summaryrefslogtreecommitdiff
path: root/kernel/bpf
AgeCommit message (Collapse)AuthorFilesLines
2021-05-14bpf: Fix alu32 const subreg bound tracking on bitwise operationsDaniel Borkmann1-13/+9
commit 049c4e13714ecbca567b4d5f6d563f05d431c80e upstream. Fix a bug in the verifier's scalar32_min_max_*() functions which leads to incorrect tracking of 32 bit bounds for the simulation of and/or/xor bitops. When both the src & dst subreg is a known constant, then the assumption is that scalar_min_max_*() will take care to update bounds correctly. However, this is not the case, for example, consider a register R2 which has a tnum of 0xffffffff00000000, meaning, lower 32 bits are known constant and in this case of value 0x00000001. R2 is then and'ed with a register R3 which is a 64 bit known constant, here, 0x100000002. What can be seen in line '10:' is that 32 bit bounds reach an invalid state where {u,s}32_min_value > {u,s}32_max_value. The reason is scalar32_min_max_*() delegates 32 bit bounds updates to scalar_min_max_*(), however, that really only takes place when both the 64 bit src & dst register is a known constant. Given scalar32_min_max_*() is intended to be designed as closely as possible to scalar_min_max_*(), update the 32 bit bounds in this situation through __mark_reg32_known() which will set all {u,s}32_{min,max}_value to the correct constant, which is 0x00000000 after the fix (given 0x00000001 & 0x00000002 in 32 bit space). This is possible given var32_off already holds the final value as dst_reg->var_off is updated before calling scalar32_min_max_*(). Before fix, invalid tracking of R2: [...] 9: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=-9223372036854775807 (0x8000000000000001),smax_value=9223372032559808513 (0x7fffffff00000001),umin_value=1,umax_value=0xffffffff00000001,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_min_value=1,u32_max_value=1) R3_w=inv4294967298 R10=fp0 9: (5f) r2 &= r3 10: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=0,smax_value=4294967296 (0x100000000),umin_value=0,umax_value=0x100000000,var_off=(0x0; 0x100000000),s32_min_value=1,s32_max_value=0,u32_min_value=1,u32_max_value=0) R3_w=inv4294967298 R10=fp0 [...] After fix, correct tracking of R2: [...] 9: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=-9223372036854775807 (0x8000000000000001),smax_value=9223372032559808513 (0x7fffffff00000001),umin_value=1,umax_value=0xffffffff00000001,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_min_value=1,u32_max_value=1) R3_w=inv4294967298 R10=fp0 9: (5f) r2 &= r3 10: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,smin_value=0,smax_value=4294967296 (0x100000000),umin_value=0,umax_value=0x100000000,var_off=(0x0; 0x100000000),s32_min_value=0,s32_max_value=0,u32_min_value=0,u32_max_value=0) R3_w=inv4294967298 R10=fp0 [...] Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking") Fixes: 2921c90d4718 ("bpf: Fix a verifier failure with xor") Reported-by: Manfred Paul (@_manfp) Reported-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-14bpf: Fix propagation of 32 bit unsigned bounds from 64 bit boundsDaniel Borkmann1-5/+3
[ Upstream commit 10bf4e83167cc68595b85fd73bb91e8f2c086e36 ] Similarly as b02709587ea3 ("bpf: Fix propagation of 32-bit signed bounds from 64-bit bounds."), we also need to fix the propagation of 32 bit unsigned bounds from 64 bit counterparts. That is, really only set the u32_{min,max}_value when /both/ {umin,umax}_value safely fit in 32 bit space. For example, the register with a umin_value == 1 does /not/ imply that u32_min_value is also equal to 1, since umax_value could be much larger than 32 bit subregister can hold, and thus u32_min_value is in the interval [0,1] instead. Before fix, invalid tracking result of R2_w=inv1: [...] 5: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0) R10=fp0 5: (35) if r2 >= 0x1 goto pc+1 [...] // goto path 7: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,umin_value=1) R10=fp0 7: (b6) if w2 <= 0x1 goto pc+1 [...] // goto path 9: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,smin_value=-9223372036854775807,smax_value=9223372032559808513,umin_value=1,umax_value=18446744069414584321,var_off=(0x1; 0xffffffff00000000),s32_min_value=1,s32_max_value=1,u32_max_value=1) R10=fp0 9: (bc) w2 = w2 10: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv1 R10=fp0 [...] After fix, correct tracking result of R2_w=inv(id=0,umax_value=1,var_off=(0x0; 0x1)): [...] 5: R0_w=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0) R10=fp0 5: (35) if r2 >= 0x1 goto pc+1 [...] // goto path 7: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,umin_value=1) R10=fp0 7: (b6) if w2 <= 0x1 goto pc+1 [...] // goto path 9: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2=inv(id=0,smax_value=9223372032559808513,umax_value=18446744069414584321,var_off=(0x0; 0xffffffff00000001),s32_min_value=0,s32_max_value=1,u32_max_value=1) R10=fp0 9: (bc) w2 = w2 10: R0=inv1337 R1=ctx(id=0,off=0,imm=0) R2_w=inv(id=0,umax_value=1,var_off=(0x0; 0x1)) R10=fp0 [...] Thus, same issue as in b02709587ea3 holds for unsigned subregister tracking. Also, align __reg64_bound_u32() similarly to __reg64_bound_s32() as done in b02709587ea3 to make them uniform again. Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking") Reported-by: Manfred Paul (@_manfp) Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-07bpf: Fix leakage of uninitialized bpf stack under speculationDaniel Borkmann1-10/+17
commit 801c6058d14a82179a7ee17a4b532cac6fad067f upstream. The current implemented mechanisms to mitigate data disclosure under speculation mainly address stack and map value oob access from the speculative domain. However, Piotr discovered that uninitialized BPF stack is not protected yet, and thus old data from the kernel stack, potentially including addresses of kernel structures, could still be extracted from that 512 bytes large window. The BPF stack is special compared to map values since it's not zero initialized for every program invocation, whereas map values /are/ zero initialized upon their initial allocation and thus cannot leak any prior data in either domain. In the non-speculative domain, the verifier ensures that every stack slot read must have a prior stack slot write by the BPF program to avoid such data leaking issue. However, this is not enough: for example, when the pointer arithmetic operation moves the stack pointer from the last valid stack offset to the first valid offset, the sanitation logic allows for any intermediate offsets during speculative execution, which could then be used to extract any restricted stack content via side-channel. Given for unprivileged stack pointer arithmetic the use of unknown but bounded scalars is generally forbidden, we can simply turn the register-based arithmetic operation into an immediate-based arithmetic operation without the need for masking. This also gives the benefit of reducing the needed instructions for the operation. Given after the work in 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask"), the aux->alu_limit already holds the final immediate value for the offset register with the known scalar. Thus, a simple mov of the immediate to AX register with using AX as the source for the original instruction is sufficient and possible now in this case. Reported-by: Piotr Krysiuk <piotras@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: Piotr Krysiuk <piotras@gmail.com> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-07bpf: Fix masking negation logic upon negative dst registerDaniel Borkmann1-8/+4
commit b9b34ddbe2076ade359cd5ce7537d5ed019e9807 upstream. The negation logic for the case where the off_reg is sitting in the dst register is not correct given then we cannot just invert the add to a sub or vice versa. As a fix, perform the final bitwise and-op unconditionally into AX from the off_reg, then move the pointer from the src to dst and finally use AX as the source for the original pointer arithmetic operation such that the inversion yields a correct result. The single non-AX mov in between is possible given constant blinding is retaining it as it's not an immediate based operation. Fixes: 979d63d50c0c ("bpf: prevent out of bounds speculation on pointer arithmetic") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: Piotr Krysiuk <piotras@gmail.com> Reviewed-by: Piotr Krysiuk <piotras@gmail.com> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-04-28bpf: Tighten speculative pointer arithmetic maskDaniel Borkmann1-29/+44
[ Upstream commit 7fedb63a8307dda0ec3b8969a3b233a1dd7ea8e0 ] This work tightens the offset mask we use for unprivileged pointer arithmetic in order to mitigate a corner case reported by Piotr and Benedict where in the speculative domain it is possible to advance, for example, the map value pointer by up to value_size-1 out-of-bounds in order to leak kernel memory via side-channel to user space. Before this change, the computed ptr_limit for retrieve_ptr_limit() helper represents largest valid distance when moving pointer to the right or left which is then fed as aux->alu_limit to generate masking instructions against the offset register. After the change, the derived aux->alu_limit represents the largest potential value of the offset register which we mask against which is just a narrower subset of the former limit. For minimal complexity, we call sanitize_ptr_alu() from 2 observation points in adjust_ptr_min_max_vals(), that is, before and after the simulated alu operation. In the first step, we retieve the alu_state and alu_limit before the operation as well as we branch-off a verifier path and push it to the verification stack as we did before which checks the dst_reg under truncation, in other words, when the speculative domain would attempt to move the pointer out-of-bounds. In the second step, we retrieve the new alu_limit and calculate the absolute distance between both. Moreover, we commit the alu_state and final alu_limit via update_alu_sanitation_state() to the env's instruction aux data, and bail out from there if there is a mismatch due to coming from different verification paths with different states. Reported-by: Piotr Krysiuk <piotras@gmail.com> Reported-by: Benedict Schlueter <benedict.schlueter@rub.de> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Tested-by: Benedict Schlueter <benedict.schlueter@rub.de> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-04-28bpf: Refactor and streamline bounds check into helperDaniel Borkmann1-16/+33
[ Upstream commit 073815b756c51ba9d8384d924c5d1c03ca3d1ae4 ] Move the bounds check in adjust_ptr_min_max_vals() into a small helper named sanitize_check_bounds() in order to simplify the former a bit. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-04-28bpf: Allow variable-offset stack accessAndrei Matei1-146/+511
[ Upstream commit 01f810ace9ed37255f27608a0864abebccf0aab3 ] Before this patch, variable offset access to the stack was dissalowed for regular instructions, but was allowed for "indirect" accesses (i.e. helpers). This patch removes the restriction, allowing reading and writing to the stack through stack pointers with variable offsets. This makes stack-allocated buffers more usable in programs, and brings stack pointers closer to other types of pointers. The motivation is being able to use stack-allocated buffers for data manipulation. When the stack size limit is sufficient, allocating buffers on the stack is simpler than per-cpu arrays, or other alternatives. In unpriviledged programs, variable-offset reads and writes are disallowed (they were already disallowed for the indirect access case) because the speculative execution checking code doesn't support them. Additionally, when writing through a variable-offset stack pointer, if any pointers are in the accessible range, there's possilibities of later leaking pointers because the write cannot be tracked precisely. Writes with variable offset mark the whole range as initialized, even though we don't know which stack slots are actually written. This is in order to not reject future reads to these slots. Note that this doesn't affect writes done through helpers; like before, helpers need the whole stack range to be initialized to begin with. All the stack slots are in range are considered scalars after the write; variable-offset register spills are not tracked. For reads, all the stack slots in the variable range needs to be initialized (but see above about what writes do), otherwise the read is rejected. All register spilled in stack slots that might be read are marked as having been read, however reads through such pointers don't do register filling; the target register will always be either a scalar or a constant zero. Signed-off-by: Andrei Matei <andreimatei1@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210207011027.676572-2-andreimatei1@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-04-28bpf: Permits pointers on stack for helper callsYonghong Song1-1/+2
[ Upstream commit cd17d38f8b28f808c368121041c0a4fa91757e0d ] Currently, when checking stack memory accessed by helper calls, for spills, only PTR_TO_BTF_ID and SCALAR_VALUE are allowed. Song discovered an issue where the below bpf program int dump_task(struct bpf_iter__task *ctx) { struct seq_file *seq = ctx->meta->seq; static char[] info = "abc"; BPF_SEQ_PRINTF(seq, "%s\n", info); return 0; } may cause a verifier failure. The verifier output looks like: ; struct seq_file *seq = ctx->meta->seq; 1: (79) r1 = *(u64 *)(r1 +0) ; BPF_SEQ_PRINTF(seq, "%s\n", info); 2: (18) r2 = 0xffff9054400f6000 4: (7b) *(u64 *)(r10 -8) = r2 5: (bf) r4 = r10 ; 6: (07) r4 += -8 ; BPF_SEQ_PRINTF(seq, "%s\n", info); 7: (18) r2 = 0xffff9054400fe000 9: (b4) w3 = 4 10: (b4) w5 = 8 11: (85) call bpf_seq_printf#126 R1_w=ptr_seq_file(id=0,off=0,imm=0) R2_w=map_value(id=0,off=0,ks=4,vs=4,imm=0) R3_w=inv4 R4_w=fp-8 R5_w=inv8 R10=fp0 fp-8_w=map_value last_idx 11 first_idx 0 regs=8 stack=0 before 10: (b4) w5 = 8 regs=8 stack=0 before 9: (b4) w3 = 4 invalid indirect read from stack off -8+0 size 8 Basically, the verifier complains the map_value pointer at "fp-8" location. To fix the issue, if env->allow_ptr_leaks is true, let us also permit pointers on the stack to be accessible by the helper. Reported-by: Song Liu <songliubraving@fb.com> Suggested-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20201210013349.943719-1-yhs@fb.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-04-21bpf: Move sanitize_val_alu out of op switchDaniel Borkmann1-6/+11
commit f528819334881fd622fdadeddb3f7edaed8b7c9b upstream. Add a small sanitize_needed() helper function and move sanitize_val_alu() out of the main opcode switch. In upcoming work, we'll move sanitize_ptr_alu() as well out of its opcode switch so this helps to streamline both. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-04-21bpf: Improve verifier error messages for usersDaniel Borkmann1-23/+63
commit a6aaece00a57fa6f22575364b3903dfbccf5345d upstream. Consolidate all error handling and provide more user-friendly error messages from sanitize_ptr_alu() and sanitize_val_alu(). Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-04-21bpf: Rework ptr_limit into alu_limit and add common error pathDaniel Borkmann1-8/+13
commit b658bbb844e28f1862867f37e8ca11a8e2aa94a3 upstream. Small refactor with no semantic changes in order to consolidate the max ptr_limit boundary check. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-04-21bpf: Move off_reg into sanitize_ptr_aluDaniel Borkmann1-4/+5
[ Upstream commit 6f55b2f2a1178856c19bbce2f71449926e731914 ] Small refactor to drag off_reg into sanitize_ptr_alu(), so we later on can use off_reg for generalizing some of the checks for all pointer types. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-04-21bpf: Ensure off_reg has no mixed signed bounds for all typesDaniel Borkmann1-10/+9
[ Upstream commit 24c109bb1537c12c02aeed2d51a347b4d6a9b76e ] The mixed signed bounds check really belongs into retrieve_ptr_limit() instead of outside of it in adjust_ptr_min_max_vals(). The reason is that this check is not tied to PTR_TO_MAP_VALUE only, but to all pointer types that we handle in retrieve_ptr_limit() and given errors from the latter propagate back to adjust_ptr_min_max_vals() and lead to rejection of the program, it's a better place to reside to avoid anything slipping through for future types. The reason why we must reject such off_reg is that we otherwise would not be able to derive a mask, see details in 9d7eceede769 ("bpf: restrict unknown scalars of mixed signed bounds for unprivileged"). Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-04-21bpf: Use correct permission flag for mixed signed bounds arithmeticDaniel Borkmann1-1/+1
[ Upstream commit 9601148392520e2e134936e76788fc2a6371e7be ] We forbid adding unknown scalars with mixed signed bounds due to the spectre v1 masking mitigation. Hence this also needs bypass_spec_v1 flag instead of allow_ptr_leaks. Fixes: 2c78ee898d8f ("bpf: Implement CAP_BPF") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-04-14bpf: Refcount task stack in bpf_get_task_stackDave Marchevsky1-2/+10
commit 06ab134ce8ecfa5a69e850f88f81c8a4c3fa91df upstream. On x86 the struct pt_regs * grabbed by task_pt_regs() points to an offset of task->stack. The pt_regs are later dereferenced in __bpf_get_stack (e.g. by user_mode() check). This can cause a fault if the task in question exits while bpf_get_task_stack is executing, as warned by task_stack_page's comment: * When accessing the stack of a non-current task that might exit, use * try_get_task_stack() instead. task_stack_page will return a pointer * that could get freed out from under you. Taking the comment's advice and using try_get_task_stack() and put_task_stack() to hold task->stack refcount, or bail early if it's already 0. Incrementing stack_refcount will ensure the task's stack sticks around while we're using its data. I noticed this bug while testing a bpf task iter similar to bpf_iter_task_stack in selftests, except mine grabbed user stack, and getting intermittent crashes, which resulted in dumps like: BUG: unable to handle page fault for address: 0000000000003fe0 \#PF: supervisor read access in kernel mode \#PF: error_code(0x0000) - not-present page RIP: 0010:__bpf_get_stack+0xd0/0x230 <snip...> Call Trace: bpf_prog_0a2be35c092cb190_get_task_stacks+0x5d/0x3ec bpf_iter_run_prog+0x24/0x81 __task_seq_show+0x58/0x80 bpf_seq_read+0xf7/0x3d0 vfs_read+0x91/0x140 ksys_read+0x59/0xd0 do_syscall_64+0x48/0x120 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Fixes: fa28dcb82a38 ("bpf: Introduce helper bpf_get_task_stack()") Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20210401000747.3648767-1-davemarchevsky@fb.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-04-14bpf: link: Refuse non-O_RDWR flags in BPF_OBJ_GETLorenz Bauer1-1/+1
commit 25fc94b2f02d832fa8e29419699dcc20b0b05c6a upstream. Invoking BPF_OBJ_GET on a pinned bpf_link checks the path access permissions based on file_flags, but the returned fd ignores flags. This means that any user can acquire a "read-write" fd for a pinned link with mode 0664 by invoking BPF_OBJ_GET with BPF_F_RDONLY in file_flags. The fd can be used to invoke BPF_LINK_DETACH, etc. Fix this by refusing non-O_RDWR flags in BPF_OBJ_GET. This works because OBJ_GET by default returns a read write mapping and libbpf doesn't expose a way to override this behaviour for programs and links. Fixes: 70ed506c3bbc ("bpf: Introduce pinnable bpf_link abstraction") Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210326160501.46234-1-lmb@cloudflare.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-04-14bpf: Enforce that struct_ops programs be GPL-onlyToke Høiland-Jørgensen1-0/+5
commit 12aa8a9467b354ef893ce0fc5719a4de4949a9fb upstream. With the introduction of the struct_ops program type, it became possible to implement kernel functionality in BPF, making it viable to use BPF in place of a regular kernel module for these particular operations. Thus far, the only user of this mechanism is for implementing TCP congestion control algorithms. These are clearly marked as GPL-only when implemented as modules (as seen by the use of EXPORT_SYMBOL_GPL for tcp_register_congestion_control()), so it seems like an oversight that this was not carried over to BPF implementations. Since this is the only user of the struct_ops mechanism, just enforcing GPL-only for the struct_ops program type seems like the simplest way to fix this. Fixes: 0baf26b0fcd7 ("bpf: tcp: Support tcp_congestion_ops in bpf") Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20210326100314.121853-1-toke@redhat.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-04-07bpf: Fix fexit trampoline.Alexei Starovoitov3-53/+171
[ Upstream commit e21aa341785c679dd409c8cb71f864c00fe6c463 ] The fexit/fmod_ret programs can be attached to kernel functions that can sleep. The synchronize_rcu_tasks() will not wait for such tasks to complete. In such case the trampoline image will be freed and when the task wakes up the return IP will point to freed memory causing the crash. Solve this by adding percpu_ref_get/put for the duration of trampoline and separate trampoline vs its image life times. The "half page" optimization has to be removed, since first_half->second_half->first_half transition cannot be guaranteed to complete in deterministic time. Every trampoline update becomes a new image. The image with fmod_ret or fexit progs will be freed via percpu_ref_kill and call_rcu_tasks. Together they will wait for the original function and trampoline asm to complete. The trampoline is patched from nop to jmp to skip fexit progs. They are freed independently from the trampoline. The image with fentry progs only will be freed via call_rcu_tasks_trace+call_rcu_tasks which will wait for both sleepable and non-sleepable progs to complete. Fixes: fec56f5890d9 ("bpf: Introduce BPF trampoline") Reported-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Paul E. McKenney <paulmck@kernel.org> # for RCU Link: https://lore.kernel.org/bpf/20210316210007.38949-1-alexei.starovoitov@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-03-30bpf: Fix umd memory leak in copy_process()Zqiang1-4/+15
[ Upstream commit f60a85cad677c4f9bb4cadd764f1d106c38c7cf8 ] The syzbot reported a memleak as follows: BUG: memory leak unreferenced object 0xffff888101b41d00 (size 120): comm "kworker/u4:0", pid 8, jiffies 4294944270 (age 12.780s) backtrace: [<ffffffff8125dc56>] alloc_pid+0x66/0x560 [<ffffffff81226405>] copy_process+0x1465/0x25e0 [<ffffffff81227943>] kernel_clone+0xf3/0x670 [<ffffffff812281a1>] kernel_thread+0x61/0x80 [<ffffffff81253464>] call_usermodehelper_exec_work [<ffffffff81253464>] call_usermodehelper_exec_work+0xc4/0x120 [<ffffffff812591c9>] process_one_work+0x2c9/0x600 [<ffffffff81259ab9>] worker_thread+0x59/0x5d0 [<ffffffff812611c8>] kthread+0x178/0x1b0 [<ffffffff8100227f>] ret_from_fork+0x1f/0x30 unreferenced object 0xffff888110ef5c00 (size 232): comm "kworker/u4:0", pid 8414, jiffies 4294944270 (age 12.780s) backtrace: [<ffffffff8154a0cf>] kmem_cache_zalloc [<ffffffff8154a0cf>] __alloc_file+0x1f/0xf0 [<ffffffff8154a809>] alloc_empty_file+0x69/0x120 [<ffffffff8154a8f3>] alloc_file+0x33/0x1b0 [<ffffffff8154ab22>] alloc_file_pseudo+0xb2/0x140 [<ffffffff81559218>] create_pipe_files+0x138/0x2e0 [<ffffffff8126c793>] umd_setup+0x33/0x220 [<ffffffff81253574>] call_usermodehelper_exec_async+0xb4/0x1b0 [<ffffffff8100227f>] ret_from_fork+0x1f/0x30 After the UMD process exits, the pipe_to_umh/pipe_from_umh and tgid need to be released. Fixes: d71fa5c9763c ("bpf: Add kernel module with user mode driver that populates bpffs.") Reported-by: syzbot+44908bb56d2bfe56b28e@syzkaller.appspotmail.com Signed-off-by: Zqiang <qiang.zhang@windriver.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210317030915.2865-1-qiang.zhang@windriver.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-03-30bpf: Change inode_storage's lookup_elem return value from NULL to -EBADFTal Lossos1-1/+1
[ Upstream commit 769c18b254ca191b45047e1fcb3b2ce56fada0b6 ] bpf_fd_inode_storage_lookup_elem() returned NULL when getting a bad FD, which caused -ENOENT in bpf_map_copy_value. -EBADF error is better than -ENOENT for a bad FD behaviour. The patch was partially contributed by CyberArk Software, Inc. Fixes: 8ea636848aca ("bpf: Implement bpf_local_storage for inodes") Signed-off-by: Tal Lossos <tallossos@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Acked-by: KP Singh <kpsingh@kernel.org> Link: https://lore.kernel.org/bpf/20210307120948.61414-1-tallossos@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-03-20bpf: Add sanity check for upper ptr_limitPiotr Krysiuk1-3/+8
commit 1b1597e64e1a610c7a96710fc4717158e98a08b3 upstream. Given we know the max possible value of ptr_limit at the time of retrieving the latter, add basic assertions, so that the verifier can bail out if anything looks odd and reject the program. Nothing triggered this so far, but it also does not hurt to have these. Signed-off-by: Piotr Krysiuk <piotras@gmail.com> Co-developed-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-20bpf: Simplify alu_limit masking for pointer arithmeticPiotr Krysiuk1-5/+5
commit b5871dca250cd391885218b99cc015aca1a51aea upstream. Instead of having the mov32 with aux->alu_limit - 1 immediate, move this operation to retrieve_ptr_limit() instead to simplify the logic and to allow for subsequent sanity boundary checks inside retrieve_ptr_limit(). This avoids in future that at the time of the verifier masking rewrite we'd run into an underflow which would not sign extend due to the nature of mov32 instruction. Signed-off-by: Piotr Krysiuk <piotras@gmail.com> Co-developed-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-20bpf: Fix off-by-one for area size in creating mask to leftPiotr Krysiuk1-2/+2
commit 10d2bb2e6b1d8c4576c56a748f697dbeb8388899 upstream. retrieve_ptr_limit() computes the ptr_limit for registers with stack and map_value type. ptr_limit is the size of the memory area that is still valid / in-bounds from the point of the current position and direction of the operation (add / sub). This size will later be used for masking the operation such that attempting out-of-bounds access in the speculative domain is redirected to remain within the bounds of the current map value. When masking to the right the size is correct, however, when masking to the left, the size is off-by-one which would lead to an incorrect mask and thus incorrect arithmetic operation in the non-speculative domain. Piotr found that if the resulting alu_limit value is zero, then the BPF_MOV32_IMM() from the fixup_bpf_calls() rewrite will end up loading 0xffffffff into AX instead of sign-extending to the full 64 bit range, and as a result, this allows abuse for executing speculatively out-of- bounds loads against 4GB window of address space and thus extracting the contents of kernel memory via side-channel. Fixes: 979d63d50c0c ("bpf: prevent out of bounds speculation on pointer arithmetic") Signed-off-by: Piotr Krysiuk <piotras@gmail.com> Co-developed-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-20bpf: Prohibit alu ops for pointer types not defining ptr_limitPiotr Krysiuk1-6/+10
commit f232326f6966cf2a1d1db7bc917a4ce5f9f55f76 upstream. The purpose of this patch is to streamline error propagation and in particular to propagate retrieve_ptr_limit() errors for pointer types that are not defining a ptr_limit such that register-based alu ops against these types can be rejected. The main rationale is that a gap has been identified by Piotr in the existing protection against speculatively out-of-bounds loads, for example, in case of ctx pointers, unprivileged programs can still perform pointer arithmetic. This can be abused to execute speculatively out-of-bounds loads without restrictions and thus extract contents of kernel memory. Fix this by rejecting unprivileged programs that attempt any pointer arithmetic on unprotected pointer types. The two affected ones are pointer to ctx as well as pointer to map. Field access to a modified ctx' pointer is rejected at a later point in time in the verifier, and 7c6967326267 ("bpf: Permit map_ptr arithmetic with opcode add and offset 0") only relevant for root-only use cases. Risk of unprivileged program breakage is considered very low. Fixes: 7c6967326267 ("bpf: Permit map_ptr arithmetic with opcode add and offset 0") Fixes: b2157399cc98 ("bpf: prevent out-of-bounds speculation") Signed-off-by: Piotr Krysiuk <piotras@gmail.com> Co-developed-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-04bpf: Clear subreg_def for global function return valuesIlya Leoshkevich1-1/+2
[ Upstream commit 45159b27637b0fef6d5ddb86fc7c46b13c77960f ] test_global_func4 fails on s390 as reported by Yauheni in [1]. The immediate problem is that the zext code includes the instruction, whose result needs to be zero-extended, into the zero-extension patchlet, and if this instruction happens to be a branch, then its delta is not adjusted. As a result, the verifier rejects the program later. However, according to [2], as far as the verifier's algorithm is concerned and as specified by the insn_no_def() function, branching insns do not define anything. This includes call insns, even though one might argue that they define %r0. This means that the real problem is that zero extension kicks in at all. This happens because clear_caller_saved_regs() sets BPF_REG_0's subreg_def after global function calls. This can be fixed in many ways; this patch mimics what helper function call handling already does. [1] https://lore.kernel.org/bpf/20200903140542.156624-1-yauheni.kaliuta@redhat.com/ [2] https://lore.kernel.org/bpf/CAADnVQ+2RPKcftZw8d+B1UwB35cpBhpF5u3OocNh90D9pETPwg@mail.gmail.com/ Fixes: 51c39bb1d5d1 ("bpf: Introduce function-by-function verification") Reported-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com> Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210212040408.90109-1-iii@linux.ibm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-03-04bpf, devmap: Use GFP_KERNEL for xdp bulk queue allocationJun'ichi Nomura1-3/+1
[ Upstream commit 7d4553b69fb335496c597c31590e982485ebe071 ] The devmap bulk queue is allocated with GFP_ATOMIC and the allocation may fail if there is no available space in existing percpu pool. Since commit 75ccae62cb8d42 ("xdp: Move devmap bulk queue into struct net_device") moved the bulk queue allocation to NETDEV_REGISTER callback, whose context is allowed to sleep, use GFP_KERNEL instead of GFP_ATOMIC to let percpu allocator extend the pool when needed and avoid possible failure of netdev registration. As the required alignment is natural, we can simply use alloc_percpu(). Fixes: 75ccae62cb8d42 ("xdp: Move devmap bulk queue into struct net_device") Signed-off-by: Jun'ichi Nomura <junichi.nomura@nec.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Toke Høiland-Jørgensen <toke@redhat.com> Link: https://lore.kernel.org/bpf/20210209082451.GA44021@jeru.linux.bs1.fc.nec.co.jp Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-03-04bpf: Fix an unitialized value in bpf_iterYonghong Song1-1/+1
[ Upstream commit 17d8beda277a36203585943e70c7909b60775fd5 ] Commit 15d83c4d7cef ("bpf: Allow loading of a bpf_iter program") cached btf_id in struct bpf_iter_target_info so later on if it can be checked cheaply compared to checking registered names. syzbot found a bug that uninitialized value may occur to bpf_iter_target_info->btf_id. This is because we allocated bpf_iter_target_info structure with kmalloc and never initialized field btf_id afterwards. This uninitialized btf_id is typically compared to a u32 bpf program func proto btf_id, and the chance of being equal is extremely slim. This patch fixed the issue by using kzalloc which will also prevent future likely instances due to adding new fields. Fixes: 15d83c4d7cef ("bpf: Allow loading of a bpf_iter program") Reported-by: syzbot+580f4f2a272e452d55cb@syzkaller.appspotmail.com Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210212005926.2875002-1-yhs@fb.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-03-04bpf_lru_list: Read double-checked variable once without lockMarco Elver1-3/+4
[ Upstream commit 6df8fb83301d68ea0a0c0e1cbcc790fcc333ed12 ] For double-checked locking in bpf_common_lru_push_free(), node->type is read outside the critical section and then re-checked under the lock. However, concurrent writes to node->type result in data races. For example, the following concurrent access was observed by KCSAN: write to 0xffff88801521bc22 of 1 bytes by task 10038 on cpu 1: __bpf_lru_node_move_in kernel/bpf/bpf_lru_list.c:91 __local_list_flush kernel/bpf/bpf_lru_list.c:298 ... read to 0xffff88801521bc22 of 1 bytes by task 10043 on cpu 0: bpf_common_lru_push_free kernel/bpf/bpf_lru_list.c:507 bpf_lru_push_free kernel/bpf/bpf_lru_list.c:555 ... Fix the data races where node->type is read outside the critical section (for double-checked locking) by marking the access with READ_ONCE() as well as ensuring the variable is only accessed once. Fixes: 3a08c2fd7634 ("bpf: LRU List") Reported-by: syzbot+3536db46dfa58c573458@syzkaller.appspotmail.com Reported-by: syzbot+516acdb03d3e27d91bcd@syzkaller.appspotmail.com Signed-off-by: Marco Elver <elver@google.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20210209112701.3341724-1-elver@google.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-02-26bpf: Fix truncation handling for mod32 dst reg wrt zeroDaniel Borkmann1-4/+6
commit 9b00f1b78809309163dda2d044d9e94a3c0248a3 upstream. Recently noticed that when mod32 with a known src reg of 0 is performed, then the dst register is 32-bit truncated in verifier: 0: R1=ctx(id=0,off=0,imm=0) R10=fp0 0: (b7) r0 = 0 1: R0_w=inv0 R1=ctx(id=0,off=0,imm=0) R10=fp0 1: (b7) r1 = -1 2: R0_w=inv0 R1_w=inv-1 R10=fp0 2: (b4) w2 = -1 3: R0_w=inv0 R1_w=inv-1 R2_w=inv4294967295 R10=fp0 3: (9c) w1 %= w0 4: R0_w=inv0 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0 4: (b7) r0 = 1 5: R0_w=inv1 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0 5: (1d) if r1 == r2 goto pc+1 R0_w=inv1 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0 6: R0_w=inv1 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0 6: (b7) r0 = 2 7: R0_w=inv2 R1_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2_w=inv4294967295 R10=fp0 7: (95) exit 7: R0=inv1 R1=inv(id=0,umin_value=4294967295,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R2=inv4294967295 R10=fp0 7: (95) exit However, as a runtime result, we get 2 instead of 1, meaning the dst register does not contain (u32)-1 in this case. The reason is fairly straight forward given the 0 test leaves the dst register as-is: # ./bpftool p d x i 23 0: (b7) r0 = 0 1: (b7) r1 = -1 2: (b4) w2 = -1 3: (16) if w0 == 0x0 goto pc+1 4: (9c) w1 %= w0 5: (b7) r0 = 1 6: (1d) if r1 == r2 goto pc+1 7: (b7) r0 = 2 8: (95) exit This was originally not an issue given the dst register was marked as completely unknown (aka 64 bit unknown). However, after 468f6eafa6c4 ("bpf: fix 32-bit ALU op verification") the verifier casts the register output to 32 bit, and hence it becomes 32 bit unknown. Note that for the case where the src register is unknown, the dst register is marked 64 bit unknown. After the fix, the register is truncated by the runtime and the test passes: # ./bpftool p d x i 23 0: (b7) r0 = 0 1: (b7) r1 = -1 2: (b4) w2 = -1 3: (16) if w0 == 0x0 goto pc+2 4: (9c) w1 %= w0 5: (05) goto pc+1 6: (bc) w1 = w1 7: (b7) r0 = 1 8: (1d) if r1 == r2 goto pc+1 9: (b7) r0 = 2 10: (95) exit Semantics also match with {R,W}x mod{64,32} 0 -> {R,W}x. Invalid div has always been {R,W}x div{64,32} 0 -> 0. Rewrites are as follows: mod32: mod64: (16) if w0 == 0x0 goto pc+2 (15) if r0 == 0x0 goto pc+1 (9c) w1 %= w0 (9f) r1 %= r0 (05) goto pc+1 (bc) w1 = w1 Fixes: 468f6eafa6c4 ("bpf: fix 32-bit ALU op verification") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-17bpf: Check for integer overflow when using roundup_pow_of_two()Bui Quang Minh1-0/+2
[ Upstream commit 6183f4d3a0a2ad230511987c6c362ca43ec0055f ] On 32-bit architecture, roundup_pow_of_two() can return 0 when the argument has upper most bit set due to resulting 1UL << 32. Add a check for this case. Fixes: d5a3b1f69186 ("bpf: introduce BPF_MAP_TYPE_STACK_TRACE") Signed-off-by: Bui Quang Minh <minhquangbui99@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210127063653.3576-1-minhquangbui99@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-02-13bpf: Fix verifier jsgt branch analysis on max boundDaniel Borkmann1-2/+2
commit ee114dd64c0071500345439fc79dd5e0f9d106ed upstream. Fix incorrect is_branch{32,64}_taken() analysis for the jsgt case. The return code for both will tell the caller whether a given conditional jump is taken or not, e.g. 1 means branch will be taken [for the involved registers] and the goto target will be executed, 0 means branch will not be taken and instead we fall-through to the next insn, and last but not least a -1 denotes that it is not known at verification time whether a branch will be taken or not. Now while the jsgt has the branch-taken case correct with reg->s32_min_value > sval, the branch-not-taken case is off-by-one when testing for reg->s32_max_value < sval since the branch will also be taken for reg->s32_max_value == sval. The jgt branch analysis, for example, gets this right. Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking") Fixes: 4f7b3e82589e ("bpf: improve verifier branch analysis") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-13bpf: Fix 32 bit src register truncation on div/modDaniel Borkmann1-15/+13
commit e88b2c6e5a4d9ce30d75391e4d950da74bb2bd90 upstream. While reviewing a different fix, John and I noticed an oddity in one of the BPF program dumps that stood out, for example: # bpftool p d x i 13 0: (b7) r0 = 808464450 1: (b4) w4 = 808464432 2: (bc) w0 = w0 3: (15) if r0 == 0x0 goto pc+1 4: (9c) w4 %= w0 [...] In line 2 we noticed that the mov32 would 32 bit truncate the original src register for the div/mod operation. While for the two operations the dst register is typically marked unknown e.g. from adjust_scalar_min_max_vals() the src register is not, and thus verifier keeps tracking original bounds, simplified: 0: R1=ctx(id=0,off=0,imm=0) R10=fp0 0: (b7) r0 = -1 1: R0_w=invP-1 R1=ctx(id=0,off=0,imm=0) R10=fp0 1: (b7) r1 = -1 2: R0_w=invP-1 R1_w=invP-1 R10=fp0 2: (3c) w0 /= w1 3: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R1_w=invP-1 R10=fp0 3: (77) r1 >>= 32 4: R0_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R1_w=invP4294967295 R10=fp0 4: (bf) r0 = r1 5: R0_w=invP4294967295 R1_w=invP4294967295 R10=fp0 5: (95) exit processed 6 insns (limit 1000000) max_states_per_insn 0 total_states 0 peak_states 0 mark_read 0 Runtime result of r0 at exit is 0 instead of expected -1. Remove the verifier mov32 src rewrite in div/mod and replace it with a jmp32 test instead. After the fix, we result in the following code generation when having dividend r1 and divisor r6: div, 64 bit: div, 32 bit: 0: (b7) r6 = 8 0: (b7) r6 = 8 1: (b7) r1 = 8 1: (b7) r1 = 8 2: (55) if r6 != 0x0 goto pc+2 2: (56) if w6 != 0x0 goto pc+2 3: (ac) w1 ^= w1 3: (ac) w1 ^= w1 4: (05) goto pc+1 4: (05) goto pc+1 5: (3f) r1 /= r6 5: (3c) w1 /= w6 6: (b7) r0 = 0 6: (b7) r0 = 0 7: (95) exit 7: (95) exit mod, 64 bit: mod, 32 bit: 0: (b7) r6 = 8 0: (b7) r6 = 8 1: (b7) r1 = 8 1: (b7) r1 = 8 2: (15) if r6 == 0x0 goto pc+1 2: (16) if w6 == 0x0 goto pc+1 3: (9f) r1 %= r6 3: (9c) w1 %= w6 4: (b7) r0 = 0 4: (b7) r0 = 0 5: (95) exit 5: (95) exit x86 in particular can throw a 'divide error' exception for div instruction not only for divisor being zero, but also for the case when the quotient is too large for the designated register. For the edx:eax and rdx:rax dividend pair it is not an issue in x86 BPF JIT since we always zero edx (rdx). Hence really the only protection needed is against divisor being zero. Fixes: 68fda450a7df ("bpf: fix 32-bit divide by zero") Co-developed-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-13bpf: Fix verifier jmp32 pruning decision logicDaniel Borkmann1-1/+5
commit fd675184fc7abfd1e1c52d23e8e900676b5a1c1a upstream. Anatoly has been fuzzing with kBdysch harness and reported a hang in one of the outcomes: func#0 @0 0: R1=ctx(id=0,off=0,imm=0) R10=fp0 0: (b7) r0 = 808464450 1: R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R10=fp0 1: (b4) w4 = 808464432 2: R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R4_w=invP808464432 R10=fp0 2: (9c) w4 %= w0 3: R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff)) R10=fp0 3: (66) if w4 s> 0x30303030 goto pc+0 R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff),s32_max_value=808464432) R10=fp0 4: R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff),s32_max_value=808464432) R10=fp0 4: (7f) r0 >>= r0 5: R0_w=invP(id=0) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff),s32_max_value=808464432) R10=fp0 5: (9c) w4 %= w0 6: R0_w=invP(id=0) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0 6: (66) if w0 s> 0x3030 goto pc+0 R0_w=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0 7: R0=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4=invP(id=0) R10=fp0 7: (d6) if w0 s<= 0x303030 goto pc+1 9: R0=invP(id=0,s32_max_value=12336) R1=ctx(id=0,off=0,imm=0) R4=invP(id=0) R10=fp0 9: (95) exit propagating r0 from 6 to 7: safe 4: R0_w=invP808464450 R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umin_value=808464433,umax_value=2147483647,var_off=(0x0; 0x7fffffff)) R10=fp0 4: (7f) r0 >>= r0 5: R0_w=invP(id=0) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0,umin_value=808464433,umax_value=2147483647,var_off=(0x0; 0x7fffffff)) R10=fp0 5: (9c) w4 %= w0 6: R0_w=invP(id=0) R1=ctx(id=0,off=0,imm=0) R4_w=invP(id=0) R10=fp0 6: (66) if w0 s> 0x3030 goto pc+0 R0_w=