summaryrefslogtreecommitdiff
path: root/kernel/trace
AgeCommit message (Collapse)AuthorFilesLines
2021-06-23tracing: Do no increment trace_clock_global() by oneSteven Rostedt (VMware)1-3/+3
commit 89529d8b8f8daf92d9979382b8d2eb39966846ea upstream. The trace_clock_global() tries to make sure the events between CPUs is somewhat in order. A global value is used and updated by the latest read of a clock. If one CPU is ahead by a little, and is read by another CPU, a lock is taken, and if the timestamp of the other CPU is behind, it will simply use the other CPUs timestamp. The lock is also only taken with a "trylock" due to tracing, and strange recursions can happen. The lock is not taken at all in NMI context. In the case where the lock is not able to be taken, the non synced timestamp is returned. But it will not be less than the saved global timestamp. The problem arises because when the time goes "backwards" the time returned is the saved timestamp plus 1. If the lock is not taken, and the plus one to the timestamp is returned, there's a small race that can cause the time to go backwards! CPU0 CPU1 ---- ---- trace_clock_global() { ts = clock() [ 1000 ] trylock(clock_lock) [ success ] global_ts = ts; [ 1000 ] <interrupted by NMI> trace_clock_global() { ts = clock() [ 999 ] if (ts < global_ts) ts = global_ts + 1 [ 1001 ] trylock(clock_lock) [ fail ] return ts [ 1001] } unlock(clock_lock); return ts; [ 1000 ] } trace_clock_global() { ts = clock() [ 1000 ] if (ts < global_ts) [ false 1000 == 1000 ] trylock(clock_lock) [ success ] global_ts = ts; [ 1000 ] unlock(clock_lock) return ts; [ 1000 ] } The above case shows to reads of trace_clock_global() on the same CPU, but the second read returns one less than the first read. That is, time when backwards, and this is not what is allowed by trace_clock_global(). This was triggered by heavy tracing and the ring buffer checker that tests for the clock going backwards: Ring buffer clock went backwards: 20613921464 -> 20613921463 ------------[ cut here ]------------ WARNING: CPU: 2 PID: 0 at kernel/trace/ring_buffer.c:3412 check_buffer+0x1b9/0x1c0 Modules linked in: [..] [CPU: 2]TIME DOES NOT MATCH expected:20620711698 actual:20620711697 delta:6790234 before:20613921463 after:20613921463 [20613915818] PAGE TIME STAMP [20613915818] delta:0 [20613915819] delta:1 [20613916035] delta:216 [20613916465] delta:430 [20613916575] delta:110 [20613916749] delta:174 [20613917248] delta:499 [20613917333] delta:85 [20613917775] delta:442 [20613917921] delta:146 [20613918321] delta:400 [20613918568] delta:247 [20613918768] delta:200 [20613919306] delta:538 [20613919353] delta:47 [20613919980] delta:627 [20613920296] delta:316 [20613920571] delta:275 [20613920862] delta:291 [20613921152] delta:290 [20613921464] delta:312 [20613921464] delta:0 TIME EXTEND [20613921464] delta:0 This happened more than once, and always for an off by one result. It also started happening after commit aafe104aa9096 was added. Cc: stable@vger.kernel.org Fixes: aafe104aa9096 ("tracing: Restructure trace_clock_global() to never block") Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-23tracing: Do not stop recording comms if the trace file is being readSteven Rostedt (VMware)1-9/+0
commit 4fdd595e4f9a1ff6d93ec702eaecae451cfc6591 upstream. A while ago, when the "trace" file was opened, tracing was stopped, and code was added to stop recording the comms to saved_cmdlines, for mapping of the pids to the task name. Code has been added that only records the comm if a trace event occurred, and there's no reason to not trace it if the trace file is opened. Cc: stable@vger.kernel.org Fixes: 7ffbd48d5cab2 ("tracing: Cache comms only after an event occurred") Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-23tracing: Do not stop recording cmdlines when tracing is offSteven Rostedt (VMware)1-2/+0
commit 85550c83da421fb12dc1816c45012e1e638d2b38 upstream. The saved_cmdlines is used to map pids to the task name, such that the output of the tracing does not just show pids, but also gives a human readable name for the task. If the name is not mapped, the output looks like this: <...>-1316 [005] ...2 132.044039: ... Instead of this: gnome-shell-1316 [005] ...2 132.044039: ... The names are updated when tracing is running, but are skipped if tracing is stopped. Unfortunately, this stops the recording of the names if the top level tracer is stopped, and not if there's other tracers active. The recording of a name only happens when a new event is written into a ring buffer, so there is no need to test if tracing is on or not. If tracing is off, then no event is written and no need to test if tracing is off or not. Remove the check, as it hides the names of tasks for events in the instance buffers. Cc: stable@vger.kernel.org Fixes: 7ffbd48d5cab2 ("tracing: Cache comms only after an event occurred") Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-16tracing: Correct the length check which causes memory corruptionLiangyan1-1/+1
commit 3e08a9f9760f4a70d633c328a76408e62d6f80a3 upstream. We've suffered from severe kernel crashes due to memory corruption on our production environment, like, Call Trace: [1640542.554277] general protection fault: 0000 [#1] SMP PTI [1640542.554856] CPU: 17 PID: 26996 Comm: python Kdump: loaded Tainted:G [1640542.556629] RIP: 0010:kmem_cache_alloc+0x90/0x190 [1640542.559074] RSP: 0018:ffffb16faa597df8 EFLAGS: 00010286 [1640542.559587] RAX: 0000000000000000 RBX: 0000000000400200 RCX: 0000000006e931bf [1640542.560323] RDX: 0000000006e931be RSI: 0000000000400200 RDI: ffff9a45ff004300 [1640542.560996] RBP: 0000000000400200 R08: 0000000000023420 R09: 0000000000000000 [1640542.561670] R10: 0000000000000000 R11: 0000000000000000 R12: ffffffff9a20608d [1640542.562366] R13: ffff9a45ff004300 R14: ffff9a45ff004300 R15: 696c662f65636976 [1640542.563128] FS: 00007f45d7c6f740(0000) GS:ffff9a45ff840000(0000) knlGS:0000000000000000 [1640542.563937] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [1640542.564557] CR2: 00007f45d71311a0 CR3: 000000189d63e004 CR4: 00000000003606e0 [1640542.565279] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [1640542.566069] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [1640542.566742] Call Trace: [1640542.567009] anon_vma_clone+0x5d/0x170 [1640542.567417] __split_vma+0x91/0x1a0 [1640542.567777] do_munmap+0x2c6/0x320 [1640542.568128] vm_munmap+0x54/0x70 [1640542.569990] __x64_sys_munmap+0x22/0x30 [1640542.572005] do_syscall_64+0x5b/0x1b0 [1640542.573724] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [1640542.575642] RIP: 0033:0x7f45d6e61e27 James Wang has reproduced it stably on the latest 4.19 LTS. After some debugging, we finally proved that it's due to ftrace buffer out-of-bound access using a debug tool as follows: [ 86.775200] BUG: Out-of-bounds write at addr 0xffff88aefe8b7000 [ 86.780806] no_context+0xdf/0x3c0 [ 86.784327] __do_page_fault+0x252/0x470 [ 86.788367] do_page_fault+0x32/0x140 [ 86.792145] page_fault+0x1e/0x30 [ 86.795576] strncpy_from_unsafe+0x66/0xb0 [ 86.799789] fetch_memory_string+0x25/0x40 [ 86.804002] fetch_deref_string+0x51/0x60 [ 86.808134] kprobe_trace_func+0x32d/0x3a0 [ 86.812347] kprobe_dispatcher+0x45/0x50 [ 86.816385] kprobe_ftrace_handler+0x90/0xf0 [ 86.820779] ftrace_ops_assist_func+0xa1/0x140 [ 86.825340] 0xffffffffc00750bf [ 86.828603] do_sys_open+0x5/0x1f0 [ 86.832124] do_syscall_64+0x5b/0x1b0 [ 86.835900] entry_SYSCALL_64_after_hwframe+0x44/0xa9 commit b220c049d519 ("tracing: Check length before giving out the filter buffer") adds length check to protect trace data overflow introduced in 0fc1b09ff1ff, seems that this fix can't prevent overflow entirely, the length check should also take the sizeof entry->array[0] into account, since this array[0] is filled the length of trace data and occupy addtional space and risk overflow. Link: https://lkml.kernel.org/r/20210607125734.1770447-1-liangyan.peng@linux.alibaba.com Cc: stable@vger.kernel.org Cc: Ingo Molnar <mingo@redhat.com> Cc: Xunlei Pang <xlpang@linux.alibaba.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Fixes: b220c049d519 ("tracing: Check length before giving out the filter buffer") Reviewed-by: Xunlei Pang <xlpang@linux.alibaba.com> Reviewed-by: yinbinbin <yinbinbin@alibabacloud.com> Reviewed-by: Wetp Zhang <wetp.zy@linux.alibaba.com> Tested-by: James Wang <jnwang@linux.alibaba.com> Signed-off-by: Liangyan <liangyan.peng@linux.alibaba.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-16ftrace: Do not blindly read the ip address in ftrace_bug()Steven Rostedt (VMware)1-1/+7
commit 6c14133d2d3f768e0a35128faac8aa6ed4815051 upstream. It was reported that a bug on arm64 caused a bad ip address to be used for updating into a nop in ftrace_init(), but the error path (rightfully) returned -EINVAL and not -EFAULT, as the bug caused more than one error to occur. But because -EINVAL was returned, the ftrace_bug() tried to report what was at the location of the ip address, and read it directly. This caused the machine to panic, as the ip was not pointing to a valid memory address. Instead, read the ip address with copy_from_kernel_nofault() to safely access the memory, and if it faults, report that the address faulted, otherwise report what was in that location. Link: https://lore.kernel.org/lkml/20210607032329.28671-1-mark-pk.tsai@mediatek.com/ Cc: stable@vger.kernel.org Fixes: 05736a427f7e1 ("ftrace: warn on failure to disable mcount callers") Reported-by: Mark-PK Tsai <mark-pk.tsai@mediatek.com> Tested-by: Mark-PK Tsai <mark-pk.tsai@mediatek.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-06-10bpf, lockdown, audit: Fix buggy SELinux lockdown permission checksDaniel Borkmann1-20/+12
[ Upstream commit ff40e51043af63715ab413995ff46996ecf9583f ] Commit 59438b46471a ("security,lockdown,selinux: implement SELinux lockdown") added an implementation of the locked_down LSM hook to SELinux, with the aim to restrict which domains are allowed to perform operations that would breach lockdown. This is indirectly also getting audit subsystem involved to report events. The latter is problematic, as reported by Ondrej and Serhei, since it can bring down the whole system via audit: 1) The audit events that are triggered due to calls to security_locked_down() can OOM kill a machine, see below details [0]. 2) It also seems to be causing a deadlock via avc_has_perm()/slow_avc_audit() when trying to wake up kauditd, for example, when using trace_sched_switch() tracepoint, see details in [1]. Triggering this was not via some hypothetical corner case, but with existing tools like runqlat & runqslower from bcc, for example, which make use of this tracepoint. Rough call sequence goes like: rq_lock(rq) -> -------------------------+ trace_sched_switch() -> | bpf_prog_xyz() -> +-> deadlock selinux_lockdown() -> | audit_log_end() -> | wake_up_interruptible() -> | try_to_wake_up() -> | rq_lock(rq) --------------+ What's worse is that the intention of 59438b46471a to further restrict lockdown settings for specific applications in respect to the global lockdown policy is completely broken for BPF. The SELinux policy rule for the current lockdown check looks something like this: allow <who> <who> : lockdown { <reason> }; However, this doesn't match with the 'current' task where the security_locked_down() is executed, example: httpd does a syscall. There is a tracing program attached to the syscall which triggers a BPF program to run, which ends up doing a bpf_probe_read_kernel{,_str}() helper call. The selinux_lockdown() hook does the permission check against 'current', that is, httpd in this example. httpd has literally zero relation to this tracing program, and it would be nonsensical having to write an SELinux policy rule against httpd to let the tracing helper pass. The policy in this case needs to be against the entity that is installing the BPF program. For example, if bpftrace would generate a histogram of syscall counts by user space application: bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @[comm] = count(); }' bpftrace would then go and generate a BPF program from this internally. One way of doing it [for the sake of the example] could be to call bpf_get_current_task() helper and then access current->comm via one of bpf_probe_read_kernel{,_str}() helpers. So the program itself has nothing to do with httpd or any other random app doing a syscall here. The BPF program _explicitly initiated_ the lockdown check. The allow/deny policy belongs in the context of bpftrace: meaning, you want to grant bpftrace access to use these helpers, but other tracers on the system like my_random_tracer _not_. Therefore fix all three issues at the same time by taking a completely different approach for the security_locked_down() hook, that is, move the check into the program verification phase where we actually retrieve the BPF func proto. This also reliably gets the task (current) that is trying to install the BPF tracing program, e.g. bpftrace/bcc/perf/systemtap/etc, and it also fixes the OOM since we're moving this out of the BPF helper's fast-path which can be called several millions of times per second. The check is then also in line with other security_locked_down() hooks in the system where the enforcement is performed at open/load time, for example, open_kcore() for /proc/kcore access or module_sig_check() for module signatures just to pick few random ones. What's out of scope in the fix as well as in other security_locked_down() hook locations /outside/ of BPF subsystem is that if the lockdown policy changes on the fly there is no retrospective action. This requires a different discussion, potentially complex infrastructure, and it's also not clear whether this can be solved generically. Either way, it is out of scope for a suitable stable fix which this one is targeting. Note that the breakage is specifically on 59438b46471a where it started to rely on 'current' as UAPI behavior, and _not_ earlier infrastructure such as 9d1f8be5cf42 ("bpf: Restrict bpf when kernel lockdown is in confidentiality mode"). [0] https://bugzilla.redhat.com/show_bug.cgi?id=1955585, Jakub Hrozek says: I starting seeing this with F-34. When I run a container that is traced with BPF to record the syscalls it is doing, auditd is flooded with messages like: type=AVC msg=audit(1619784520.593:282387): avc: denied { confidentiality } for pid=476 comm="auditd" lockdown_reason="use of bpf to read kernel RAM" scontext=system_u:system_r:auditd_t:s0 tcontext=system_u:system_r:auditd_t:s0 tclass=lockdown permissive=0 This seems to be leading to auditd running out of space in the backlog buffer and eventually OOMs the machine. [...] auditd running at 99% CPU presumably processing all the messages, eventually I get: Apr 30 12:20:42 fedora kernel: audit: backlog limit exceeded Apr 30 12:20:42 fedora kernel: audit: backlog limit exceeded Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152579 > audit_backlog_limit=64 Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152626 > audit_backlog_limit=64 Apr 30 12:20:42 fedora kernel: audit: audit_backlog=2152694 > audit_backlog_limit=64 Apr 30 12:20:42 fedora kernel: audit: audit_lost=6878426 audit_rate_limit=0 audit_backlog_limit=64 Apr 30 12:20:45 fedora kernel: oci-seccomp-bpf invoked oom-killer: gfp_mask=0x100cca(GFP_HIGHUSER_MOVABLE), order=0, oom_score_adj=-1000 Apr 30 12:20:45 fedora kernel: CPU: 0 PID: 13284 Comm: oci-seccomp-bpf Not tainted 5.11.12-300.fc34.x86_64 #1 Apr 30 12:20:45 fedora kernel: Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014 [...] [1] https://lore.kernel.org/linux-audit/CANYvDQN7H5tVp47fbYcRasv4XF07eUbsDwT_eDCHXJUj43J7jQ@mail.gmail.com/, Serhei Makarov says: Upstream kernel 5.11.0-rc7 and later was found to deadlock during a bpf_probe_read_compat() call within a sched_switch tracepoint. The problem is reproducible with the reg_alloc3 testcase from SystemTap's BPF backend testsuite on x86_64 as well as the runqlat, runqslower tools from bcc on ppc64le. Example stack trace: [...] [ 730.868702] stack backtrace: [ 730.869590] CPU: 1 PID: 701 Comm: in:imjournal Not tainted, 5.12.0-0.rc2.20210309git144c79ef3353.166.fc35.x86_64 #1 [ 730.871605] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 [ 730.873278] Call Trace: [ 730.873770] dump_stack+0x7f/0xa1 [ 730.874433] check_noncircular+0xdf/0x100 [ 730.875232] __lock_acquire+0x1202/0x1e10 [ 730.876031] ? __lock_acquire+0xfc0/0x1e10 [ 730.876844] lock_acquire+0xc2/0x3a0 [ 730.877551] ? __wake_up_common_lock+0x52/0x90 [ 730.878434] ? lock_acquire+0xc2/0x3a0 [ 730.879186] ? lock_is_held_type+0xa7/0x120 [ 730.880044] ? skb_queue_tail+0x1b/0x50 [ 730.880800] _raw_spin_lock_irqsave+0x4d/0x90 [ 730.881656] ? __wake_up_common_lock+0x52/0x90 [ 730.882532] __wake_up_common_lock+0x52/0x90 [ 730.883375] audit_log_end+0x5b/0x100 [ 730.884104] slow_avc_audit+0x69/0x90 [ 730.884836] avc_has_perm+0x8b/0xb0 [ 730.885532] selinux_lockdown+0xa5/0xd0 [ 730.886297] security_locked_down+0x20/0x40 [ 730.887133] bpf_probe_read_compat+0x66/0xd0 [ 730.887983] bpf_prog_250599c5469ac7b5+0x10f/0x820 [ 730.888917] trace_call_bpf+0xe9/0x240 [ 730.889672] perf_trace_run_bpf_submit+0x4d/0xc0 [ 730.890579] perf_trace_sched_switch+0x142/0x180 [ 730.891485] ? __schedule+0x6d8/0xb20 [ 730.892209] __schedule+0x6d8/0xb20 [ 730.892899] schedule+0x5b/0xc0 [ 730.893522] exit_to_user_mode_prepare+0x11d/0x240 [ 730.894457] syscall_exit_to_user_mode+0x27/0x70 [ 730.895361] entry_SYSCALL_64_after_hwframe+0x44/0xae [...] Fixes: 59438b46471a ("security,lockdown,selinux: implement SELinux lockdown") Reported-by: Ondrej Mosnacek <omosnace@redhat.com> Reported-by: Jakub Hrozek <jhrozek@redhat.com> Reported-by: Serhei Makarov <smakarov@redhat.com> Reported-by: Jiri Olsa <jolsa@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Tested-by: Jiri Olsa <jolsa@redhat.com> Cc: Paul Moore <paul@paul-moore.com> Cc: James Morris <jamorris@linux.microsoft.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Frank Eigler <fche@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/bpf/01135120-8bf7-df2e-cff0-1d73f1f841c3@iogearbox.net Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-11tracing: Restructure trace_clock_global() to never blockSteven Rostedt (VMware)1-14/+30
commit aafe104aa9096827a429bc1358f8260ee565b7cc upstream. It was reported that a fix to the ring buffer recursion detection would cause a hung machine when performing suspend / resume testing. The following backtrace was extracted from debugging that case: Call Trace: trace_clock_global+0x91/0xa0 __rb_reserve_next+0x237/0x460 ring_buffer_lock_reserve+0x12a/0x3f0 trace_buffer_lock_reserve+0x10/0x50 __trace_graph_return+0x1f/0x80 trace_graph_return+0xb7/0xf0 ? trace_clock_global+0x91/0xa0 ftrace_return_to_handler+0x8b/0xf0 ? pv_hash+0xa0/0xa0 return_to_handler+0x15/0x30 ? ftrace_graph_caller+0xa0/0xa0 ? trace_clock_global+0x91/0xa0 ? __rb_reserve_next+0x237/0x460 ? ring_buffer_lock_reserve+0x12a/0x3f0 ? trace_event_buffer_lock_reserve+0x3c/0x120 ? trace_event_buffer_reserve+0x6b/0xc0 ? trace_event_raw_event_device_pm_callback_start+0x125/0x2d0 ? dpm_run_callback+0x3b/0xc0 ? pm_ops_is_empty+0x50/0x50 ? platform_get_irq_byname_optional+0x90/0x90 ? trace_device_pm_callback_start+0x82/0xd0 ? dpm_run_callback+0x49/0xc0 With the following RIP: RIP: 0010:native_queued_spin_lock_slowpath+0x69/0x200 Since the fix to the recursion detection would allow a single recursion to happen while tracing, this lead to the trace_clock_global() taking a spin lock and then trying to take it again: ring_buffer_lock_reserve() { trace_clock_global() { arch_spin_lock() { queued_spin_lock_slowpath() { /* lock taken */ (something else gets traced by function graph tracer) ring_buffer_lock_reserve() { trace_clock_global() { arch_spin_lock() { queued_spin_lock_slowpath() { /* DEAD LOCK! */ Tracing should *never* block, as it can lead to strange lockups like the above. Restructure the trace_clock_global() code to instead of simply taking a lock to update the recorded "prev_time" simply use it, as two events happening on two different CPUs that calls this at the same time, really doesn't matter which one goes first. Use a trylock to grab the lock for updating the prev_time, and if it fails, simply try again the next time. If it failed to be taken, that means something else is already updating it. Link: https://lkml.kernel.org/r/20210430121758.650b6e8a@gandalf.local.home Cc: stable@vger.kernel.org Tested-by: Konstantin Kharlamov <hi-angel@yandex.ru> Tested-by: Todd Brandt <todd.e.brandt@linux.intel.com> Fixes: b02414c8f045 ("ring-buffer: Fix recursion protection transitions between interrupt context") # started showing the problem Fixes: 14131f2f98ac3 ("tracing: implement trace_clock_*() APIs") # where the bug happened Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=212761 Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-11tracing: Map all PIDs to command linesSteven Rostedt (VMware)1-26/+15
commit 785e3c0a3a870e72dc530856136ab4c8dd207128 upstream. The default max PID is set by PID_MAX_DEFAULT, and the tracing infrastructure uses this number to map PIDs to the comm names of the tasks, such output of the trace can show names from the recorded PIDs in the ring buffer. This mapping is also exported to user space via the "saved_cmdlines" file in the tracefs directory. But currently the mapping expects the PIDs to be less than PID_MAX_DEFAULT, which is the default maximum and not the real maximum. Recently, systemd will increases the maximum value of a PID on the system, and when tasks are traced that have a PID higher than PID_MAX_DEFAULT, its comm is not recorded. This leads to the entire trace to have "<...>" as the comm name, which is pretty useless. Instead, keep the array mapping the size of PID_MAX_DEFAULT, but instead of just mapping the index to the comm, map a mask of the PID (PID_MAX_DEFAULT - 1) to the comm, and find the full PID from the map_cmdline_to_pid array (that already exists). This bug goes back to the beginning of ftrace, but hasn't been an issue until user space started increasing the maximum value of PIDs. Link: https://lkml.kernel.org/r/20210427113207.3c601884@gandalf.local.home Cc: stable@vger.kernel.org Fixes: bc0c38d139ec7 ("ftrace: latency tracer infrastructure") Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-11ftrace: Handle commands when closing set_ftrace_filter fileSteven Rostedt (VMware)1-1/+4
commit 8c9af478c06bb1ab1422f90d8ecbc53defd44bc3 upstream. # echo switch_mm:traceoff > /sys/kernel/tracing/set_ftrace_filter will cause switch_mm to stop tracing by the traceoff command. # echo -n switch_mm:traceoff > /sys/kernel/tracing/set_ftrace_filter does nothing. The reason is that the parsing in the write function only processes commands if it finished parsing (there is white space written after the command). That's to handle: write(fd, "switch_mm:", 10); write(fd, "traceoff", 8); cases, where the command is broken over multiple writes. The problem is if the file descriptor is closed, then the write call is not processed, and the command needs to be processed in the release code. The release code can handle matching of functions, but does not handle commands. Cc: stable@vger.kernel.org Fixes: eda1e32855656 ("tracing: handle broken names in ftrace filter") Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-04-16ftrace: Check if pages were allocated before calling free_pages()Steven Rostedt (VMware)1-3/+6
[ Upstream commit 59300b36f85f254260c81d9dd09195fa49eb0f98 ] It is possible that on error pg->size can be zero when getting its order, which would return a -1 value. It is dangerous to pass in an order of -1 to free_pages(). Check if order is greater than or equal to zero before calling free_pages(). Link: https://lore.kernel.org/lkml/20210330093916.432697c7@gandalf.local.home/ Reported-by: Abaci Robot <abaci@linux.alibaba.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-04-07tracing: Fix stack trace event sizeSteven Rostedt (VMware)1-1/+2
commit 9deb193af69d3fd6dd8e47f292b67c805a787010 upstream. Commit cbc3b92ce037 fixed an issue to modify the macros of the stack trace event so that user space could parse it properly. Originally the stack trace format to user space showed that the called stack was a dynamic array. But it is not actually a dynamic array, in the way that other dynamic event arrays worked, and this broke user space parsing for it. The update was to make the array look to have 8 entries in it. Helper functions were added to make it parse it correctly, as the stack was dynamic, but was determined by the size of the event stored. Although this fixed user space on how it read the event, it changed the internal structure used for the stack trace event. It changed the array size from [0] to [8] (added 8 entries). This increased the size of the stack trace event by 8 words. The size reserved on the ring buffer was the size of the stack trace event plus the number of stack entries found in the stack trace. That commit caused the amount to be 8 more than what was needed because it did not expect the caller field to have any size. This produced 8 entries of garbage (and reading random data) from the stack trace event: <idle>-0 [002] d... 1976396.837549: <stack trace> => trace_event_raw_event_sched_switch => __traceiter_sched_switch => __schedule => schedule_idle => do_idle => cpu_startup_entry => secondary_startup_64_no_verify => 0xc8c5e150ffff93de => 0xffff93de => 0 => 0 => 0xc8c5e17800000000 => 0x1f30affff93de => 0x00000004 => 0x200000000 Instead, subtract the size of the caller field from the size of the event to make sure that only the amount needed to store the stack trace is reserved. Link: https://lore.kernel.org/lkml/your-ad-here.call-01617191565-ext-9692@work.hours/ Cc: stable@vger.kernel.org Fixes: cbc3b92ce037 ("tracing: Set kernel_stack's caller size properly") Reported-by: Vasily Gorbik <gor@linux.ibm.com> Tested-by: Vasily Gorbik <gor@linux.ibm.com> Acked-by: Vasily Gorbik <gor@linux.ibm.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-30ftrace: Fix modify_ftrace_direct.Alexei Starovoitov1-5/+38
[ Upstream commit 8a141dd7f7060d1e64c14a5257e0babae20ac99b ] The following sequence of commands: register_ftrace_direct(ip, addr1); modify_ftrace_direct(ip, addr1, addr2); unregister_ftrace_direct(ip, addr2); will cause the kernel to warn: [ 30.179191] WARNING: CPU: 2 PID: 1961 at kernel/trace/ftrace.c:5223 unregister_ftrace_direct+0x130/0x150 [ 30.180556] CPU: 2 PID: 1961 Comm: test_progs W O 5.12.0-rc2-00378-g86bc10a0a711-dirty #3246 [ 30.182453] RIP: 0010:unregister_ftrace_direct+0x130/0x150 When modify_ftrace_direct() changes the addr from old to new it should update the addr stored in ftrace_direct_funcs. Otherwise the final unregister_ftrace_direct() won't find the address and will cause the splat. Fixes: 0567d6809182 ("ftrace: Add modify_ftrace_direct()") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Link: https://lore.kernel.org/bpf/20210316195815.34714-1-alexei.starovoitov@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-03-09ring-buffer: Force before_stamp and write_stamp to be different on discardSteven Rostedt (VMware)1-0/+11
commit 6f6be606e763f2da9fc21de00538c97fe4ca1492 upstream. Part of the logic of the new time stamp code depends on the before_stamp and the write_stamp to be different if the write_stamp does not match the last event on the buffer, as it will be used to calculate the delta of the next event written on the buffer. The discard logic depends on this, as the next event to come in needs to inject a full timestamp as it can not rely on the last event timestamp in the buffer because it is unknown due to events after it being discarded. But by changing the write_stamp back to the time before it, it forces the next event to use a full time stamp, instead of relying on it. The issue came when a full time stamp was used for the event, and rb_time_delta() returns zero in that case. The update to the write_stamp (which subtracts delta) made it not change. Then when the event is removed from the buffer, because the before_stamp and write_stamp still match, the next event written would calculate its delta from the write_stamp, but that would be wrong as the write_stamp is of the time of the event that was discarded. In the case that the delta change being made to write_stamp is zero, set the before_stamp to zero as well, and this will force the next event to inject a full timestamp and not use the current write_stamp. Cc: stable@vger.kernel.org Fixes: a389d86f7fd09 ("ring-buffer: Have nested events still record running time stamp") Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-17bpf: Unbreak BPF_PROG_TYPE_KPROBE when kprobe is called via do_int3Alexei Starovoitov1-3/+0
[ Upstream commit 548f1191d86ccb9bde2a5305988877b7584c01eb ] The commit 0d00449c7a28 ("x86: Replace ist_enter() with nmi_enter()") converted do_int3 handler to be "NMI-like". That made old if (in_nmi()) check abort execution of bpf programs attached to kprobe when kprobe is firing via int3 (For example when kprobe is placed in the middle of the function). Remove the check to restore user visible behavior. Fixes: 0d00449c7a28 ("x86: Replace ist_enter() with nmi_enter()") Reported-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org> Link: https://lore.kernel.org/bpf/20210203070636.70926-1-alexei.starovoitov@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-02-17tracing: Check length before giving out the filter bufferSteven Rostedt (VMware)1-1/+1
commit b220c049d5196dd94d992dd2dc8cba1a5e6123bf upstream. When filters are used by trace events, a page is allocated on each CPU and used to copy the trace event fields to this page before writing to the ring buffer. The reason to use the filter and not write directly into the ring buffer is because a filter may discard the event and there's more overhead on discarding from the ring buffer than the extra copy. The problem here is that there is no check against the size being allocated when using this page. If an event asks for more than a page size while being filtered, it will get only a page, leading to the caller writing more that what was allocated. Check the length of the request, and if it is more than PAGE_SIZE minus the header default back to allocating from the ring buffer directly. The ring buffer may reject the event if its too big anyway, but it wont overflow. Link: https://lore.kernel.org/ath10k/1612839593-2308-1-git-send-email-wgong@codeaurora.org/ Cc: stable@vger.kernel.org Fixes: 0fc1b09ff1ff4 ("tracing: Use temp buffer when filtering events") Reported-by: Wen Gong <wgong@codeaurora.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-17tracing: Do not count ftrace events in top level enable outputSteven Rostedt (VMware)1-1/+2
commit 256cfdd6fdf70c6fcf0f7c8ddb0ebd73ce8f3bc9 upstream. The file /sys/kernel/tracing/events/enable is used to enable all events by echoing in "1", or disabling all events when echoing in "0". To know if all events are enabled, disabled, or some are enabled but not all of them, cating the file should show either "1" (all enabled), "0" (all disabled), or "X" (some enabled but not all of them). This works the same as the "enable" files in the individule system directories (like tracing/events/sched/enable). But when all events are enabled, the top level "enable" file shows "X". The reason is that its checking the "ftrace" events, which are special events that only exist for their format files. These include the format for the function tracer events, that are enabled when the function tracer is enabled, but not by the "enable" file. The check includes these events, which will always be disabled, and even though all true events are enabled, the top level "enable" file will show "X" instead of "1". To fix this, have the check test the event's flags to see if it has the "IGNORE_ENABLE" flag set, and if so, not test it. Cc: stable@vger.kernel.org Fixes: 553552ce1796c ("tracing: Combine event filter_active and enable into single flags field") Reported-by: "Yordan Karadzhov (VMware)" <y.karadz@gmail.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-10tracing: Use pause-on-trace with the latency tracersViktor Rosendahl1-0/+4
commit da7f84cdf02fd5f66864041f45018b328911b722 upstream. Eaerlier, tracing was disabled when reading the trace file. This behavior was changed with: commit 06e0a548bad0 ("tracing: Do not disable tracing when reading the trace file"). This doesn't seem to work with the latency tracers. The above mentioned commit dit not only change the behavior but also added an option to emulate the old behavior. The idea with this patch is to enable this pause-on-trace option when the latency tracers are used. Link: https://lkml.kernel.org/r/20210119164344.37500-2-Viktor.Rosendahl@bmw.de Cc: stable@vger.kernel.org Fixes: 06e0a548bad0 ("tracing: Do not disable tracing when reading the trace file") Signed-off-by: Viktor Rosendahl <Viktor.Rosendahl@bmw.de> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-10tracing/kprobe: Fix to support kretprobe events on unloaded modulesMasami Hiramatsu1-4/+6
commit 97c753e62e6c31a404183898d950d8c08d752dbd upstream. Fix kprobe_on_func_entry() returns error code instead of false so that register_kretprobe() can return an appropriate error code. append_trace_kprobe() expects the kprobe registration returns -ENOENT when the target symbol is not found, and it checks whether the target module is unloaded or not. If the target module doesn't exist, it defers to probe the target symbol until the module is loaded. However, since register_kretprobe() returns -EINVAL instead of -ENOENT in that case, it always fail on putting the kretprobe event on unloaded modules. e.g. Kprobe event: /sys/kernel/debug/tracing # echo p xfs:xfs_end_io >> kprobe_events [ 16.515574] trace_kprobe: This probe might be able to register after target module is loaded. Continue. Kretprobe event: (p -> r) /sys/kernel/debug/tracing # echo r xfs:xfs_end_io >> kprobe_events sh: write error: Invalid argument /sys/kernel/debug/tracing # cat error_log [ 41.122514] trace_kprobe: error: Failed to register probe event Command: r xfs:xfs_end_io ^ To fix this bug, change kprobe_on_func_entry() to detect symbol lookup failure and return -ENOENT in that case. Otherwise it returns -EINVAL or 0 (succeeded, given address is on the entry). Link: https://lkml.kernel.org/r/161176187132.1067016.8118042342894378981.stgit@devnote2 Cc: stable@vger.kernel.org Fixes: 59158ec4aef7 ("tracing/kprobes: Check the probe on unloaded module correctly") Reported-by: Jianlin Lv <Jianlin.Lv@arm.com> Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-02-10fgraph: Initialize tracing_graph_pause at task creationSteven Rostedt (VMware)1-2/+0
commit 7e0a9220467dbcfdc5bc62825724f3e52e50ab31 upstream. On some archs, the idle task can call into cpu_suspend(). The cpu_suspend() will disable or pause function graph tracing, as there's some paths in bringing down the CPU that can have issues with its return address being modified. The task_struct structure has a "tracing_graph_pause" atomic counter, that when set to something other than zero, the function graph tracer will not modify the return address. The problem is that the tracing_graph_pause counter is initialized when the function graph tracer is enabled. This can corrupt the counter for the idle task if it is suspended in these architectures. CPU 1 CPU 2 ----- ----- do_idle() cpu_suspend() pause_graph_tracing() task_struct->tracing_graph_pause++ (0 -> 1) start_graph_tracing() for_each_online_cpu(cpu) { ftrace_graph_init_idle_task(cpu) task-struct->tracing_graph_pause = 0 (1 -> 0) unpause_graph_tracing() task_struct->tracing_graph_pause-- (0 -> -1) The above should have gone from 1 to zero, and enabled function graph tracing again. But instead, it is set to -1, which keeps it disabled. There's no reason that the field tracing_graph_pause on the task_struct can not be initialized at boot up. Cc: stable@vger.kernel.org Fixes: 380c4b1411ccd ("tracing/function-graph-tracer: append the tracing_graph_flag") Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=211339 Reported-by: pierre.gondois@arm.com Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-01-19tracing/kprobes: Do the notrace functions check without kprobes on ftraceMasami Hiramatsu2-2/+2
commit 7bb83f6fc4ee84e95d0ac0d14452c2619fb3fe70 upstream. Enable the notrace function check on the architecture which doesn't support kprobes on ftrace but support dynamic ftrace. This notrace function check is not only for the kprobes on ftrace but also sw-breakpoint based kprobes. Thus there is no reason to limit this check for the arch which supports kprobes on ftrace. This also changes the dependency of Kconfig. Because kprobe event uses the function tracer's address list for identifying notrace function, if the CONFIG_DYNAMIC_FTRACE=n, it can not check whether the target function is notrace or not. Link: https://lkml.kernel.org/r/20210105065730.2634785-1-naveen.n.rao@linux.vnet.ibm.com Link: https://lkml.kernel.org/r/161007957862.114704.4512260007555399463.stgit@devnote2 Cc: stable@vger.kernel.org Fixes: 45408c4f92506 ("tracing: kprobes: Prohibit probing on notrace function") Acked-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-12-30Revert: "ring-buffer: Remove HAVE_64BIT_ALIGNED_ACCESS"Steven Rostedt (VMware)1-4/+13
commit adab66b71abfe206a020f11e561f4df41f0b2aba upstream. It was believed that metag was the only architecture that required the ring buffer to keep 8 byte words aligned on 8 byte architectures, and with its removal, it was assumed that the ring buffer code did not need to handle this case. It appears that sparc64 also requires this. The following was reported on a sparc64 boot up: kernel: futex hash table entries: 65536 (order: 9, 4194304 bytes, linear) kernel: Running postponed tracer tests: kernel: Testing tracer function: kernel: Kernel unaligned access at TPC[552a20] trace_function+0x40/0x140 kernel: Kernel unaligned access at TPC[552a24] trace_function+0x44/0x140 kernel: Kernel unaligned access at TPC[552a20] trace_function+0x40/0x140 kernel: Kernel unaligned access at TPC[552a24] trace_function+0x44/0x140 kernel: Kernel unaligned access at TPC[552a20] trace_function+0x40/0x140 kernel: PASSED Need to put back the 64BIT aligned code for the ring buffer. Link: https://lore.kernel.org/r/CADxRZqzXQRYgKc=y-KV=S_yHL+Y8Ay2mh5ezeZUnpRvg+syWKw@mail.gmail.com Cc: stable@vger.kernel.org Fixes: 86b3de60a0b6 ("ring-buffer: Remove HAVE_64BIT_ALIGNED_ACCESS") Reported-by: Anatoly Pugachev <matorola@gmail.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-12-30tracing: Disable ftrace selftests when any tracer is runningMasami Hiramatsu6-14/+25
commit 60efe21e5976d3d4170a8190ca76a271d6419754 upstream. Disable ftrace selftests when any tracer (kernel command line options like ftrace=, trace_events=, kprobe_events=, and boot-time tracing) starts running because selftest can disturb it. Currently ftrace= and trace_events= are checked, but kprobe_events has a different flag, and boot-time tracing didn't checked. This unifies the disabled flag and all of those boot-time tracing features sets the flag. This also fixes warnings on kprobe-event selftest (CONFIG_FTRACE_STARTUP_TEST=y and CONFIG_KPROBE_EVENTS=y) with boot-time tracing (ftrace.event.kprobes.EVENT.probes) like below; [ 59.803496] trace_kprobe: Testing kprobe tracing: [ 59.804258] ------------[ cut here ]------------ [ 59.805682] WARNING: CPU: 3 PID: 1 at kernel/trace/trace_kprobe.c:1987 kprobe_trace_self_tests_ib [ 59.806944] Modules linked in: [ 59.807335] CPU: 3 PID: 1 Comm: swapper/0 Not tainted 5.10.0-rc7+ #172 [ 59.808029] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1 04/01/204 [ 59.808999] RIP: 0010:kprobe_trace_self_tests_init+0x5f/0x42b [ 59.809696] Code: e8 03 00 00 48 c7 c7 30 8e 07 82 e8 6d 3c 46 ff 48 c7 c6 00 b2 1a 81 48 c7 c7 7 [ 59.812439] RSP: 0018:ffffc90000013e78 EFLAGS: 00010282 [ 59.813038] RAX: 00000000ffffffef RBX: 0000000000000000 RCX: 0000000000049443 [ 59.813780] RDX: 0000000000049403 RSI: 0000000000049403 RDI: 000000000002deb0 [ 59.814589] RBP: ffffc90000013e90 R08: 0000000000000001 R09: 0000000000000001 [ 59.815349] R10: 0000000000000001 R11: 0000000000000000 R12: 00000000ffffffef [ 59.816138] R13: ffff888004613d80 R14: ffffffff82696940 R15: ffff888004429138 [ 59.816877] FS: 0000000000000000(0000) GS:ffff88807dcc0000(0000) knlGS:0000000000000000 [ 59.817772] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 59.818395] CR2: 0000000001a8dd38 CR3: 0000000002222000 CR4: 00000000000006a0 [ 59.819144] Call Trace: [ 59.819469] ? init_kprobe_trace+0x6b/0x6b [ 59.819948] do_one_initcall+0x5f/0x300 [ 59.820392] ? rcu_read_lock_sched_held+0x4f/0x80 [ 59.820916] kernel_init_freeable+0x22a/0x271 [ 59.821416] ? rest_init+0x241/0x241 [ 59.821841] kernel_init+0xe/0x10f [ 59.822251] ret_from_fork+0x22/0x30 [ 59.822683] irq event stamp: 16403349 [ 59.823121] hardirqs last enabled at (16403359): [<ffffffff810db81e>] console_unlock+0x48e/0x580 [ 59.824074] hardirqs last disabled at (16403368): [<ffffffff810db786>] console_unlock+0x3f6/0x580 [ 59.825036] softirqs last enabled at (16403200): [<ffffffff81c0033a>] __do_softirq+0x33a/0x484 [ 59.825982] softirqs last disabled at (16403087): [<ffffffff81a00f02>] asm_call_irq_on_stack+0x10 [ 59.827034] ---[ end trace 200c544775cdfeb3 ]--- [ 59.827635] trace_kprobe: error on probing function entry. Link: https://lkml.kernel.org/r/160741764955.3448999.3347769358299456915.stgit@devnote2 Fixes: 4d655281eb1b ("tracing/boot Add kprobe event support") Cc: Ingo Molnar <mingo@kernel.org> Cc: stable@vger.kernel.org Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-12-30bpf: Fix bpf_put_raw_tracepoint()'s use of __module_address()Andrii Nakryiko1-3/+5
[ Upstream commit 12cc126df82c96c89706aa207ad27c56f219047c ] __module_address() needs to be called with preemption disabled or with module_mutex taken. preempt_disable() is enough for read-only uses, which is what this fix does. Also, module_put() does internal check for NULL, so drop it as well. Fixes: a38d1107f937 ("bpf: support raw tracepoints in modules") Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Martin KaFai Lau <kafai@fb.com> Link: https://lore.kernel.org/bpf/20201203204634.1325171-2-andrii@kernel.org Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-12-11bpf: Fix enum names for bpf_this_cpu_ptr() and bpf_per_cpu_ptr() helpersAndrii Nakryiko1-2/+2
Remove bpf_ prefix, which causes these helpers to be reported in verifier dump as bpf_bpf_this_cpu_ptr() and bpf_bpf_per_cpu_ptr(), respectively. Lets fix it as long as it is still possible before UAPI freezes on these helpers. Fixes: eaa6bcb71ef6 ("bpf: Introduce bpf_per_cpu_ptr()") Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-07Merge tag 'trace-v5.10-rc7' of ↵Linus Torvalds1-5/+8
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace Pull tracing fix from Steven Rostedt: "Fix userstacktrace option for instances While writing an application that requires user stack trace option to work in instances, I found that the instance option has a bug that makes it a nop. The check for performing the user stack trace in an instance, checks the top level options (not the instance options) to determine if a user stack trace should be performed or not. This is not only incorrect, but also confusing for users. It confused me for a bit!" * tag 'trace-v5.10-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: tracing: Fix userstacktrace option for instances
2020-12-04tracing: Fix userstacktrace option for instancesSteven Rostedt (VMware)1-5/+8
When the instances were able to use their own options, the userstacktrace option was left hardcoded for the top level. This made the instance userstacktrace option bascially into a nop, and will confuse users that set it, but nothing happens (I was confused when it happened to me!) Cc: stable@vger.kernel.org Fixes: 16270145ce6b ("tracing: Add trace options for core options to instances") Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2020-12-01Merge tag 'trace-v5.10-rc6' of ↵Linus Torvalds5-15/+33
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace Pull tracing fixes from Steven Rostedt: - Use correct timestamp variable for ring buffer write stamp update - Fix up before stamp and write stamp when crossing ring buffer sub buffers - Keep a zero delta in ring buffer in slow path if cmpxchg fails - Fix trace_printk static buffer for archs that care - Fix ftrace record accounting for ftrace ops with trampolines - Fix DYNAMIC_FTRACE_WITH_DIRECT_CALLS dependency - Remove WARN_ON in hwlat tracer that triggers on something that is OK - Make "my_tramp" trampoline in ftrace direct sample code global - Fixes in the bootconfig tool for better alignment management * tag 'trace-v5.10-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: ring-buffer: Always check to put back before stamp when crossing pages ftrace: Fix DYNAMIC_FTRACE_WITH_DIRECT_CALLS dependency ftrace: Fix updating FTRACE_FL_TRAMP tracing: Fix alignment of static buffer tracing: Remove WARN_ON in start_thread() samples/ftrace: Mark my_tramp[12]? global ring-buffer: Set the right timestamp in the slow path of __rb_reserve_next() ring-buffer: Update write stamp with the correct ts docs: bootconfig: Update file format on initrd image tools/bootconfig: Align the bootconfig applied initrd image size to 4 tools/bootconfig: Fix to check the write failure correctly tools/bootconfig: Fix errno reference after printf()
2020-11-30ring-buffer: Always check to put back before stamp when crossing pagesSteven Rostedt (VMware)1-8/+6
The current ring buffer logic checks to see if the updating of the event buffer was interrupted, and if it is, it will try to fix up the before stamp with the write stamp to make them equal again. This logic is flawed, because if it is not interrupted, the two are guaranteed to be different, as the current event just updated the before stamp before allocation. This guarantees that the next event (this one or another interrupting one) will think it interrupted the time updates of a previous event and inject an absolute time stamp to compensate. The correct logic is to always update the timestamps when