+0x20/0x50 do_syscall_64+0x3c/0x90 entry_SYSCALL_64_after_hwframe+0x6e/0xd8 RIP: 0033:0x7f0fbb38880d Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d f3 45 12 00 f7 d8 64 89 01 48 RSP: 002b:00007ffe13907de8 EFLAGS: 00000206 ORIG_RAX: 0000000000000141 RAX: ffffffffffffffda RBX: 00007ffe13908708 RCX: 00007f0fbb38880d RDX: 0000000000000050 RSI: 00007ffe13907e20 RDI: 000000000000000a RBP: 00007ffe13907e00 R08: 0000000000000000 R09: 00007ffe13907e20 R10: 0000000000000064 R11: 0000000000000206 R12: 0000000000000003 R13: 0000000000000000 R14: 00007f0fbb532000 R15: 0000000000cfbd90 </TASK> The buggy address belongs to stack of task test_progs/227 KASAN internal error: frame info validation failed; invalid marker: 0 The buggy address belongs to the virtual mapping at [ffffc900013a8000, ffffc900013b1000) created by: kernel_clone+0xcd/0x600 The buggy address belongs to the physical page: page:00000000b70f4332 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x11418f flags: 0x2fffe0000000000(node=0|zone=2|lastcpupid=0x7fff) page_type: 0xffffffff() raw: 02fffe0000000000 0000000000000000 dead000000000122 0000000000000000 raw: 0000000000000000 0000000000000000 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffffc900013af800: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffffc900013af880: 00 00 00 f1 f1 f1 f1 00 00 00 f3 f3 f3 f3 f3 00 >ffffc900013af900: 00 00 00 00 00 00 00 00 00 00 00 f1 00 00 00 00 ^ ffffc900013af980: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffffc900013afa00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ================================================================== Disabling lock debugging due to kernel taint Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Acked-by: Andrey Konovalov <andreyknvl@gmail.com> Link: https://lore.kernel.org/r/20230912233214.1518551-11-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-09-16bpf: Implement BPF exceptionsKumar Kartikeya Dwivedi1-0/+38
This patch implements BPF exceptions, and introduces a bpf_throw kfunc to allow programs to throw exceptions during their execution at runtime. A bpf_throw invocation is treated as an immediate termination of the program, returning back to its caller within the kernel, unwinding all stack frames. This allows the program to simplify its implementation, by testing for runtime conditions which the verifier has no visibility into, and assert that they are true. In case they are not, the program can simply throw an exception from the other branch. BPF exceptions are explicitly *NOT* an unlikely slowpath error handling primitive, and this objective has guided design choices of the implementation of the them within the kernel (with the bulk of the cost for unwinding the stack offloaded to the bpf_throw kfunc). The implementation of this mechanism requires use of add_hidden_subprog mechanism introduced in the previous patch, which generates a couple of instructions to move R1 to R0 and exit. The JIT then rewrites the prologue of this subprog to take the stack pointer and frame pointer as inputs and reset the stack frame, popping all callee-saved registers saved by the main subprog. The bpf_throw function then walks the stack at runtime, and invokes this exception subprog with the stack and frame pointers as parameters. Reviewers must take note that currently the main program is made to save all callee-saved registers on x86_64 during entry into the program. This is because we must do an equivalent of a lightweight context switch when unwinding the stack, therefore we need the callee-saved registers of the caller of the BPF program to be able to return with a sane state. Note that we have to additionally handle r12, even though it is not used by the program, because when throwing the exception the program makes an entry into the kernel which could clobber r12 after saving it on the stack. To be able to preserve the value we received on program entry, we push r12 and restore it from the generated subprogram when unwinding the stack. For now, bpf_throw invocation fails when lingering resources or locks exist in that path of the program. In a future followup, bpf_throw will be extended to perform frame-by-frame unwinding to release lingering resources for each stack frame, removing this limitation. Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20230912233214.1518551-5-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-09-08bpf: Add alloc/xchg/direct_access support for local percpu kptrYonghong Song1-0/+16
Add two new kfunc's, bpf_percpu_obj_new_impl() and bpf_percpu_obj_drop_impl(), to allocate a percpu obj. Two functions are very similar to bpf_obj_new_impl() and bpf_obj_drop_impl(). The major difference is related to percpu handling. bpf_rcu_read_lock() struct val_t __percpu_kptr *v = map_val->percpu_data; ... bpf_rcu_read_unlock() For a percpu data map_val like above 'v', the reg->type is set as PTR_TO_BTF_ID | MEM_PERCPU | MEM_RCU if inside rcu critical section. MEM_RCU marking here is similar to NON_OWN_REF as 'v' is not a owning reference. But NON_OWN_REF is trusted and typically inside the spinlock while MEM_RCU is under rcu read lock. RCU is preferred here since percpu data structures mean potential concurrent access into its contents. Also, bpf_percpu_obj_new_impl() is restricted such that no pointers or special fields are allowed. Therefore, the bpf_list_head and bpf_rb_root will not be supported in this patch set to avoid potential memory leak issue due to racing between bpf_obj_free_fields() and another bpf_kptr_xchg() moving an allocated object to bpf_list_head and bpf_rb_root. Signed-off-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20230827152744.1996739-1-yonghong.song@linux.dev Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-08-25bpf: Allow bpf_spin_{lock,unlock} in sleepable progsDave Marchevsky1-0/+2
Commit 9e7a4d9831e8 ("bpf: Allow LSM programs to use bpf spin locks") disabled bpf_spin_lock usage in sleepable progs, stating: Sleepable LSM programs can be preempted which means that allowng spin locks will need more work (disabling preemption and the verifier ensuring that no sleepable helpers are called when a spin lock is held). This patch disables preemption before grabbing bpf_spin_lock. The second requirement above "no sleepable helpers are called when a spin lock is held" is implicitly enforced by current verifier logic due to helper calls in spin_lock CS being disabled except for a few exceptions, none of which sleep. Due to above preemption changes, bpf_spin_lock CS can also be considered a RCU CS, so verifier's in_rcu_cs check is modified to account for this. Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Link: https://lore.kernel.org/r/20230821193311.3290257-7-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-08-25bpf: Use bpf_mem_free_rcu when bpf_obj_dropping refcounted nodesDave Marchevsky1-1/+5
This is the final fix for the use-after-free scenario described in commit 7793fc3babe9 ("bpf: Make bpf_refcount_acquire fallible for non-owning refs"). That commit, by virtue of changing bpf_refcount_acquire's refcount_inc to a refcount_inc_not_zero, fixed the "refcount incr on 0" splat. The not_zero check in refcount_inc_not_zero, though, still occurs on memory that could have been free'd and reused, so the commit didn't properly fix the root cause. This patch actually fixes the issue by free'ing using the recently-added bpf_mem_free_rcu, which ensures that the memory is not reused until RCU grace period has elapsed. If that has happened then there are no non-owning references alive that point to the recently-free'd memory, so it can be safely reused. Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Acked-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20230821193311.3290257-4-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-08-04bpf: fix bpf_dynptr_slice() to stop return an ERR_PTR.Kui-Feng Lee1-1/+1
Verify if the pointer obtained from bpf_xdp_pointer() is either an error or NULL before returning it. The function bpf_dynptr_slice() mistakenly returned an ERR_PTR. Instead of solely checking for NULL, it should also verify if the pointer returned by bpf_xdp_pointer() is an error or NULL. Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Closes: https://lore.kernel.org/bpf/d1360219-85c3-4a03-9449-253ea905f9d1@moroto.mountain/ Fixes: 66e3a13e7c2c ("bpf: Add bpf_dynptr_slice and bpf_dynptr_slice_rdwr") Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com> Acked-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20230803231206.1060485-1-thinker.li@gmail.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2023-07-19bpf, net: Introduce skb_pointer_if_linear().Alexei Starovoitov1-1/+4
Network drivers always call skb_header_pointer() with non-null buffer. Remove !buffer check to prevent accidental misuse of skb_header_pointer(). Introduce skb_pointer_if_linear() instead. Reported-by: Jakub Kicinski <kuba@kernel.org> Acked-by: Jakub Kicinski <kuba@kernel.org> Link: https://lore.kernel.org/r/20230718234021.43640-1-alexei.starovoitov@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-18bpf: Add 'owner' field to bpf_{list,rb}_nodeDave Marchevsky1-4/+25
As described by Kumar in [0], in shared ownership scenarios it is necessary to do runtime tracking of {rb,list} node ownership - and synchronize updates using this ownership information - in order to prevent races. This patch adds an 'owner' field to struct bpf_list_node and bpf_rb_node to implement such runtime tracking. The owner field is a void * that describes the ownership state of a node. It can have the following values: NULL - the node is not owned by any data structure BPF_PTR_POISON - the node is in the process of being added to a data structure ptr_to_root - the pointee is a data structure 'root' (bpf_rb_root / bpf_list_head) which owns this node The field is initially NULL (set by bpf_obj_init_field default behavior) and transitions states in the following sequence: Insertion: NULL -> BPF_PTR_POISON -> ptr_to_root Removal: ptr_to_root -> NULL Before a node has been successfully inserted, it is not protected by any root's lock, and therefore two programs can attempt to add the same node to different roots simultaneously. For this reason the intermediate BPF_PTR_POISON state is necessary. For removal, the node is protected by some root's lock so this intermediate hop isn't necessary. Note that bpf_list_pop_{front,back} helpers don't need to check owner before removing as the node-to-be-removed is not passed in as input and is instead taken directly from the list. Do the check anyways and WARN_ON_ONCE in this unexpected scenario. Selftest changes in this patch are entirely mechanical: some BTF tests have hardcoded struct sizes for structs that contain bpf_{list,rb}_node fields, those were adjusted to account for the new sizes. Selftest additions to validate the owner field are added in a further patch in the series. [0]: https://lore.kernel.org/bpf/d7hyspcow5wtjcmw4fugdgyp3fwhljwuscp3xyut5qnwivyeru@ysdq543otzv2 Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Suggested-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20230718083813.3416104-4-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-07-18bpf: Introduce internal