summaryrefslogtreecommitdiff
path: root/kernel/sched
AgeCommit message (Collapse)AuthorFilesLines
2024-11-08sched/numa: Fix the potential null pointer dereference in task_numa_work()Shawn Wang1-2/+2
[ Upstream commit 9c70b2a33cd2aa6a5a59c5523ef053bd42265209 ] When running stress-ng-vm-segv test, we found a null pointer dereference error in task_numa_work(). Here is the backtrace: [323676.066985] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000020 ...... [323676.067108] CPU: 35 PID: 2694524 Comm: stress-ng-vm-se ...... [323676.067113] pstate: 23401009 (nzCv daif +PAN -UAO +TCO +DIT +SSBS BTYPE=--) [323676.067115] pc : vma_migratable+0x1c/0xd0 [323676.067122] lr : task_numa_work+0x1ec/0x4e0 [323676.067127] sp : ffff8000ada73d20 [323676.067128] x29: ffff8000ada73d20 x28: 0000000000000000 x27: 000000003e89f010 [323676.067130] x26: 0000000000080000 x25: ffff800081b5c0d8 x24: ffff800081b27000 [323676.067133] x23: 0000000000010000 x22: 0000000104d18cc0 x21: ffff0009f7158000 [323676.067135] x20: 0000000000000000 x19: 0000000000000000 x18: ffff8000ada73db8 [323676.067138] x17: 0001400000000000 x16: ffff800080df40b0 x15: 0000000000000035 [323676.067140] x14: ffff8000ada73cc8 x13: 1fffe0017cc72001 x12: ffff8000ada73cc8 [323676.067142] x11: ffff80008001160c x10: ffff000be639000c x9 : ffff8000800f4ba4 [323676.067145] x8 : ffff000810375000 x7 : ffff8000ada73974 x6 : 0000000000000001 [323676.067147] x5 : 0068000b33e26707 x4 : 0000000000000001 x3 : ffff0009f7158000 [323676.067149] x2 : 0000000000000041 x1 : 0000000000004400 x0 : 0000000000000000 [323676.067152] Call trace: [323676.067153] vma_migratable+0x1c/0xd0 [323676.067155] task_numa_work+0x1ec/0x4e0 [323676.067157] task_work_run+0x78/0xd8 [323676.067161] do_notify_resume+0x1ec/0x290 [323676.067163] el0_svc+0x150/0x160 [323676.067167] el0t_64_sync_handler+0xf8/0x128 [323676.067170] el0t_64_sync+0x17c/0x180 [323676.067173] Code: d2888001 910003fd f9000bf3 aa0003f3 (f9401000) [323676.067177] SMP: stopping secondary CPUs [323676.070184] Starting crashdump kernel... stress-ng-vm-segv in stress-ng is used to stress test the SIGSEGV error handling function of the system, which tries to cause a SIGSEGV error on return from unmapping the whole address space of the child process. Normally this program will not cause kernel crashes. But before the munmap system call returns to user mode, a potential task_numa_work() for numa balancing could be added and executed. In this scenario, since the child process has no vma after munmap, the vma_next() in task_numa_work() will return a null pointer even if the vma iterator restarts from 0. Recheck the vma pointer before dereferencing it in task_numa_work(). Fixes: 214dbc428137 ("sched: convert to vma iterator") Signed-off-by: Shawn Wang <shawnwang@linux.alibaba.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org # v6.2+ Link: https://lkml.kernel.org/r/20241025022208.125527-1-shawnwang@linux.alibaba.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-11-01sched/core: Disable page allocation in task_tick_mm_cid()Waiman Long1-1/+3
[ Upstream commit 73ab05aa46b02d96509cb029a8d04fca7bbde8c7 ] With KASAN and PREEMPT_RT enabled, calling task_work_add() in task_tick_mm_cid() may cause the following splat. [ 63.696416] BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 [ 63.696416] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 610, name: modprobe [ 63.696416] preempt_count: 10001, expected: 0 [ 63.696416] RCU nest depth: 1, expected: 1 This problem is caused by the following call trace. sched_tick() [ acquire rq->__lock ] -> task_tick_mm_cid() -> task_work_add() -> __kasan_record_aux_stack() -> kasan_save_stack() -> stack_depot_save_flags() -> alloc_pages_mpol_noprof() -> __alloc_pages_noprof() -> get_page_from_freelist() -> rmqueue() -> rmqueue_pcplist() -> __rmqueue_pcplist() -> rmqueue_bulk() -> rt_spin_lock() The rq lock is a raw_spinlock_t. We can't sleep while holding it. IOW, we can't call alloc_pages() in stack_depot_save_flags(). The task_tick_mm_cid() function with its task_work_add() call was introduced by commit 223baf9d17f2 ("sched: Fix performance regression introduced by mm_cid") in v6.4 kernel. Fortunately, there is a kasan_record_aux_stack_noalloc() variant that calls stack_depot_save_flags() while not allowing it to allocate new pages. To allow task_tick_mm_cid() to use task_work without page allocation, a new TWAF_NO_ALLOC flag is added to enable calling kasan_record_aux_stack_noalloc() instead of kasan_record_aux_stack() if set. The task_tick_mm_cid() function is modified to add this new flag. The possible downside is the missing stack trace in a KASAN report due to new page allocation required when task_work_add_noallloc() is called which should be rare. Fixes: 223baf9d17f2 ("sched: Fix performance regression introduced by mm_cid") Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20241010014432.194742-1-longman@redhat.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-10-10sched: psi: fix bogus pressure spikes from aggregation raceJohannes Weiner1-14/+12
commit 3840cbe24cf060ea05a585ca497814609f5d47d1 upstream. Brandon reports sporadic, non-sensical spikes in cumulative pressure time (total=) when reading cpu.pressure at a high rate. This is due to a race condition between reader aggregation and tasks changing states. While it affects all states and all resources captured by PSI, in practice it most likely triggers with CPU pressure, since scheduling events are so frequent compared to other resource events. The race context is the live snooping of ongoing stalls during a pressure read. The read aggregates per-cpu records for stalls that have concluded, but will also incorporate ad-hoc the duration of any active state that hasn't been recorded yet. This is important to get timely measurements of ongoing stalls. Those ad-hoc samples are calculated on-the-fly up to the current time on that CPU; since the stall hasn't concluded, it's expected that this is the minimum amount of stall time that will enter the per-cpu records once it does. The problem is that the path that concludes the state uses a CPU clock read that is not synchronized against aggregators; the clock is read outside of the seqlock protection. This allows aggregators to race and snoop a stall with a longer duration than will actually be recorded. With the recorded stall time being less than the last snapshot remembered by the aggregator, a subsequent sample will underflow and observe a bogus delta value, resulting in an erratic jump in pressure. Fix this by moving the clock read of the state change into the seqlock protection. This ensures no aggregation can snoop live stalls past the time that's recorded when the state concludes. Reported-by: Brandon Duffany <brandon@buildbuddy.io> Link: https://bugzilla.kernel.org/show_bug.cgi?id=219194 Link: https://lore.kernel.org/lkml/20240827121851.GB438928@cmpxchg.org/ Fixes: df77430639c9 ("psi: Reduce calls to sched_clock() in psi") Cc: stable@vger.kernel.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-10-10sched/core: Clear prev->dl_server in CFS pick fast pathYoussef Esmat1-0/+7
commit a741b82423f41501e301eb6f9820b45ca202e877 upstream. In case the previous pick was a DL server pick, ->dl_server might be set. Clear it in the fast path as well. Fixes: 63ba8422f876 ("sched/deadline: Introduce deadline servers") Signed-off-by: Youssef Esmat <youssefesmat@google.com> Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Juri Lelli <juri.lelli@redhat.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/7f7381ccba09efcb4a1c1ff808ed58385eccc222.1716811044.git.bristot@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-10-10sched/core: Add clearing of ->dl_server in put_prev_task_balance()Joel Fernandes (Google)1-8/+8
commit c245910049d04fbfa85bb2f5acd591c24e9907c7 upstream. Paths using put_prev_task_balance() need to do a pick shortly after. Make sure they also clear the ->dl_server on prev as a part of that. Fixes: 63ba8422f876 ("sched/deadline: Introduce deadline servers") Signed-off-by: "Joel Fernandes (Google)" <joel@joelfernandes.org> Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Juri Lelli <juri.lelli@redhat.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/d184d554434bedbad0581cb34656582d78655150.1716811044.git.bristot@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-10-04sched/pelt: Use rq_clock_task() for hw_pressureChen Yu1-1/+2
[ Upstream commit 84d265281d6cea65353fc24146280e0d86ac50cb ] commit 97450eb90965 ("sched/pelt: Remove shift of thermal clock") removed the decay_shift for hw_pressure. This commit uses the sched_clock_task() in sched_tick() while it replaces the sched_clock_task() with rq_clock_pelt() in __update_blocked_others(). This could bring inconsistence. One possible scenario I can think of is in ___update_load_sum(): u64 delta = now - sa->last_update_time 'now' could be calculated by rq_clock_pelt() from __update_blocked_others(), and last_update_time was calculated by rq_clock_task() previously from sched_tick(). Usually the former chases after the latter, it cause a very large 'delta' and brings unexpected behavior. Fixes: 97450eb90965 ("sched/pelt: Remove shift of thermal clock") Signed-off-by: Chen Yu <yu.c.chen@intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Hongyan Xia <hongyan.xia2@arm.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20240827112607.181206-1-yu.c.chen@intel.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-10-04sched/numa: Fix the vma scan starving issueYujie Liu1-0/+9
[ Upstream commit f22cde4371f3c624e947a35b075c06c771442a43 ] Problem statement: Since commit fc137c0ddab2 ("sched/numa: enhance vma scanning logic"), the Numa vma scan overhead has been reduced a lot. Meanwhile, the reducing of the vma scan might create less Numa page fault information. The insufficient information makes it harder for the Numa balancer to make decision. Later, commit b7a5b537c55c08 ("sched/numa: Complete scanning of partial VMAs regardless of PID activity") and commit 84db47ca7146d7 ("sched/numa: Fix mm numa_scan_seq based unconditional scan") are found to bring back part of the performance. Recently when running SPECcpu omnetpp_r on a 320 CPUs/2 Sockets system, a long duration of remote Numa node read was observed by PMU events: A few cores having ~500MB/s remote memory access for ~20 seconds. It causes high core-to-core variance and performance penalty. After the investigation, it is found that many vmas are skipped due to the active PID check. According to the trace events, in most cases, vma_is_accessed() returns false because the history access info stored in pids_active array has been cleared. Proposal: The main idea is to adjust vma_is_accessed() to let it return true easier. Thus compare the diff between mm->numa_scan_seq and vma->numab_state->prev_scan_seq. If the diff has exceeded the threshold, scan the vma. This patch especially helps the cases where there are small number of threads, like the process-based SPECcpu. Without this patch, if the SPECcpu process access the vma at the beginning, then sleeps for a long time, the pid_active array will be cleared. A a result, if this process is woken up again, it never has a chance to set prot_none anymore. Because only the first 2 times of access is granted for vma scan: (current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2 to be worse, no other threads within the task can help set the prot_none. This causes information lost. Raghavendra helped test current patch and got the positive result on the AMD platform: autonumabench NUMA01 base patched Amean syst-NUMA01 194.05 ( 0.00%) 165.11 * 14.92%* Amean elsp-NUMA01 324.86 ( 0.00%) 315.58 * 2.86%* Duration User 380345.36 368252.04 Duration System 1358.89 1156.23 Duration Elapsed 2277.45 2213.25 autonumabench NUMA02 Amean syst-NUMA02 1.12 ( 0.00%) 1.09 * 2.93%* Amean elsp-NUMA02 3.50 ( 0.00%) 3.56 * -1.84%* Duration User 1513.23 1575.48 Duration System 8.33 8.13 Duration Elapsed 28.59 29.71 kernbench Amean user-256 22935.42 ( 0.00%) 22535.19 * 1.75%* Amean syst-256 7284.16 ( 0.00%) 7608.72 * -4.46%* Amean elsp-256 159.01 ( 0.00%) 158.17 * 0.53%* Duration User 68816.41 67615.74 Duration System 21873.94 22848.08 Duration Elapsed 506.66 504.55 Intel 256 CPUs/2 Sockets: autonuma benchmark also shows improvements: v6.10-rc5 v6.10-rc5 +patch Amean syst-NUMA01 245.85 ( 0.00%) 230.84 * 6.11%* Amean syst-NUMA01_THREADLOCAL 205.27 ( 0.00%) 191.86 * 6.53%* Amean syst-NUMA02 18.57 ( 0.00%) 18.09 * 2.58%* Amean syst-NUMA02_SMT 2.63 ( 0.00%) 2.54 * 3.47%* Amean elsp-NUMA01 517.17 ( 0.00%) 526.34 * -1.77%* Amean elsp-NUMA01_THREADLOCAL 99.92 ( 0.00%) 100.59 * -0.67%* Amean elsp-NUMA02 15.81 ( 0.00%) 15.72 * 0.59%* Amean elsp-NUMA02_SMT 13.23 ( 0.00%) 12.89 * 2.53%* v6.10-rc5 v6.10-rc5 +patch Duration User 1064010.16 1075416.23 Duration System 3307.64 3104.66 Duration Elapsed 4537.54 4604.73 The SPECcpu remote node access issue disappears with the patch applied. Link: https://lkml.kernel.org/r/20240827112958.181388-1-yu.c.chen@intel.com Fixes: fc137c0ddab2 ("sched/numa: enhance vma scanning logic") Signed-off-by: Chen Yu <yu.c.chen@intel.com> Co-developed-by: Chen Yu <yu.c.chen@intel.com> Signed-off-by: Yujie Liu <yujie.liu@intel.com> Reported-by: Xiaoping Zhou <xiaoping.zhou@intel.com> Reviewed-and-tested-by: Raghavendra K T <raghavendra.kt@amd.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: "Chen, Tim C" <tim.c.chen@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Raghavendra K T <raghavendra.kt@amd.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-10-04sched/deadline: Fix schedstats vs deadline serversHuang Shijie1-22/+16
[ Upstream commit 9c602adb799e72ee537c0c7ca7e828c3fe2acad6 ] In dl_server_start(), when schedstats is enabled, the following happens: dl_server_start() dl_se->dl_server = 1; enqueue_dl_entity() update_stats_enqueue_dl() __schedstats_from_dl_se() dl_task_of() BUG_ON(dl_server(dl_se)); Since only tasks have schedstats and internal entries do not, avoid trying to update stats in this case. Fixes: 63ba8422f876 ("sched/deadline: Introduce deadline servers") Signed-off-by: Huang Shijie <shijie@os.amperecomputing.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lkml.kernel.org/r/20240829031111.12142-1-shijie@os.amperecomputing.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-10-04sched/fair: Make SCHED_IDLE entity be preempted in strict hierarchyTianchen Ding1-13/+9
[ Upstream commit faa42d29419def58d3c3e5b14ad4037f0af3b496 ] Consider the following cgroup: root | ------------------------ | | normal_cgroup idle_cgroup | | SCHED_IDLE task_A SCHED_NORMAL task_B According to the cgroup hierarchy, A should preempt B. But current check_preempt_wakeup_fair() treats cgroup se and task separately, so B will preempt A unexpectedly. Unify the wakeup logic by {c,p}se_is_idle only. This makes SCHED_IDLE of a task a relative policy that is effective only within its own cgroup, similar to the behavior of NICE. Also fix se_is_idle() definition when !CONFIG_FAIR_GROUP_SCHED. Fixes: 304000390f88 ("sched: Cgroup SCHED_IDLE support") Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Josh Don <joshdon@google.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lkml.kernel.org/r/20240626023505.1332596-1-dtcccc@linux.alibaba.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-08-04profiling: remove profile=sleep supportTetsuo Handa1-10/+0
The kernel sleep profile is no longer working due to a recursive locking bug introduced by commit 42a20f86dc19 ("sched: Add wrapper for get_wchan() to keep task blocked") Booting with the 'profile=sleep' kernel command line option added or executing # echo -n sleep > /sys/kernel/profiling after boot causes the system to lock up. Lockdep reports kthreadd/3 is trying to acquire lock: ffff93ac82e08d58 (&p->pi_lock){....}-{2:2}, at: get_wchan+0x32/0x70 but task is already holding lock: ffff93ac82e08d58 (&p->pi_lock){....}-{2:2}, at: try_to_wake_up+0x53/0x370 with the call trace being lock_acquire+0xc8/0x2f0 get_wchan+0x32/0x70 __update_stats_enqueue_sleeper+0x151/0x430 enqueue_entity+0x4b0/0x520 enqueue_task_fair+0x92/0x6b0 ttwu_do_activate+0x73/0x140 try_to_wake_up+0x213/0x370 swake_up_locked+0x20/0x50 complete+0x2f/0x40 kthread+0xfb/0x180 However, since nobody noticed this regression for more than two years, let's remove 'profile=sleep' support based on the assumption that nobody needs this functionality. Fixes: 42a20f86dc19 ("sched: Add wrapper for get_wchan() to keep task blocked") Cc: stable@vger.kernel.org # v5.16+ Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-07-29sched/core: Fix unbalance set_rq_online/offline() in sched_cpu_deactivate()Yang Yingliang1-0/+1
If cpuset_cpu_inactive() fails, set_rq_online() need be called to rollback. Fixes: 120455c514f7 ("sched: Fix hotplug vs CPU bandwidth control") Cc: stable@kernel.org Signed-off-by: Yang Yingliang <yangyingliang@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240703031610.587047-5-yangyingliang@huaweicloud.com
2024-07-29sched/core: Introduce sched_set_rq_on/offline() helperYang Yingliang1-14/+26
Introduce sched_set_rq_on/offline() helper, so it can be called in normal or error path simply. No functional changed. Cc: stable@kernel.org Signed-off-by: Yang Yingliang <yangyingliang@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240703031610.587047-4-yangyingliang@huaweicloud.com
2024-07-29sched/smt: Fix unbalance sched_smt_present dec/incYang Yingliang1-0/+1
I got the following warn report while doing stress test: jump label: negative count! WARNING: CPU: 3 PID: 38 at kernel/jump_label.c:263 static_key_slow_try_dec+0x9d/0xb0 Call Trace: <TASK> __static_key_slow_dec_cpuslocked+0x16/0x70 sched_cpu_deactivate+0x26e/0x2a0 cpuhp_invoke_callback+0x3ad/0x10d0 cpuhp_thread_fun+0x3f5/0x680 smpboot_thread_fn+0x56d/0x8d0 kthread+0x309/0x400 ret_from_fork+0x41/0x70 ret_from_fork_asm+0x1b/0x30 </TASK> Because when cpuset_cpu_inactive() fails in sched_cpu_deactivate(), the cpu offline failed, but sched_smt_present is decremented before calling sched_cpu_deactivate(), it leads to unbalanced dec/inc, so fix it by incrementing sched_smt_present in the error path. Fixes: c5511d03ec09 ("sched/smt: Make sched_smt_present track topology") Cc: stable@kernel.org Signed-off-by: Yang Yingliang <yangyingliang@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Chen Yu <yu.c.chen@intel.com> Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com> Link: https://lore.kernel.org/r/20240703031610.587047-3-yangyingliang@huaweicloud.com
2024-07-29sched/smt: Introduce sched_smt_present_inc/dec() helperYang Yingliang1-7/+19
Introduce sched_smt_present_inc/dec() helper, so it can be called in normal or error path simply. No functional changed. Cc: stable@kernel.org Signed-off-by: Yang Yingliang <yangyingliang@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20240703031610.587047-2-yangyingliang@huaweicloud.com
2024-07-29sched/cputime: Fix mul_u64_u64_div_u64() precision for cputimeZheng Zucheng1-0/+6
In extreme test scenarios: the 14th field utime in /proc/xx/stat is greater than sum_exec_runtime, utime = 18446744073709518790 ns, rtime = 135989749728000 ns In cputime_adjust() process, stime is greater than rtime due to mul_u64_u64_div_u64() precision problem. before call mul_u64_u64_div_u64(), stime = 175136586720000, rtime = 135989749728000, utime = 1416780000. after call mul_u64_u64_div_u64(), stime = 135989949653530 unsigned reversion occurs because rtime is less than stime. utime = rtime - stime = 135989749728000 - 135989949653530 = -199925530 = (u64)18446744073709518790 Trigger condition: 1). User task run in kernel mode most of time 2). ARM64 architecture 3). TICK_CPU_ACCOUNTING=y CONFIG_VIRT_CPU_ACCOUNTING_NATIVE is not set Fix mul_u64_u64_div_u64() conversion precision by reset stime to rtime Fixes: 3dc167ba5729 ("sched/cputime: Improve cputime_adjust()") Signed-off-by: Zheng Zucheng <zhengzucheng@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20240726023235.217771-1-zhengzucheng@huawei.com
2024-07-24sysctl: treewide: constify the ctl_table argument of proc_handlersJoel Granados3-8/+8
const qualify the struct ctl_table argument in the proc_handler function signatures. This is a prerequisite to moving the static ctl_table structs into .rodata data which will ensure that proc_handler function pointers cannot be modified. This patch has been generated by the following coccinelle script: ``` virtual patch @r1@ identifier ctl, write, buffer, lenp, ppos; identifier func !~ "appldata_(timer|interval)_handler|sched_(rt|rr)_handler|rds_tcp_skbuf_handler|proc_sctp_do_(hmac_alg|rto_min|rto_max|udp_port|alpha_beta|auth|probe_interval)"; @@ int func( - struct ctl_table *ctl + const struct ctl_table *ctl ,int write, void *buffer, size_t *lenp, loff_t *ppos); @r2@ identifier func, ctl, write, buffer, lenp, ppos; @@ int func( - struct ctl_table *ctl + const struct ctl_table *ctl ,int write, void *buffer, size_t *lenp, loff_t *ppos) { ... } @r3@ identifier func; @@ int func( - struct ctl_table * + const struct ctl_table * ,int , void *, size_t *, loff_t *); @r4@ identifier func, ctl; @@ int func( - struct ctl_table *ctl + const struct ctl_table *ctl ,int , void *, size_t *, loff_t *); @r5@ identifier func, write, buffer, lenp, ppos; @@ int func( - struct ctl_table * + const struct ctl_table * ,int write, void *buffer, size_t *lenp, loff_t *ppos); ``` * Code formatting was adjusted in xfs_sysctl.c to comply with code conventions. The xfs_stats_clear_proc_handler, xfs_panic_mask_proc_handler and xfs_deprecated_dointvec_minmax where adjusted. * The ctl_table argument in proc_watchdog_common was const qualified. This is called from a proc_handler itself and is calling back into another proc_handler, making it necessary to change it as part of the proc_handler migration. Co-developed-by: Thomas Weißschuh <linux@weissschuh.net> Signed-off-by: Thomas Weißschuh <linux@weissschuh.net> Co-developed-by: Joel Granados <j.granados@samsung.com> Signed-off-by: Joel Granados <j.granados@samsung.com>
2024-07-16Merge tag 'sched-core-2024-07-16' of ↵Linus Torvalds17-2044/+2130
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler updates from Ingo Molnar: - Update Daniel Bristot de Oliveira's entry in MAINTAINERS, and credit him in CREDITS - Harmonize the lock-yielding behavior on dynamically selected preemption models with static ones - Reorganize the code a bit: split out sched/syscalls.c to reduce the size of sched/core.c - Micro-optimize psi_group_change() - Fix set_load_weight() for SCHED_IDLE tasks - Misc cleanups & fixes * tag 'sched-core-2024-07-16' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched: Update MAINTAINERS and CREDITS sched/fair: set_load_weight() must also call reweight_task() for SCHED_IDLE tasks sched/psi: Optimise psi_group_change a bit sched/core: Drop spinlocks on contention iff kernel is preemptible sched/core: Move preempt_model_*() helpers from sched.h to preempt.h sched/balance: Skip unnecessary updates to idle load balancer's flags idle: Remove stale RCU comment sched/headers: Move struct pre-declarations to the beginning of the header sched/core: Clean up kernel/sched/sched.h a bit sched/core: Simplify prefetch_curr_exec_start() sched: Fix spelling in comments sched/syscalls: Split out kernel/sched/syscalls.c from kernel/sched/core.c
2024-07-15Merge tag 'rcu.2024.07.12a' of ↵Linus Torvalds1-7/+7
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu Pull RCU updates from Paul McKenney: - Update Tasks RCU and Tasks Rude RCU description in Requirements.rst and clarify rcu_assign_pointer() and rcu_dereference() ordering properties - Add lockdep assertions for RCU readers, limit inline wakeups for callback-bypass synchronize_rcu(), add an rcutree.nohz_full_patience_delay to reduce nohz_full OS jitter, add Uladzislau Rezki as RCU maintainer, and fix a subtle callback-migration memory-ordering issue - Remove a number of redundant memory barriers - Remove unnecessary bypass-list lock-contention mitigation, use parking API instead of open-coded ad-hoc equivalent, and upgrade obsolete comments - Revert avoidance of a deadlock that can no longer occur and properly synchronize Tasks Trace RCU checking of runqueues - Add tests for handling of double-call_rcu() bug, add missing MODULE_DESCRIPTION, and add a script that histograms the number of calls to RCU updaters - Fill out SRCU polled-grace-period API * tag 'rcu.2024.07.12a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (29 commits) rcu: Fix rcu_barrier() VS post CPUHP_TEARDOWN_CPU invocation rcu: Eliminate lockless accesses to rcu_sync->gp_count MAINTAINERS: Add Uladzislau Rezki as RCU maintainer rcu: Add rcutree.nohz_full_patience_delay to reduce nohz_full OS jitter rcu/exp: Remove redundant full memory barrier at the end of GP rcu: Remove full memory barrier on RCU stall printout rcu: Remove full memory barrier on boot time eqs sanity check rcu/exp: Remove superfluous full memory barrier upon first EQS snapshot rcu: Remove superfluous full memory barrier upon first EQS snapshot rcu: Remove full ordering on second EQS snapshot srcu: Fill out polled grace-period APIs srcu: Update cleanup_srcu_struct() comment srcu: Add NUM_ACTIVE_SRCU_POLL_OLDSTATE srcu: Disable interrupts directly in srcu_gp_end() rcu: Disable interrupts directly in rcu_gp_init() rcu/tree: Reduce wake up for synchronize_rcu() common case rcu/tasks: Fix stale task snaphot for Tasks Trace tools/rcu: Add rcu-updaters.sh script rcutorture: Add missing MODULE_DESCRIPTION() macros rcutorture: Fix rcu_torture_fwd_cb_cr() data race ...
2024-07-11Merge branch 'sched/urgent' into sched/core, to pick up fixes and refresh ↵Ingo Molnar6-20/+39
the branch Signed-off-by: Ingo Molnar <mingo@kernel.org>
2024-07-04sched/fair: set_load_weight() must also call reweight_task() for SCHED_IDLE ↵Tejun Heo3-18/+14
tasks When a task's weight is being changed, set_load_weight() is called with @update_load set. As weight changes aren't trivial for the fair class, set_load_weight() calls fair.c::reweight_task() for fair class tasks. However, set_load_weight() first tests task_has_idle_policy() on entry and skips calling reweight_task() for SCHED_IDLE tasks. This is buggy as SCHED_IDLE tasks are just fair tasks with a very low weight and they would incorrectly skip load, vlag and position updates. Fix it by updating reweight_task() to take struct load_weight as idle weight can't be expressed with prio and making set_load_weight() call reweight_task() for SCHED_IDLE tasks too when @update_load is set. Fixes: 9059393e4ec1 ("sched/fair: Use reweight_entity() for set_user_nice()") Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: stable@vger.kernel.org # v4.15+ Link: http://lkml.kernel.org/r/20240624102331.GI31592@noisy.programming.kicks-ass.net
2024-07-04sched/psi: Optimise psi_group_change a bitTvrtko Ursulin1-27/+27
The current code loops over the psi_states only to call a helper which then resolves back to the action needed for each state using a switch statement. That is effectively creating a double indirection of a kind which, given how all the states need to be explicitly listed and handled anyway, we can simply remove. Both the for loop and the switch statement that is. The benefit is both in the code size and CPU time spent in this function. YMMV but on my Steam Deck, while in a game, the patch makes the CPU usage go from ~2.4% down to ~1.2%. Text size at the same time went from 0x323 to 0x2c1. Signed-off-by: Tvrtko Ursulin <tursulin@ursulin.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: https://lkml.kernel.org/r/20240625135000.38652-1-tursulin@igalia.com
2024-07-01sched: Move psi_account_irqtime() out of update_rq_clock_task() hotpathJohn Stultz4-10/+30
It was reported that in moving to 6.1, a larger then 10% regression was seen in the performance of clock_gettime(CLOCK_THREAD_CPUTIME_ID,...). Using a simple reproducer, I found: 5.10: 100000000 calls in 24345994193 ns => 243.460 ns per call 100000000 calls in 24288172050 ns => 242.882 ns per call 100000000 calls in 24289135225 ns => 242.891 ns per call 6.1: 100000000 calls in 28248646742 ns => 282.486 ns per call 100000000 calls in 28227055067 ns => 282.271 ns per call 100000000 calls in 28177471287 ns => 281.775 ns per call The cause of this was finally narrowed down to the addition of psi_account_irqtime() in update_rq_clock_task(), in commit 52b1364ba0b1 ("sched/psi: Add PSI_IRQ to track IRQ/SOFTIRQ pressure"). In my initial attempt to resolve this, I leaned towards moving all accounting work out of the clock_gettime() call path, but it wasn't very pretty, so it will have to wait for a later deeper rework. Instead, Peter shared this approach: Rework psi_account_irqtime() to use its own psi_irq_time base for accounting, and move it out of the hotpath, calling it instead from sched_tick() and __schedule(). In testing this, we found the importance of ensuring psi_account_irqtime() is run under the rq_lock, which Johannes Weiner helpfully explained, so also add some lockdep annotations to make that requirement clear. With this change the performance is back in-line with 5.10: 6.1+fix: 100000000 calls in 24297324597 ns => 242.973 ns per call 100000000 calls in 24318869234 ns => 243.189 ns per call 100000000 calls in 24291564588 ns => 242.916 ns per call Reported-by: Jimmy Shiu <jimmyshiu@google.com> Originally-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: John Stultz <jstultz@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev> Reviewed-by: Qais Yousef <qyousef@layalina.io> Link: https://lore.kernel.org/r/20240618215909.4099720-1-jstultz@google.com
2024-07-01sched/deadline: Fix task_struct reference leakWander Lairson Costa1-1/+6
During the execution of the following stress test with linux-rt: stress-ng --cyclic 30 --timeout 30 --minimize --quiet kmemleak frequently reported a memory leak concerning the task_struct: unreferenced object 0xffff8881305b8000 (size 16136): comm "stress-ng", pid 614, jiffies 4294883961 (age 286.412s) object hex dump (first 32 bytes): 02 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .@.............. 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ debug hex dump (first 16 bytes): 53 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 S............... backtrace: [<00000000046b6790>] dup_task_struct+0x30/0x540 [<00000000c5ca0f0b>] copy_process+0x3d9/0x50e0 [<00000000ced59777>] kernel_clone+0xb0/0x770 [<00000000a50befdc>] __do_sys_clone+0xb6/0xf0 [<000000001dbf2008>] do_syscall_64+0x5d/0xf0 [<00000000552900ff>] entry_SYSCALL_64_after_hwframe+0x6e/0x76 The issue occurs in start_dl_timer(), which increments the task_struct reference count and sets a timer. The timer callback, dl_task_timer, is supposed to decrement the reference count upon expiration. However, if enqueue_task_dl() is called before the timer expires and cancels it, the reference count is not decremented, leading to the leak. This patch fixes the reference leak by ensuring the task_struct reference count is properly decremented when the timer is canceled. Fixes: feff2e65efd8 ("sched/deadline: Unthrottle PI boosted threads while enqueuing") Signed-off-by: Wander Lairson Costa <wander@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Juri Lelli <juri.lelli@redhat.com> Link: https://lore.kernel.org/r/20240620125618.11419-1-wander@redhat.com
2024-07-01Revert "sched/fair: Make sure to try to detach at least one movable task"Josh Don1-9/+3
This reverts commit b0defa7ae03ecf91b8bfd10ede430cff12fcbd06. b0defa7ae03ec changed the load balancing logic to ignore env.max_loop if all tasks examined to that point were pinned. The goal of the patch was to make it more likely to be able to detach a task buried in a long list of pinned tasks. However, this has the unfortunate side effect of creating an O(n) iteration in detach_tasks(), as we now must fully iterate every task on a cpu if all or most are pinned. Since this load balance code is done with rq lock held, and often in softirq context, it is very easy to trigger hard lockups. We observed such hard lockups with a user who affined O(10k) threads to a single cpu. When I discussed this with Vincent he initially suggested that we keep the limit on the number of tasks to detach, but increase the number of tasks we can search. However, after some back and forth on the mailing list, he recommended we instead revert the original patch, as it seems likely no one was actually getting hit by the original issue. Fixes: b0defa7ae03e ("sched/fair: Make sure to try to detach at least one movable task") Signed-off-by: Josh Don <joshdon@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20240620214450.316280-1-joshdon@google.com
2024-06-06rcu/tasks: Fix stale task snaphot for Tasks TraceFrederic Weisbecker1-7/+7
When RCU-TASKS-TRACE pre-gp takes a snapshot of the current task running on all online CPUs, no explicit ordering synchronizes properly with a context switch. This lack of ordering can permit the new task to miss pre-grace-period update-side accesses. The following diagram, courtesy of Paul, shows the possible bad scenario: CPU 0 CPU 1 ----- ----- // Pre-GP update side access WRITE_ONCE(*X, 1); smp_mb(); r0 = rq->curr; RCU_INIT_POINTER(rq->curr, TASK_B) spin_unlock(rq) rcu_read_lock_trace() r1 = X; /* ignore TASK_B */ Either r0==TASK_B or r1==1 is needed but neither is guaranteed. One possible solution to solve this is to wait for an RCU grace period at the beginning of the RCU-tasks-trace grace period before taking the current tasks snaphot. However this would introduce large additional latencies to RCU-tasks-trace grace periods. Another solution is to lock the target runqueue while taking the current task snapshot. This ensures that the update side sees the latest context switch and subsequent context switches will see the pre-grace-period update side accesses. This commit therefore adds runqueue locking to cpu_curr_snapshot(). Fixes: e386b6725798 ("rcu-tasks: Eliminate RCU Tasks Trace IPIs to online CPUs") Signed-off-by: Frederic Weisbecker <frederic@kernel.org> Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2024-06-05sched/balance: Skip unnecessary updates to idle load balancer's flagsTim Chen1-0/+7
We observed that the overhead on trigger_load_balance(), now renamed sched_balance_trigger(), has risen with a system's core counts. For an OLTP workload running 6.8 kernel on a 2 socket x86 systems having 96 cores/socket, we saw that 0.7% cpu cycles are spent in trigger_load_balance(). On older systems with fewer cores/socket, this function's overhead was less than 0.1%. The cause of this overhead was that there are multiple cpus calling kick_ilb(flags), updating the balancing work needed to a common idle load balancer cpu. The ilb_cpu's flags field got updated unconditionally with atomic_fetch_or(). The atomic read and writes to ilb_cpu's flags causes much cache bouncing and cpu cycles overhead. This is seen in the annotated profile below. kick_ilb(): if (ilb_cpu < 0) test %r14d,%r14d ↑ js 6c flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); mov $0x2d600,%rdi movslq %r14d,%r8 mov %rdi,%rdx add -0x7dd0c3e0(,%r8,8),%rdx arch_atomic_read(): 0.01 mov 0x64(%rdx),%esi 35.58 add $0x64,%rdx arch_atomic_fetch_or(): static __always_inline int arch_atomic_fetch_or(int i, atomic_t *v) { int val = arch_atomic_read(v); do { } while (!arch_atomic_try_cmpxchg(v, &val, val | i)); 0.03 157: mov %r12d,%ecx arch_atomic_try_cmpxchg(): return arch_try_cmpxchg(&v->counter, old, new); 0.00 mov %esi,%eax arch_atomic_fetch_or(): do { } while (!arch_atomic_try_cmpxchg(v, &val, val | i)); or %esi,%ecx arch_atomic_try_cmpxchg(): return arch_try_cmpxchg(&v->counter, old, new); 0.01 lock cmpxchg %ecx,(%rdx) 42.96 ↓ jne 2d2 kick_ilb(): With instrumentation, we found that 81% of the updates do not result in any change in the ilb_cpu's flags. That is, multiple cpus are asking the ilb_cpu to do the same things over and over again, before the ilb_cpu has a chance to run NOHZ load balance. Skip updates to ilb_cpu's flags if no new work needs to be done. Such updates do not change ilb_cpu's NOHZ flags. This requires an extra atomic read but it is less expensive than frequent unnecessary atomic updates that generate cache bounces. We saw that on the OLTP workload, cpu cycles from trigger_load_balance() (or sched_balance_trigger()) got reduced from 0.7% to 0.2%. Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Chen Yu <yu.c.chen@intel.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Link: https://lore.kernel.org/r/20240531205452.65781-1-tim.c.chen@linux.intel.com
2024-06-05idle: Remove stale RCU commentChristian Loehle1-6/+0
The call of rcu_idle_enter() from within cpuidle_idle_call() was removed in commit 1098582a0f6c ("sched,idle,rcu: Push rcu_idle deeper into the idle path") which makes the comment out of place. Signed-off-by: Christian Loehle <christian.loehle@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/5b936388-47df-4050-9229-6617a6c2bba5@arm.com
2024-06-05sched/headers: Move struct pre-declarations to the beginning of the headerIngo Molnar1-10/+6
There's a random number of structure pre-declaration lines in kernel/sched/sched.h, some of which are unnecessary duplicates. Move them to the head & order them a bit for readability. Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: linux-kernel@vger.kernel.org
2024-06-05sched/core: Clean up kernel/sched/sched.h a bitIngo Molnar1-132/+180
- Fix whitespace noise - Fix col80 linebreak damage where possible - Apply CodingStyle consistently - Use consistent #else and #endif comments - Use consistent vertical alignment - Use 'extern' consistently Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: linux-kernel@vger.kernel.org
2024-06-05sched/core: Simplify prefetch_curr_exec_start()Ingo Molnar1-2/+2
Remove unnecessary use of the address operator. Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: linux-kernel@vger.kernel.org
2024-05-27sched: Fix spelling in commentsIngo Molnar16-92/+92
Do a spell-checking pass. Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2024-05-27sched/syscalls: Split out kernel/sched/syscalls.c from kernel/sched/core.cIngo Molnar4-1773/+1818
core.c has become rather large, move most scheduler syscall related functionality into a separate file, syscalls.c. This is about ~15% of core.c's raw linecount. Move the alloc_user_cpus_ptr(), __rt_effective_prio(), rt_effective_prio(), uclamp_none(), uclamp_se_set() and uclamp_bucket_id() inlines to kernel/sched/sched.h. Internally export the __sched_setscheduler(), __sched_setaffinity(), __setscheduler_prio(), set_load_weight(), enqueue_task(), dequeue_task(), check_class_changed(), splice_balance_callbacks() and balance_callbacks() methods to better facilitate this. Move the new file's build to sched_policy.c, because it fits there semantically, but also because it's the smallest of the 4 build units under an allmodconfig build: -rw-rw-r-- 1 mingo mingo 7.3M May 27 12:35 kernel/sched/core.i -rw-rw-r-- 1 mingo mingo 6.4M May 27 12:36 kernel/sched/build_utility.i -rw-rw-r-- 1 mingo mingo 6.3M May 27 12:36 kernel/sched/fair.i -rw-rw-r-- 1 mingo mingo 5.8M May 27 12:36 kernel/sched/build_policy.i This better balances build time for scheduler subsystem rebuilds. I build-tested this new file as a standalone syscalls.o file for a bit, to make sure all the encapsulations & abstractions are robust. Also update/add my copyright notices to these files. Build time measurements: # -Before/+After: kepler:~/tip> perf stat -e 'cycles,instructions,duration_time' --sync --repeat 5 --pre 'rm -f kernel/sched/*.o' m kernel/sched/built-in.a >/dev/null Performance counter stats for 'm kernel/sched/built-in.a' (5 runs): - 71,938,508,607 cycles ( +- 0.17% ) + 71,992,916,493 cycles ( +- 0.22% ) - 106,214,780,964 instructions # 1.48 insn per cycle ( +- 0.01% ) + 105,450,231,154 instructions # 1.46 insn per cycle ( +- 0.01% ) - 5,878,232,620 ns duration_time ( +- 0.38% ) + 5,290,085,069 ns duration_time ( +- 0.21% ) - 5.8782 +- 0.0221 seconds time elapsed ( +- 0.38% ) + 5.2901 +- 0.0111 seconds time elapsed ( +- 0.21% ) Build time improvement of -11.1% (duration_time) is expected: the parallel build time of the scheduler subsystem is determined by the largest, slowest to build object file, which is kernel/sched/core.o. By moving ~15% of its complexity into another build unit, we reduced build time by -11%. Measured cycles spent on building is within its ~0.2% stddev noise envelope. The -0.7% reduction in instructions spent on building the scheduler is statistically reliable and somewhat surprising - I can only speculate: maybe compilers aren't that efficient at building & optimizing 10+ KLOC files (core.c), and it's an overall win to balance the linecount a bit. Anyway, this might be a data point that suggests that reducing the linecount of our largest files will improve not just code readability and maintainability, but might also improve build times a bit. Code generation got a bit worse, by 0.5kb text on an x86 defconfig build: # -Before/+After: kepler:~/tip> size vmlinux text data bss dec hex filename -26475475 10439178 1740804 38655457 24dd5e1 vmlinux +26476003 10439178 1740804 38655985 24dd7f1 vmlinux kepler:~/tip> size kernel/sched/built-in.a text data bss dec hex filename - 76056 30025 489 106570 1a04a kernel/sched/core.o (ex kernel/sched/built-in.a) + 63452 29453 489 93394 16cd2 kernel/sched/core.o (ex kernel/sched/built-in.a) 44299 2181 104 46584 b5f8 kernel/sched/fair.o (ex kernel/sched/built-in.a) - 42764 3424 120 46308 b4e4 kernel/sched/build_policy.o (ex kernel/sched/built-in.a) + 55651 4044 120 59815 e9a7 kernel/sched/build_policy.o (ex kernel/sched/built-in.a) 44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a) 44866 12655 2192 59713 e941 kernel/sched/build_utility.o (ex kernel/sched/built-in.a) This is primarily due to the extra functions exported, and the size gets exaggerated somewhat by __pfx CFI function padding: ffffffff810cc710 <__pfx_enqueue_task>: ffffffff810cc710: 90 nop ffffffff810cc711: 90 nop ffffffff810cc712: 90 nop ffffffff810cc713: 90 nop ffffffff810cc714: 90 nop ffffffff810cc715: 90 nop ffffffff810cc716: 90 nop ffffffff810cc717: 90 nop ffffffff810cc718: 90 nop ffffffff810cc719: 90 nop ffffffff810cc71a: 90 nop ffffffff810cc71b: 90 nop ffffffff810cc71c: 90 nop ffffffff810cc71d: 90 nop ffffffff810cc71e: 90 nop ffffffff810cc71f: 90 nop AFAICS the cost is primarily not to core.o and fair.o though (which contain most performance sensitive scheduler functions), only to syscalls.o that get called with much lower frequency - so I think this is an acceptable trade-off for better code separation. Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Link: https://lore.kernel.org/r/20240407084319.1462211-2-mingo@kernel.org
2024-05-21