summaryrefslogtreecommitdiff
path: root/kernel/bpf
AgeCommit message (Collapse)AuthorFilesLines
2022-02-01bpf: Guard against accessing NULL pt_regs in bpf_get_task_stack()Naveen N. Rao1-2/+3
commit b992f01e66150fc5e90be4a96f5eb8e634c8249e upstream. task_pt_regs() can return NULL on powerpc for kernel threads. This is then used in __bpf_get_stack() to check for user mode, resulting in a kernel oops. Guard against this by checking return value of task_pt_regs() before trying to obtain the call chain. Fixes: fa28dcb82a38f8 ("bpf: Introduce helper bpf_get_task_stack()") Cc: stable@vger.kernel.org # v5.9+ Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/d5ef83c361cc255494afd15ff1b4fb02a36e1dcf.1641468127.git.naveen.n.rao@linux.vnet.ibm.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-01-27bpf: Don't promote bogus looking registers after null check.Daniel Borkmann1-6/+6
[ Upstream commit e60b0d12a95dcf16a63225cead4541567f5cb517 ] If we ever get to a point again where we convert a bogus looking <ptr>_or_null typed register containing a non-zero fixed or variable offset, then lets not reset these bounds to zero since they are not and also don't promote the register to a <ptr> type, but instead leave it as <ptr>_or_null. Converting to a unknown register could be an avenue as well, but then if we run into this case it would allow to leak a kernel pointer this way. Fixes: f1174f77b50c ("bpf/verifier: rework value tracking") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-01-27bpf: Disallow BPF_LOG_KERNEL log level for bpf(BPF_BTF_LOAD)Hou Tao2-5/+4
[ Upstream commit 866de407444398bc8140ea70de1dba5f91cc34ac ] BPF_LOG_KERNEL is only used internally, so disallow bpf_btf_load() to set log level as BPF_LOG_KERNEL. The same checking has already been done in bpf_check(), so factor out a helper to check the validity of log attributes and use it in both places. Fixes: 8580ac9404f6 ("bpf: Process in-kernel BTF") Signed-off-by: Hou Tao <houtao1@huawei.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20211203053001.740945-1-houtao1@huawei.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-01-27bpf: Adjust BTF log size limit.Alexei Starovoitov1-1/+1
[ Upstream commit c5a2d43e998a821701029f23e25b62f9188e93ff ] Make BTF log size limit to be the same as the verifier log size limit. Otherwise tools that progressively increase log size and use the same log for BTF loading and program loading will be hitting hard to debug EINVAL. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20211201181040.23337-7-alexei.starovoitov@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-01-16bpf: Fix out of bounds access from invalid *_or_null type verificationDaniel Borkmann1-3/+3
[ no upstream commit given implicitly fixed through the larger refactoring in c25b2ae136039ffa820c26138ed4a5e5f3ab3841 ] While auditing some other code, I noticed missing checks inside the pointer arithmetic simulation, more specifically, adjust_ptr_min_max_vals(). Several *_OR_NULL types are not rejected whereas they are _required_ to be rejected given the expectation is that they get promoted into a 'real' pointer type for the success case, that is, after an explicit != NULL check. One case which stands out and is accessible from unprivileged (iff enabled given disabled by default) is BPF ring buffer. From crafting a PoC, the NULL check can be bypassed through an offset, and its id marking will then lead to promotion of mem_or_null to a mem type. bpf_ringbuf_reserve() helper can trigger this case through passing of reserved flags, for example. func#0 @0 0: R1=ctx(id=0,off=0,imm=0) R10=fp0 0: (7a) *(u64 *)(r10 -8) = 0 1: R1=ctx(id=0,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm 1: (18) r1 = 0x0 3: R1_w=map_ptr(id=0,off=0,ks=0,vs=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm 3: (b7) r2 = 8 4: R1_w=map_ptr(id=0,off=0,ks=0,vs=0,imm=0) R2_w=invP8 R10=fp0 fp-8_w=mmmmmmmm 4: (b7) r3 = 0 5: R1_w=map_ptr(id=0,off=0,ks=0,vs=0,imm=0) R2_w=invP8 R3_w=invP0 R10=fp0 fp-8_w=mmmmmmmm 5: (85) call bpf_ringbuf_reserve#131 6: R0_w=mem_or_null(id=2,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2 6: (bf) r6 = r0 7: R0_w=mem_or_null(id=2,ref_obj_id=2,off=0,imm=0) R6_w=mem_or_null(id=2,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2 7: (07) r0 += 1 8: R0_w=mem_or_null(id=2,ref_obj_id=2,off=1,imm=0) R6_w=mem_or_null(id=2,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2 8: (15) if r0 == 0x0 goto pc+4 R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2 9: R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2 9: (62) *(u32 *)(r6 +0) = 0 R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2 10: R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2 10: (bf) r1 = r6 11: R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R1_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2 11: (b7) r2 = 0 12: R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R1_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R2_w=invP0 R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2 12: (85) call bpf_ringbuf_submit#132 13: R6=invP(id=0) R10=fp0 fp-8=mmmmmmmm 13: (b7) r0 = 0 14: R0_w=invP0 R6=invP(id=0) R10=fp0 fp-8=mmmmmmmm 14: (95) exit from 8 to 13: safe processed 15 insns (limit 1000000) max_states_per_insn 0 total_states 1 peak_states 1 mark_read 0 OK All three commits, that is b121b341e598 ("bpf: Add PTR_TO_BTF_ID_OR_NULL support"), 457f44363a88 ("bpf: Implement BPF ring buffer and verifier support for it"), and the afbf21dce668 ("bpf: Support readonly/readwrite buffers in verifier") suffer the same cause and their *_OR_NULL type pendants must be rejected in adjust_ptr_min_max_vals(). Make the test more robust by reusing reg_type_may_be_null() helper such that we catch all *_OR_NULL types we have today and in future. Note that pointer arithmetic on PTR_TO_BTF_ID, PTR_TO_RDONLY_BUF, and PTR_TO_RDWR_BUF is generally allowed. Fixes: b121b341e598 ("bpf: Add PTR_TO_BTF_ID_OR_NULL support") Fixes: 457f44363a88 ("bpf: Implement BPF ring buffer and verifier support for it") Fixes: afbf21dce668 ("bpf: Support readonly/readwrite buffers in verifier") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-01-05bpf: Add kconfig knob for disabling unpriv bpf by defaultDaniel Borkmann1-1/+2
commit 08389d888287c3823f80b0216766b71e17f0aba5 upstream. Add a kconfig knob which allows for unprivileged bpf to be disabled by default. If set, the knob sets /proc/sys/kernel/unprivileged_bpf_disabled to value of 2. This still allows a transition of 2 -> {0,1} through an admin. Similarly, this also still keeps 1 -> {1} behavior intact, so that once set to permanently disabled, it cannot be undone aside from a reboot. We've also added extra2 with max of 2 for the procfs handler, so that an admin still has a chance to toggle between 0 <-> 2. Either way, as an additional alternative, applications can make use of CAP_BPF that we added a while ago. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/74ec548079189e4e4dffaeb42b8987bb3c852eee.1620765074.git.daniel@iogearbox.net Cc: Salvatore Bonaccorso <carnil@debian.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-22bpf: Make 32->64 bounds propagation slightly more robustDaniel Borkmann1-9/+15
commit e572ff80f05c33cd0cb4860f864f5c9c044280b6 upstream. Make the bounds propagation in __reg_assign_32_into_64() slightly more robust and readable by aligning it similarly as we did back in the __reg_combine_64_into_32() counterpart. Meaning, only propagate or pessimize them as a smin/smax pair. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-22bpf: Fix signed bounds propagation after mov32Daniel Borkmann1-0/+4
commit 3cf2b61eb06765e27fec6799292d9fb46d0b7e60 upstream. For the case where both s32_{min,max}_value bounds are positive, the __reg_assign_32_into_64() directly propagates them to their 64 bit counterparts, otherwise it pessimises them into [0,u32_max] universe and tries to refine them later on by learning through the tnum as per comment in mentioned function. However, that does not always happen, for example, in mov32 operation we call zext_32_to_64(dst_reg) which invokes the __reg_assign_32_into_64() as is without subsequent bounds update as elsewhere thus no refinement based on tnum takes place. Thus, not calling into the __update_reg_bounds() / __reg_deduce_bounds() / __reg_bound_offset() triplet as we do, for example, in case of ALU ops via adjust_scalar_min_max_vals(), will lead to more pessimistic bounds when dumping the full register state: Before fix: 0: (b4) w0 = -1 1: R0_w=invP4294967295 (id=0,imm=ffffffff, smin_value=4294967295,smax_value=4294967295, umin_value=4294967295,umax_value=4294967295, var_off=(0xffffffff; 0x0), s32_min_value=-1,s32_max_value=-1, u32_min_value=-1,u32_max_value=-1) 1: (bc) w0 = w0 2: R0_w=invP4294967295 (id=0,imm=ffffffff, smin_value=0,smax_value=4294967295, umin_value=4294967295,umax_value=4294967295, var_off=(0xffffffff; 0x0), s32_min_value=-1,s32_max_value=-1, u32_min_value=-1,u32_max_value=-1) Technically, the smin_value=0 and smax_value=4294967295 bounds are not incorrect, but given the register is still a constant, they break assumptions about const scalars that smin_value == smax_value and umin_value == umax_value. After fix: 0: (b4) w0 = -1 1: R0_w=invP4294967295 (id=0,imm=ffffffff, smin_value=4294967295,smax_value=4294967295, umin_value=4294967295,umax_value=4294967295, var_off=(0xffffffff; 0x0), s32_min_value=-1,s32_max_value=-1, u32_min_value=-1,u32_max_value=-1) 1: (bc) w0 = w0 2: R0_w=invP4294967295 (id=0,imm=ffffffff, smin_value=4294967295,smax_value=4294967295, umin_value=4294967295,umax_value=4294967295, var_off=(0xffffffff; 0x0), s32_min_value=-1,s32_max_value=-1, u32_min_value=-1,u32_max_value=-1) Without the smin_value == smax_value and umin_value == umax_value invariant being intact for const scalars, it is possible to leak out kernel pointers from unprivileged user space if the latter is enabled. For example, when such registers are involved in pointer arithmtics, then adjust_ptr_min_max_vals() will taint the destination register into an unknown scalar, and the latter can be exported and stored e.g. into a BPF map value. Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking") Reported-by: Kuee K1r0a <liulin063@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: John Fastabend <john.fastabend@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-17bpf: Fix integer overflow in argument calculation for bpf_map_area_allocBui Quang Minh1-2/+2
commit 7dd5d437c258bbf4cc15b35229e5208b87b8b4e0 upstream. In 32-bit architecture, the result of sizeof() is a 32-bit integer so the expression becomes the multiplication between 2 32-bit integer which can potentially leads to integer overflow. As a result, bpf_map_area_alloc() allocates less memory than needed. Fix this by casting 1 operand to u64. Fixes: 0d2c4f964050 ("bpf: Eliminate rlimit-based memory accounting for sockmap and sockhash maps") Fixes: 99c51064fb06 ("devmap: Use bpf_map_area_alloc() for allocating hash buckets") Fixes: 546ac1ffb70d ("bpf: add devmap, a map for storing net device references") Signed-off-by: Bui Quang Minh <minhquangbui99@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210613143440.71975-1-minhquangbui99@gmail.com Signed-off-by: Connor O'Brien <connoro@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-14bpf: Fix the off-by-two error in range markingsMaxim Mikityanskiy1-1/+1
commit 2fa7d94afc1afbb4d702760c058dc2d7ed30f226 upstream. The first commit cited below attempts to fix the off-by-one error that appeared in some comparisons with an open range. Due to this error, arithmetically equivalent pieces of code could get different verdicts from the verifier, for example (pseudocode): // 1. Passes the verifier: if (data + 8 > data_end) return early read *(u64 *)data, i.e. [data; data+7] // 2. Rejected by the verifier (should still pass): if (data + 7 >= data_end) return early read *(u64 *)data, i.e. [data; data+7] The attempted fix, however, shifts the range by one in a wrong direction, so the bug not only remains, but also such piece of code starts failing in the verifier: // 3. Rejected by the verifier, but the check is stricter than in #1. if (data + 8 >= data_end) return early read *(u64 *)data, i.e. [data; data+7] The change performed by that fix converted an off-by-one bug into off-by-two. The second commit cited below added the BPF selftests written to ensure than code chunks like #3 are rejected, however, they should be accepted. This commit fixes the off-by-two error by adjusting new_range in the right direction and fixes the tests by changing the range into the one that should actually fail. Fixes: fb2a311a31d3 ("bpf: fix off by one for range markings with L{T, E} patterns") Fixes: b37242c773b2 ("bpf: add test cases to bpf selftests to cover all access tests") Signed-off-by: Maxim Mikityanskiy <maximmi@nvidia.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20211130181607.593149-1-maximmi@nvidia.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-01bpf: Fix toctou on read-only map's constant scalar trackingDaniel Borkmann2-22/+52
commit 353050be4c19e102178ccc05988101887c25ae53 upstream. Commit a23740ec43ba ("bpf: Track contents of read-only maps as scalars") is checking whether maps are read-only both from BPF program side and user space side, and then, given their content is constant, reading out their data via map->ops->map_direct_value_addr() which is then subsequently used as known scalar value for the register, that is, it is marked as __mark_reg_known() with the read value at verification time. Before a23740ec43ba, the register content was marked as an unknown scalar so the verifier could not make any assumptions about the map content. The current implementation however is prone to a TOCTOU race, meaning, the value read as known scalar for the register is not guaranteed to be exactly the same at a later point when the program is executed, and as such, the prior made assumptions of the verifier with regards to the program will be invalid which can cause issues such as OOB access, etc. While the BPF_F_RDONLY_PROG map flag is always fixed and required to be specified at map creation time, the map->frozen property is initially set to false for the map given the map value needs to be populated, e.g. for global data sections. Once complete, the loader "freezes" the map from user space such that no subsequent updates/deletes are possible anymore. For the rest of the lifetime of the map, this freeze one-time trigger cannot be undone anymore after a successful BPF_MAP_FREEZE cmd return. Meaning, any new BPF_* cmd calls which would update/delete map entries will be rejected with -EPERM since map_get_sys_perms() removes the FMODE_CAN_WRITE permission. This also means that pending update/delete map entries must still complete before this guarantee is given. This corner case is not an issue for loaders since they create and prepare such program private map in successive steps. However, a malicious user is able to trigger this TOCTOU race in two different ways: i) via userfaultfd, and ii) via batched updates. For i) userfaultfd is used to expand the competition interval, so that map_update_elem() can modify the contents of the map after map_freeze() and bpf_prog_load() were executed. This works, because userfaultfd halts the parallel thread which triggered a map_update_elem() at the time where we copy key/value from the user buffer and this already passed the FMODE_CAN_WRITE capability test given at that time the map was not "frozen". Then, the main thread performs the map_freeze() and bpf_prog_load(), and once that had completed successfully, the other thread is woken up to complete the pending map_update_elem() which then changes the map content. For ii) the idea of the batched update is similar, meaning, when there are a large number of updates to be processed, it can increase the competition interval between the two. It is therefore possible in practice to modify the contents of the map after executing map_freeze() and bpf_prog_load(). One way to fix both i) and ii) at the same time is to expand the use of the map's map->writecnt. The latter was introduced in fc9702273e2e ("bpf: Add mmap() support for BPF_MAP_TYPE_ARRAY") and further refined in 1f6cb19be2e2 ("bpf: Prevent re-mmap()'ing BPF map as writable for initially r/o mapping") with the rationale to make a writable mmap()'ing of a map mutually exclusive with read-only freezing. The counter indicates writable mmap() mappings and then prevents/fails the freeze operation. Its semantics can be expanded beyond just mmap() by generally indicating ongoing write phases. This would essentially span any parallel regular and batched flavor of update/delete operation and then also have map_freeze() fail with -EBUSY. For the check_mem_access() in the verifier we expand upon the bpf_map_is_rdonly() check ensuring that all last pending writes have completed via bpf_map_write_active() test. Once the map->frozen is set and bpf_map_write_active() indicates a map->writecnt of 0 only then we are really guaranteed to use the map's data as known constants. For map->frozen being set and pending writes in process of still being completed we fall back to marking that register as unknown scalar so we don't end up making assumptions about it. With this, both TOCTOU reproducers from i) and ii) are fixed. Note that the map->writecnt has been converted into a atomic64 in the fix in order to avoid a double freeze_mutex mutex_{un,}lock() pair when updating map->writecnt in the various map update/delete BPF_* cmd flavors. Spanning the freeze_mutex over entire map update/delete operations in syscall side would not be possible due to then causing everything to be serialized. Similarly, something like synchronize_rcu() after setting map->frozen to wait for update/deletes to complete is not possible either since it would also have to span the user copy which can sleep. On the libbpf side, this won't break d66562fba1ce ("libbpf: Add BPF object skeleton support") as the anonymous mmap()-ed "map initialization image" is remapped as a BPF map-backed mmap()-ed memory where for .rodata it's non-writable. Fixes: a23740ec43ba ("bpf: Track contents of read-only maps as scalars") Reported-by: w1tcher.bupt@gmail.com Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> [fix conflict to call bpf_map_write_active_dec() in err_put block. fix conflict to insert new functions after find_and_alloc_map().] Reference: CVE-2021-4001 Signed-off-by: Masami Ichikawa(CIP) <masami.ichikawa@cybertrust.co.jp> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-18bpf: Fix propagation of signed bounds from 64-bit min/max into 32-bit.Alexei Starovoitov1-1/+1
[ Upstream commit 388e2c0b978339dee9b0a81a2e546f8979e021e2 ] Similar to unsigned bounds propagation fix signed bounds. The 'Fixes' tag is a hint. There is no security bug here. The verifier was too conservative. Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20211101222153.78759-2-alexei.starovoitov@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-18bpf: Fix propagation of bounds from 64-bit min/max into 32-bit and var_off.Alexei Starovoitov1-1/+1
[ Upstream commit b9979db8340154526d9ab38a1883d6f6ba9b6d47 ] Before this fix: 166: (b5) if r2 <= 0x1 goto pc+22 from 166 to 189: R2=invP(id=1,umax_value=1,var_off=(0x0; 0xffffffff)) After this fix: 166: (b5) if r2 <= 0x1 goto pc+22 from 166 to 189: R2=invP(id=1,umax_value=1,var_off=(0x0; 0x1)) While processing BPF_JLE the reg_set_min_max() would set true_reg->umax_value = 1 and call __reg_combine_64_into_32(true_reg). Without the fix it would not pass the condition: if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) since umin_value == 0 at this point. Before commit 10bf4e83167c the umin was incorrectly ingored. The commit 10bf4e83167c fixed the correctness issue, but pessimized propagation of 64-bit min max into 32-bit min max and corresponding var_off. Fixes: 10bf4e83167c ("bpf: Fix propagation of 32 bit unsigned bounds from 64 bit bounds") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20211101222153.78759-1-alexei.starovoitov@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-18bpf: Prevent increasing bpf_jit_limit above maxLorenz Bauer1-1/+3
[ Upstream commit fadb7ff1a6c2c565af56b4aacdd086b067eed440 ] Restrict bpf_jit_limit to the maximum supported by the arch's JIT. Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20211014142554.53120-4-lmb@cloudflare.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-02bpf: Fix error usage of map_fd and fdget() in generic_map_update_batch()Xu Kuohai1-2/+3
commit fda7a38714f40b635f5502ec4855602c6b33dad2 upstream. 1. The ufd in generic_map_update_batch() should be read from batch.map_fd; 2. A call to fdget() should be followed by a symmetric call to fdput(). Fixes: aa2e93b8e58e ("bpf: Add generic support for update and delete batch ops") Signed-off-by: Xu Kuohai <xukuohai@huawei.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20211019032934.1210517-1-xukuohai@huawei.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-02bpf: Fix potential race in tail call compatibility checkToke Høiland-Jørgensen3-9/+18
commit 54713c85f536048e685258f880bf298a74c3620d upstream. Lorenzo noticed that the code testing for program type compatibility of tail call maps is potentially racy in that two threads could encounter a map with an unset type simultaneously and both return true even though they are inserting incompatible programs. The race window is quite small, but artificially enlarging it by adding a usleep_range() inside the check in bpf_prog_array_compatible() makes it trivial to trigger from userspace with a program that does, essentially: map_fd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, 4, 4, 2, 0); pid = fork(); if (pid) { key = 0; value = xdp_fd; } else { key = 1; value = tc_fd; } err = bpf_map_update_elem(map_fd, &key, &value, 0); While the race window is small, it has potentially serious ramifications in that triggering it would allow a BPF program to tail call to a program of a different type. So let's get rid of it by protecting the update with a spinlock. The commit in the Fixes tag is the last commit that touches the code in question. v2: - Use a spinlock instead of an atomic variable and cmpxchg() (Alexei) v3: - Put lock and the members it protects into an embedded 'owner' struct (Daniel) Fixes: 3324b584b6f6 ("ebpf: misc core cleanup") Reported-by: Lorenzo Bianconi <lorenzo.bianconi@redhat.com> Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20211026110019.363464-1-toke@redhat.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-13bpf: Fix integer overflow in prealloc_elems_and_freelist()Tatsuhiko Yasumatsu1-1/+2
[ Upstream commit 30e29a9a2bc6a4888335a6ede968b75cd329657a ] In prealloc_elems_and_freelist(), the multiplication to calculate the size passed to bpf_map_area_alloc() could lead to an integer overflow. As a result, out-of-bounds write could occur in pcpu_freelist_populate() as reported by KASAN: [...] [ 16.968613] BUG: KASAN: slab-out-of-bounds in pcpu_freelist_populate+0xd9/0x100 [ 16.969408] Write of size 8 at addr ffff888104fc6ea0 by task crash/78 [ 16.970038] [ 16.970195] CPU: 0 PID: 78 Comm: crash Not tainted 5.15.0-rc2+ #1 [ 16.970878] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 [ 16.972026] Call Trace: [ 16.972306] dump_stack_lvl+0x34/0x44 [ 16.972687] print_address_description.constprop.0+0x21/0x140 [ 16.973297] ? pcpu_freelist_populate+0xd9/0x100 [ 16.973777] ? pcpu_freelist_populate+0xd9/0x100 [ 16.974257] kasan_report.cold+0x7f/0x11b [ 16.974681] ? pcpu_freelist_populate+0xd9/0x100 [ 16.975190] pcpu_freelist_populate+0xd9/0x100 [ 16.975669] stack_map_alloc+0x209/0x2a0 [ 16.976106] __sys_bpf+0xd83/0x2ce0 [...] The possibility of this overflow was originally discussed in [0], but was overlooked. Fix the integer overflow by changing elem_size to u64 from u32. [0] https://lore.kernel.org/bpf/728b238e-a481-eb50-98e9-b0f430ab01e7@gmail.com/ Fixes: 557c0c6e7df8 ("bpf: convert stackmap to pre-allocation") Signed-off-by: Tatsuhiko Yasumatsu <th.yasumatsu@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210930135545.173698-1-th.yasumatsu@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-10-06bpf: Exempt CAP_BPF from checks against bpf_jit_limitLorenz Bauer1-1/+1
[ Upstream commit 8a98ae12fbefdb583a7696de719a1d57e5e940a2 ] When introducing CAP_BPF, bpf_jit_charge_modmem() was not changed to treat programs with CAP_BPF as privileged for the purpose of JIT memory allocation. This means that a program without CAP_BPF can block a program with CAP_BPF from loading a program. Fix this by checking bpf_capable() in bpf_jit_charge_modmem(). Fixes: 2c78ee898d8f ("bpf: Implement CAP_BPF") Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210922111153.19843-1-lmb@cloudflare.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-10-06bpf: Handle return value of BPF_PROG_TYPE_STRUCT_OPS progHou Tao1-2/+5
[ Upstream commit 356ed64991c6847a0c4f2e8fa3b1133f7a14f1fc ] Currently if a function ptr in struct_ops has a return value, its caller will get a random return value from it, because the return value of related BPF_PROG_TYPE_STRUCT_OPS prog is just dropped. So adding a new flag BPF_TRAMP_F_RET_FENTRY_RET to tell bpf trampoline to save and return the return value of struct_ops prog if ret_size of the function ptr is greater than 0. Also restricting the flag to be used alone. Fixes: 85d33df357b6 ("bpf: Introduce BPF_MAP_TYPE_STRUCT_OPS") Signed-off-by: Hou Tao <houtao1@huawei.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20210914023351.3664499-1-houtao1@huawei.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-09-30bpf: Add oversize check before call kvcalloc()Bixuan Cui1-0/+2
[ Upstream commit 0e6491b559704da720f6da09dd0a52c4df44c514 ] Commit 7661809d493b ("mm: don't allow oversized kvmalloc() calls") add the oversize check. When the allocation is larger than what kmalloc() supports, the following warning triggered: WARNING: CPU: 0 PID: 8408 at mm/util.c:597 kvmalloc_node+0x108/0x110 mm/util.c:597 Modules linked in: CPU: 0 PID: 8408 Comm: syz-executor221 Not tainted 5.14.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:kvmalloc_node+0x108/0x110 mm/util.c:597 Call Trace: kvmalloc include/linux/mm.h:806 [inline] kvmalloc_array include/linux/mm.h:824 [inline] kvcalloc include/linux/mm.h:829 [inline] check_btf_line kernel/bpf/verifier.c:9925 [inline] check_btf_info kernel/bpf/verifier.c:10049 [inline] bpf_check+0xd634/0x150d0 kernel/bpf/verifier.c:13759 bpf_prog_load kernel/bpf/syscall.c:2301 [inline] __sys_bpf+0x11181/0x126e0 kernel/bpf/syscall.c:4587 __do_sys_bpf kernel/bpf/syscall.c:4691 [inline] __se_sys_bpf kernel/bpf/syscall.c:4689 [inline] __x64_sys_bpf+0x78/0x90 kernel/bpf/syscall.c:4689 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae Reported-by: syzbot+f3e749d4c662818ae439@syzkaller.appspotmail.com Signed-off-by: Bixuan Cui <cuibixuan@huawei.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20210911005557.45518-1-cuibixuan@huawei.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-09-15bpf: Fix possible out of bound write in narrow load handlingAndrey Ignatov1-0/+4
[ Upstream commit d7af7e497f0308bc97809cc48b58e8e0f13887e1 ] Fix a verifier bug found by smatch static checker in [0]. This problem has never been seen in prod to my best knowledge. Fixing it still seems to be a good idea since it's hard to say for sure whether it's possible or not to have a scenario where a combination of convert_ctx_access() and a narrow load would lead to an out of bound write. When narrow load is handled, one or two new instructions are added to insn_buf array, but before it was only checked that cnt >= ARRAY_SIZE(insn_buf) And it's safe to add a new instruction to insn_buf[cnt++] only once. The second try will lead to out of bound write. And this is what can happen if `shift` is set. Fix it by making sure that if the BPF_RSH instruction has to be added in addition to BPF_AND then there is enough space for two more instructions in insn_buf. The full report [0] is below: kernel/bpf/verifier.c:12304 convert_ctx_accesses() warn: offset 'cnt' incremented past end of array kernel/bpf/verifier.c:12311 convert_ctx_accesses() warn: offset 'cnt' incremented past end of array kernel/bpf/verifier.c 12282 12283 insn->off = off & ~(size_default - 1); 12284 insn->code = BPF_LDX | BPF_MEM | size_code; 12285 } 12286 12287 target_size = 0; 12288 cnt = convert_ctx_access(type, insn, insn_buf, env->prog, 12289 &target_size); 12290 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) || ^^^^^^^^^^^^^^^^^^^^^^^^^^^ Bounds check. 12291 (ctx_field_size && !target_size)) { 12292 verbose(env, "bpf verifier is misconfigured\n"); 12293 return -EINVAL; 12294 } 12295 12296 if (is_narrower_load && size < target_size) { 12297 u8 shift = bpf_ctx_narrow_access_offset( 12298 off, size, size_default) * 8; 12299 if (ctx_field_size <= 4) { 12300 if (shift) 12301 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH, ^^^^^ increment beyond end of array 12302 insn->dst_reg, 12303 shift); --> 12304 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg, ^^^^^ out of bounds write 12305 (1 << size * 8) - 1); 12306 } else { 12307 if (shift) 12308 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH, 12309 insn->dst_reg, 12310 shift); 12311 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg, ^^^^^^^^^^^^^^^ Same. 12312 (1ULL << size * 8) - 1); 12313 } 12314 } 12315 12316 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt); 12317 if (!new_prog) 12318 return -ENOMEM; 12319 12320 delta += cnt - 1; 12321 12322 /* keep walking new program and skip insns we just inserted */ 12323 env->prog = new_prog; 12324 insn = new_prog->insnsi + i + delta; 12325 } 12326 12327 return 0; 12328 } [0] https://lore.kernel.org/bpf/20210817050843.GA21456@kili/ v1->v2: - clarify that problem was only seen by static checker but not in prod; Fixes: 46f53a65d2de ("bpf: Allow narrow loads with offset > 0") Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20210820163935.1902398-1-rdna@fb.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-09-15bpf: Fix potential memleak and UAF in the verifier.He Fengqing1-11/+16
[ Upstream commit 75f0fc7b48ad45a2e5736bcf8de26c8872fe8695 ] In bpf_patch_insn_data(), we first use the bpf_patch_insn_single() to insert new instructions, then use adjust_insn_aux_data() to adjust insn_aux_data. If the old env->prog have no enough room for new inserted instructions, we use bpf_prog_realloc to construct new_prog and free the old env->prog. There have two errors here. First, if adjust_insn_aux_data() return ENOMEM, we should free the new_prog. Second, if adjust_insn_aux_data() return ENOMEM, bpf_patch_insn_data() will return NULL, and env->prog has been freed in bpf_prog_realloc, but we will use it in bpf_check(). So in this patch, we make the adjust_insn_aux_data() never fails. In bpf_patch_insn_data(), we first pre-malloc memory for the new insn_aux_data, then call bpf_patch_insn_single() to insert new instructions, at last call adjust_insn_aux_data() to adjust insn_aux_data. Fixes: 8041902dae52 ("bpf: adjust insn_aux_data when patching insns") Signed-off-by: He Fengqing <hefengqing@huawei.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Song Liu <songliubraving@fb.com> Link: https://lore.kernel.org/bpf/20210714101815.164322-1-hefengqing@huawei.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-09-03bpf: Fix potentially incorrect results with bpf_get_local_storage()Yonghong Song1-2/+2
commit a2baf4e8bb0f306fbed7b5e6197c02896a638ab5 upstream. Commit b910eaaaa4b8 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper") fixed a bug for bpf_get_local_storage() helper so different tasks won't mess up with each other's percpu local storage. The percpu data contains 8 slots so it can hold up to 8 contexts (same or different tasks), for 8 different program runs, at the same time. This in general is sufficient. But our internal testing showed the following warning multiple times: [...] warning: WARNING: CPU: 13 PID: 41661 at include/linux/bpf-cgroup.h:193 __cgroup_bpf_run_filter_sock_ops+0x13e/0x180 RIP: 0010:__cgroup_bpf_run_filter_sock_ops+0x13e/0x180 <IRQ> tcp_call_bpf.constprop.99+0x93/0xc0 tcp_conn_request+0x41e/0xa50 ? tcp_rcv_state_process+0x203/0xe00 tcp_rcv_state_process+0x203/0xe00 ? sk_filter_trim_cap+0xbc/0x210 ? tcp_v6_inbound_md5_hash.constprop.41+0x44/0x160 tcp_v6_do_rcv+0x181/0x3e0 tcp_v6_rcv+0xc65/0xcb0 ip6_protocol_deliver_rcu+0xbd/0x450 ip6_input_finish+0x11/0x20 ip6_input+0xb5/0xc0 ip6_sublist_rcv_finish+0x37/0x50 ip6_sublist_rcv+0x1dc/0x270 ipv6_list_rcv+0x113/0x140 __netif_receive_skb_list_core+0x1a0/0x210 netif_receive_skb_list_internal+0x186/0x2a0 gro_normal_list.part.170+0x19/0x40 napi_complete_done+0x65/0x150 mlx5e_napi_poll+0x1ae/0x680 __napi_poll+0x25/0x120 net_rx_action+0x11e/0x280 __do_softirq+0xbb/0x271 irq_exit_rcu+0x97/0xa0 common_interrupt+0x7f/0xa0 </IRQ> asm_common_interrupt+0x1e/0x40 RIP: 0010:bpf_prog_1835a9241238291a_tw_egress+0x5/0xbac ? __cgroup_bpf_run_filter_skb+0x378/0x4e0 ? do_softirq+0x34/0x70 ? ip6_finish_output2+0x266/0x590 ? ip6_finish_output+0x66/0xa0 ? ip6_output+0x6c/0x130 ? ip6_xmit+0x279/0x550 ? ip6_dst_check+0x61/0xd0 [...] Using drgn [0] to dump the percpu buffer contents showed that on this CPU slot 0 is still available, but slots 1-7 are occupied and those tasks in slots 1-7 mostly don't exist any more. So we might have issues in bpf_cgroup_storage_unset(). Further debugging confirmed that there is a bug in bpf_cgroup_storage_unset(). Currently, it tries to unset "current" slot with searching from the start. So the following sequence is possible: 1. A task is running and claims slot 0 2. Running BPF program is done, and it checked slot 0 has the "task" and ready to reset it to NULL (not yet). 3. An interrupt happens, another BPF program runs and it claims slot 1 with the *same* task. 4. The unset() in interrupt context releases slot 0 since it matches "task". 5. Interrupt is done, the task in process context reset slot 0. At the end, slot 1 is not reset and the same process can continue to occupy slots 2-7 and finally, when the above step 1-5 is repeated again, step 3 BPF program won't be able to claim an empty slot and a warning will be issued. To fix the issue, for unset() function, we should traverse from the last slot to the first. This way, the above issue can be avoided. The same reverse traversal should also be done in bpf_get_local_storage() helper itself. Otherwise, incorrect local storage may be returned to BPF program. [0] https://github.com/osandov/drgn Fixes: b910eaaaa4b8 ("bpf: Fix NULL pointer dereference in bpf_get_local_storage() helper") Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/bpf/20210810010413.1976277-1-yhs@fb.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-03bpf: Fix NULL pointer dereference in bpf_get_local_storage() helperYonghong Song2-6/+14
commit b910eaaaa4b89976ef02e5d6448f3f73dc671d91 upstream. Jiri Olsa reported a bug ([1]) in kernel where cgroup local storage pointer may be NULL in bpf_get_local_storage() helper. There are two issues uncovered by this bug: (1). kprobe or tracepoint prog incorrectly sets cgroup local storage before prog run, (2). due to change from preempt_disable to migrate_disable, preemption is possible and percpu storage might be overwritten by other tasks. This issue (1) is fixed in [2]. This patch tried to address issue (2). The following shows how things can go wrong: task 1: bpf_cgroup_storage_set() for percpu local storage preemption happens task 2: bpf_cgroup_storage_set() for percpu local storage preemption happens task 1: run bpf program task 1 will effectively use the percpu local storage setting by task 2 which will be either NULL or incorrect ones. Instead of just one common local storage per cpu, this patch fixed the issue by permitting 8 local storages per cpu and each local storage is identified by a task_struct pointer. This way, we allow at most 8 nested preemption between bpf_cgroup_storage_set() and bpf_cgroup_storage_unset(). The percpu local storage slot is released (calling bpf_cgroup_storage_unset()) by the same task after bpf program finished running. bpf_test_run() is also fixed to use the new bpf_cgroup_storage_set() interface. The patch is tested on top of [2] with reproducer in [1]. Without this patch, kernel will emit error in 2-3 minutes. With this patch, after one hour, still no error. [1] https://lore.kernel.org/bpf/CAKH8qBuXCfUz=w8L+Fj74OaUpbosO29niYwTki7e3Ag044_aww@mail.gmail.com/T [2] https://lore.kernel.org/bpf/20210309185028.3763817-1-yhs@fb.com Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Roman Gushchin <guro@fb.com> Link: https://lore.kernel.org/bpf/20210323055146.3334476-1-yhs@fb.com Cc: <stable@vger.kernel.org> # 5.10.x Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-09-03bpf: Fix ringbuf helper function compatibilityDaniel Borkmann1-2/+6
commit 5b029a32cfe4600f5e10e36b41778506b90fd4de upstream. Commit 457f44363a88 ("bpf: Implement BPF ring buffer and verifier support for it") extended check_map_func_compatibility() by enforcing map -> helper function match, but not helper -> map type match. Due to this all of the bpf_ringbuf_*() helper functions could be used with a wrong map type such as array or hash map, leading to invalid access due to type confusion. Also, both BPF_FUNC_ringbuf_{submit,discard} have ARG_PTR_TO_ALLOC_MEM as argument and not a BPF map. Therefore, their check_map_func_compatibility() presence is incorrect since it's only for map type checking. Fixes: 457f44363a88 ("bpf: Implement BPF ring buffer and verifier support for it") Reported-by: Ryota Shiga (Flatt Security) Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-26bpf: Clear zext_dst of dead insnsIlya Leoshkevich1-0/+1
[ Upstream commit 45c709f8c71b525b51988e782febe84ce933e7e0 ] "access skb fields ok" verifier test fails on s390 with the "verifier bug. zext_dst is set, but no reg is defined" message. The first insns of the test prog are ... 0: 61 01 00 00 00 00 00 00 ldxw %r0,[%r1+0] 8: 35 00 00 01 00 00 00 00 jge %r0,0,1 10: 61 01 00 08 00 00 00 00 ldxw %r0,[%r1+8] ... and the 3rd one is dead (this does not look intentional to me, but this is a separate topic). sanitize_dead_code() converts dead insns into "ja -1", but keeps zext_dst. When opt_subreg_zext_lo32_rnd_hi32() tries to parse such an insn, it sees this discrepancy and bails. This problem can be seen only with JITs whose bpf_jit_needs_zext() returns true. Fix by clearning dead insns' zext_dst. The commits that contributed to this problem are: 1. 5aa5bd14c5f8 ("bpf: add initial suite for selftests"), which introduced the test with the dead code. 2. 5327ed3d44b7 ("bpf: verifier: mark verified-insn with sub-register zext flag"), which introduced the zext_dst flag. 3. 83a2881903f3 ("bpf: Account for BPF_FETCH in insn_has_def32()"), which introduced the sanity check. 4. 9183671af6db ("bpf: Fix leakage under speculation on mispredicted branches"), which bisect points to. It's best to fix this on stable branches that contain the second one, since that's the point where the inconsistency was introduced. Fixes: 5327ed3d44b7 ("bpf: verifier: mark verified-insn with sub-register zext flag") Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210812151811.184086-2-iii@linux.ibm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-18bpf: Fix integer overflow involving bucket_sizeTatsuhiko Yasumatsu1-2/+2
[ Upstream commit c4eb1f403243fc7bbb7de644db8587c03de36da6 ] In __htab_map_lookup_and_delete_batch(), hash buckets are iterated over to count the number of elements in each bucket (bucket_size). If bucket_size is large enough, the multiplication to calculate kvmalloc() size could overflow, resulting in out-of-bounds write as reported by KASAN: [...] [ 104.986052] BUG: KASAN: vmalloc-out-of-bounds in __htab_map_lookup_and_delete_batch+0x5ce/0xb60 [ 104.986489] Write of size 4194224 at addr ffffc9010503be70 by task crash/112 [ 104.986889] [ 104.987193] CPU: 0 PID: 112 Comm: crash Not tainted 5.14.0-rc4 #13 [ 104.987552] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 [ 104.988104] Call Trace: [ 104.988410] dump_stack_lvl+0x34/0x44 [ 104.988706] print_address_description.constprop.0+0x21/0x140 [ 104.988991] ? __htab_map_lookup_and_delete_batch+0x5ce/0xb60 [ 104.989327] ? __htab_map_lookup_and_delete_batch+0x5ce/0xb60 [ 104.989622] kasan_report.cold+0x7f/0x11b [ 104.989881] ? __htab_map_lookup_and_delete_batch+0x5ce/0xb60 [ 104.990239] kasan_check_range+0x17c/0x1e0 [ 104.990467] memcpy+0x39/0x60 [ 104.990670] __htab_map_lookup_and_delete_batch+0x5ce/0xb60 [ 104.990982] ? __wake_up_common+0x4d/0x230 [ 104.991256] ? htab_of_map_free+0x130/0x130 [ 104.991541] bpf_map_do_batch+0x1fb/0x220 [...] In hashtable, if the elements' keys have the same jhash() value, the elements will be put into the same bucket. By putting a lot of elements into a single bucket, the value of bucket_size can be increased to trigger the integer overflow. Triggering the overflow is possible for both callers with CAP_SYS_ADMIN and callers without CAP_SYS_ADMIN. It will be trivial for a caller with CAP_SYS_ADMIN to intentionally reach this overflow by enabling BPF_F_ZERO_SEED. As this flag will set the random seed passed to jhash() to 0, it will be easy for the caller to prepare keys which will be hashed into the same value, and thus put all the elements into the same bucket. If the caller does not have CAP_SYS_ADMIN, BPF_F_ZERO_SEED cannot be used. However, it will be still technically possible to trigger the overflow, by guessing the random seed value passed to jhash() (32bit) and repeating the attempt to trigger the overflow. In this case, the probability to trigger the overflow will be low and will take a very long time. Fix the integer overflow by calling kvmalloc_array() instead of kvmalloc() to allocate memory. Fixes: 057996380a42 ("bpf: Add batch ops to all htab bpf map") Signed-off-by: Tatsuhiko Yasumatsu <th.yasumatsu@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20210806150419.109658-1-th.yasumatsu@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-08-04bpf: Fix pointer arithmetic mask tightening under state pruningDaniel Borkmann1-10/+17
commit e042aa532c84d18ff13291d00620502ce7a38dda upstream. In 7fedb63a8307 ("bpf: Tighten speculative pointer arithmetic mask") we narrowed the offset mask for unprivileged pointer arithmetic in order to mitigate a corner case where in the speculative domain it is possible to advance, for example, the map value pointer by up to value_size-1 out-of- bounds in order to leak kernel memory via side-channel to user space. The verifier's state pruning for scalars leaves one corner case open where in the first verification path R_x holds an unknown scalar with an aux->alu_limit of e.g. 7, and in a second verification path that same register R_x, here denoted as R_x', holds an unknown scalar which has tighter bounds and would thus satisfy range_within(R_x, R_x') as well as tnum_in(R_x, R_x') for state pruning, yielding an aux->alu_limit of 3: Given the second path fits the register constraints for pruning, the final generated mask from aux->alu_limit will remain at 7. While technically not wrong for the non-speculative domain, it would however be possible to craft similar cases where the mask would be too wide as in 7fedb63a8307. One way to fix it is to detect the presence of unknown scalar map pointer arithmetic and force a deeper search on unknown scalars to ensure that we do not run into a masking mismatch. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-04bpf: verifier: Allocate idmap scratch in verifier envLorenz Bauer1-31/+15
commit c9e73e3d2b1eb1ea7ff068e05007eec3bd8ef1c9 upstream. func_states_equal makes a very short lived allocation for idmap, probably because it's too large to fit on the stack. However the function is called quite often, leading to a lot of alloc / free churn. Replace the temporary allocation with dedicated scratch space in struct bpf_verifier_env. Signed-off-by: Lorenz Bauer <lmb@cloudflare.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Edward Cree <ecree.xilinx@gmail.com> Link: https://lore.kernel.org/bpf/20210429134656.122225-4-lmb@cloudflare.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-04bpf: Remove superfluous aux sanitation on subprog rejectionDaniel Borkmann1-34/+0
commit 59089a189e3adde4cf85f2ce479738d1ae4c514d upstream. Follow-up to fe9a5ca7e370 ("bpf: Do not mark insn