summaryrefslogtreecommitdiff
path: root/kernel
AgeCommit message (Collapse)AuthorFilesLines
2019-05-14cpu/speculation: Add 'mitigations=' cmdline optionJosh Poimboeuf1-0/+15
commit 98af8452945c55652de68536afdde3b520fec429 upstream. Keeping track of the number of mitigations for all the CPU speculation bugs has become overwhelming for many users. It's getting more and more complicated to decide which mitigations are needed for a given architecture. Complicating matters is the fact that each arch tends to have its own custom way to mitigate the same vulnerability. Most users fall into a few basic categories: a) they want all mitigations off; b) they want all reasonable mitigations on, with SMT enabled even if it's vulnerable; or c) they want all reasonable mitigations on, with SMT disabled if vulnerable. Define a set of curated, arch-independent options, each of which is an aggregation of existing options: - mitigations=off: Disable all mitigations. - mitigations=auto: [default] Enable all the default mitigations, but leave SMT enabled, even if it's vulnerable. - mitigations=auto,nosmt: Enable all the default mitigations, disabling SMT if needed by a mitigation. Currently, these options are placeholders which don't actually do anything. They will be fleshed out in upcoming patches. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> (on x86) Reviewed-by: Jiri Kosina <jkosina@suse.cz> Cc: Borislav Petkov <bp@alien8.de> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jiri Kosina <jikos@kernel.org> Cc: Waiman Long <longman@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Jon Masters <jcm@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: linuxppc-dev@lists.ozlabs.org Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux-s390@vger.kernel.org Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-arch@vger.kernel.org Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Tyler Hicks <tyhicks@canonical.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Steven Price <steven.price@arm.com> Cc: Phil Auld <pauld@redhat.com> Link: https://lkml.kernel.org/r/b07a8ef9b7c5055c3a4637c87d07c296d5016fe0.1555085500.git.jpoimboe@redhat.com [bwh: Backported to 4.9: adjust filename] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation: Rework SMT state changeThomas Gleixner1-6/+9
commit a74cfffb03b73d41e08f84c2e5c87dec0ce3db9f upstream. arch_smt_update() is only called when the sysfs SMT control knob is changed. This means that when SMT is enabled in the sysfs control knob the system is considered to have SMT active even if all siblings are offline. To allow finegrained control of the speculation mitigations, the actual SMT state is more interesting than the fact that siblings could be enabled. Rework the code, so arch_smt_update() is invoked from each individual CPU hotplug function, and simplify the update function while at it. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Link: https://lkml.kernel.org/r/20181125185004.521974984@linutronix.de [bwh: Backported to 4.9: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14sched: Add sched_smt_active()Ben Hutchings2-0/+20
Add the sched_smt_active() function needed for some x86 speculation mitigations. This was introduced upstream by commits 1b568f0aabf2 "sched/core: Optimize SCHED_SMT", ba2591a5993e "sched/smt: Update sched_smt_present at runtime", c5511d03ec09 "sched/smt: Make sched_smt_present track topology", and 321a874a7ef8 "sched/smt: Expose sched_smt_present static key". The upstream implementation uses the static_key_{disable,enable}_cpuslocked() functions, which aren't practical to backport. Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation: Enable cross-hyperthread spectre v2 STIBP mitigationJiri Kosina1-1/+10
commit 53c613fe6349994f023245519265999eed75957f upstream. STIBP is a feature provided by certain Intel ucodes / CPUs. This feature (once enabled) prevents cross-hyperthread control of decisions made by indirect branch predictors. Enable this feature if - the CPU is vulnerable to spectre v2 - the CPU supports SMT and has SMT siblings online - spectre_v2 mitigation autoselection is enabled (default) After some previous discussion, this leaves STIBP on all the time, as wrmsr on crossing kernel boundary is a no-no. This could perhaps later be a bit more optimized (like disabling it in NOHZ, experiment with disabling it in idle, etc) if needed. Note that the synchronization of the mask manipulation via newly added spec_ctrl_mutex is currently not strictly needed, as the only updater is already being serialized by cpu_add_remove_lock, but let's make this a little bit more future-proof. Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "WoodhouseDavid" <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: "SchauflerCasey" <casey.schaufler@intel.com> Link: https://lkml.kernel.org/r/nycvar.YFH.7.76.1809251438240.15880@cbobk.fhfr.pm Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-14x86/speculation: Apply IBPB more strictly to avoid cross-process data leakJiri Kosina1-0/+10
commit dbfe2953f63c640463c630746cd5d9de8b2f63ae upstream. Currently, IBPB is only issued in cases when switching into a non-dumpable process, the rationale being to protect such 'important and security sensitive' processess (such as GPG) from data leaking into a different userspace process via spectre v2. This is however completely insufficient to provide proper userspace-to-userpace spectrev2 protection, as any process can poison branch buffers before being scheduled out, and the newly scheduled process immediately becomes spectrev2 victim. In order to minimize the performance impact (for usecases that do require spectrev2 protection), issue the barrier only in cases when switching between processess where the victim can't be ptraced by the potential attacker (as in such cases, the attacker doesn't have to bother with branch buffers at all). [ tglx: Split up PTRACE_MODE_NOACCESS_CHK into PTRACE_MODE_SCHED and PTRACE_MODE_IBPB to be able to do ptrace() context tracking reasonably fine-grained ] Fixes: 18bf3c3ea8 ("x86/speculation: Use Indirect Branch Prediction Barrier in context switch") Originally-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "WoodhouseDavid" <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: "SchauflerCasey" <casey.schaufler@intel.com> Link: https://lkml.kernel.org/r/nycvar.YFH.7.76.1809251437340.15880@cbobk.fhfr.pm Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-10timer/debug: Change /proc/timer_stats from 0644 to 0600Ben Hutchings1-1/+1
The timer_stats facility should filter and translate PIDs if opened from a non-initial PID namespace, to avoid leaking information about the wider system. It should also not show kernel virtual addresses. Unfortunately it has now been removed upstream (as redundant) instead of being fixed. For stable, fix the leak by restricting access to root only. A similar change was already made for the /proc/timer_list file. Signed-off-by: Ben Hutchings <ben@decadent.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-10genirq: Prevent use-after-free and work list corruptionPrasad Sodagudi1-1/+3
[ Upstream commit 59c39840f5abf4a71e1810a8da71aaccd6c17d26 ] When irq_set_affinity_notifier() replaces the notifier, then the reference count on the old notifier is dropped which causes it to be freed. But nothing ensures that the old notifier is not longer queued in the work list. If it is queued this results in a use after free and possibly in work list corruption. Ensure that the work is canceled before the reference is dropped. Signed-off-by: Prasad Sodagudi <psodagud@codeaurora.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: marc.zyngier@arm.com Link: https://lkml.kernel.org/r/1553439424-6529-1-git-send-email-psodagud@codeaurora.org Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-05-02sched/numa: Fix a possible divide-by-zeroXie XiuQi1-0/+4
commit a860fa7b96e1a1c974556327aa1aee852d434c21 upstream. sched_clock_cpu() may not be consistent between CPUs. If a task migrates to another CPU, then se.exec_start is set to that CPU's rq_clock_task() by update_stats_curr_start(). Specifically, the new value might be before the old value due to clock skew. So then if in numa_get_avg_runtime() the expression: 'now - p->last_task_numa_placement' ends up as -1, then the divider '*period + 1' in task_numa_placement() is 0 and things go bang. Similar to update_curr(), check if time goes backwards to avoid this. [ peterz: Wrote new changelog. ] [ mingo: Tweaked the code comment. ] Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: cj.chengjian@huawei.com Cc: <stable@vger.kernel.org> Link: http://lkml.kernel.org/r/20190425080016.GX11158@hirez.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-02trace: Fix preempt_enable_no_resched() abusePeter Zijlstra1-1/+1
commit d6097c9e4454adf1f8f2c9547c2fa6060d55d952 upstream. Unless the very next line is schedule(), or implies it, one must not use preempt_enable_no_resched(). It can cause a preemption to go missing and thereby cause arbitrary delays, breaking the PREEMPT=y invariant. Link: http://lkml.kernel.org/r/20190423200318.GY14281@hirez.programming.kicks-ass.net Cc: Waiman Long <longman@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: the arch/x86 maintainers <x86@kernel.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: huang ying <huang.ying.caritas@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: stable@vger.kernel.org Fixes: 2c2d7329d8af ("tracing/ftrace: use preempt_enable_no_resched_notrace in ring_buffer_time_stamp()") Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-02tracing: Fix a memory leak by early error exit in trace_pid_write()Wenwen Wang1-1/+4
commit 91862cc7867bba4ee5c8fcf0ca2f1d30427b6129 upstream. In trace_pid_write(), the buffer for trace parser is allocated through kmalloc() in trace_parser_get_init(). Later on, after the buffer is used, it is then freed through kfree() in trace_parser_put(). However, it is possible that trace_pid_write() is terminated due to unexpected errors, e.g., ENOMEM. In that case, the allocated buffer will not be freed, which is a memory leak bug. To fix this issue, free the allocated buffer when an error is encountered. Link: http://lkml.kernel.org/r/1555726979-15633-1-git-send-email-wang6495@umn.edu Fixes: f4d34a87e9c10 ("tracing: Use pid bitmap instead of a pid array for set_event_pid") Cc: stable@vger.kernel.org Signed-off-by: Wenwen Wang <wang6495@umn.edu> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-27kernel/sysctl.c: fix out-of-bounds access when setting file-maxWill Deacon1-1/+2
commit 9002b21465fa4d829edfc94a5a441005cffaa972 upstream. Commit 32a5ad9c2285 ("sysctl: handle overflow for file-max") hooked up min/max values for the file-max sysctl parameter via the .extra1 and .extra2 fields in the corresponding struct ctl_table entry. Unfortunately, the minimum value points at the global 'zero' variable, which is an int. This results in a KASAN splat when accessed as a long by proc_doulongvec_minmax on 64-bit architectures: | BUG: KASAN: global-out-of-bounds in __do_proc_doulongvec_minmax+0x5d8/0x6a0 | Read of size 8 at addr ffff2000133d1c20 by task systemd/1 | | CPU: 0 PID: 1 Comm: systemd Not tainted 5.1.0-rc3-00012-g40b114779944 #2 | Hardware name: linux,dummy-virt (DT) | Call trace: | dump_backtrace+0x0/0x228 | show_stack+0x14/0x20 | dump_stack+0xe8/0x124 | print_address_description+0x60/0x258 | kasan_report+0x140/0x1a0 | __asan_report_load8_noabort+0x18/0x20 | __do_proc_doulongvec_minmax+0x5d8/0x6a0 | proc_doulongvec_minmax+0x4c/0x78 | proc_sys_call_handler.isra.19+0x144/0x1d8 | proc_sys_write+0x34/0x58 | __vfs_write+0x54/0xe8 | vfs_write+0x124/0x3c0 | ksys_write+0xbc/0x168 | __arm64_sys_write+0x68/0x98 | el0_svc_common+0x100/0x258 | el0_svc_handler+0x48/0xc0 | el0_svc+0x8/0xc | | The buggy address belongs to the variable: | zero+0x0/0x40 | | Memory state around the buggy address: | ffff2000133d1b00: 00 00 00 00 00 00 00 00 fa fa fa fa 04 fa fa fa | ffff2000133d1b80: fa fa fa fa 04 fa fa fa fa fa fa fa 04 fa fa fa | >ffff2000133d1c00: fa fa fa fa 04 fa fa fa fa fa fa fa 00 00 00 00 | ^ | ffff2000133d1c80: fa fa fa fa 00 fa fa fa fa fa fa fa 00 00 00 00 | ffff2000133d1d00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Fix the splat by introducing a unsigned long 'zero_ul' and using that instead. Link: http://lkml.kernel.org/r/20190403153409.17307-1-will.deacon@arm.com Fixes: 32a5ad9c2285 ("sysctl: handle overflow for file-max") Signed-off-by: Will Deacon <will.deacon@arm.com> Acked-by: Christian Brauner <christian@brauner.io> Cc: Kees Cook <keescook@chromium.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Matteo Croce <mcroce@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-27Revert "locking/lockdep: Add debug_locks check in __lock_downgrade()"Greg Kroah-Hartman1-3/+0
This reverts commit 670d934a1ea178d7543e6f50b515c76cebeb2fcf which was commit 71492580571467fb7177aade19c18ce7486267f5 upstream. Tetsuo rightly points out that the backport here is incorrect, as it touches the __lock_set_class function instead of the intended __lock_downgrade function. Reported-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: Waiman Long <longman@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Sasha Levin <sashal@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-27sched/fair: Limit sched_cfs_period_timer() loop to avoid hard lockupPhil Auld1-0/+25
[ Upstream commit 2e8e19226398db8265a8e675fcc0118b9e80c9e8 ] With extremely short cfs_period_us setting on a parent task group with a large number of children the for loop in sched_cfs_period_timer() can run until the watchdog fires. There is no guarantee that the call to hrtimer_forward_now() will ever return 0. The large number of children can make do_sched_cfs_period_timer() take longer than the period. NMI watchdog: Watchdog detected hard LOCKUP on cpu 24 RIP: 0010:tg_nop+0x0/0x10 <IRQ> walk_tg_tree_from+0x29/0xb0 unthrottle_cfs_rq+0xe0/0x1a0 distribute_cfs_runtime+0xd3/0xf0 sched_cfs_period_timer+0xcb/0x160 ? sched_cfs_slack_timer+0xd0/0xd0 __hrtimer_run_queues+0xfb/0x270 hrtimer_interrupt+0x122/0x270 smp_apic_timer_interrupt+0x6a/0x140 apic_timer_interrupt+0xf/0x20 </IRQ> To prevent this we add protection to the loop that detects when the loop has run too many times and scales the period and quota up, proportionally, so that the timer can complete before then next period expires. This preserves the relative runtime quota while preventing the hard lockup. A warning is issued reporting this state and the new values. Signed-off-by: Phil Auld <pauld@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <stable@vger.kernel.org> Cc: Anton Blanchard <anton@ozlabs.org> Cc: Ben Segall <bsegall@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190319130005.25492-1-pauld@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-04-27kprobes: Fix error check when reusing optimized probesMasami Hiramatsu1-4/+2
commit 5f843ed415581cfad4ef8fefe31c138a8346ca8a upstream. The following commit introduced a bug in one of our error paths: 819319fc9346 ("kprobes: Return error if we fail to reuse kprobe instead of BUG_ON()") it missed to handle the return value of kprobe_optready() as error-value. In reality, the kprobe_optready() returns a bool result, so "true" case must be passed instead of 0. This causes some errors on kprobe boot-time selftests on ARM: [ ] Beginning kprobe tests... [ ] Probe ARM code [ ] kprobe [ ] kretprobe [ ] ARM instruction simulation [ ] Check decoding tables [ ] Run test cases [ ] FAIL: test_case_handler not run [ ] FAIL: Test andge r10, r11, r14, asr r7 [ ] FAIL: Scenario 11 ... [ ] FAIL: Scenario 7 [ ] Total instruction simulation tests=1631, pass=1433 fail=198 [ ] kprobe tests failed This can happen if an optimized probe is unregistered and next kprobe is registered on same address until the previous probe is not reclaimed. If this happens, a hidden aggregated probe may be kept in memory, and no new kprobe can probe same address. Also, in that case register_kprobe() will return "1" instead of minus error value, which can mislead caller logic. Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> Cc: David S . Miller <davem@davemloft.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Naveen N . Rao <naveen.n.rao@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org # v5.0+ Fixes: 819319fc9346 ("kprobes: Return error if we fail to reuse kprobe instead of BUG_ON()") Link: http://lkml.kernel.org/r/155530808559.32517.539898325433642204.stgit@devnote2 Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-27kprobes: Mark ftrace mcount handler functions nokprobeMasami Hiramatsu1-1/+5
commit fabe38ab6b2bd9418350284c63825f13b8a6abba upstream. Mark ftrace mcount handler functions nokprobe since probing on these functions with kretprobe pushes return address incorrectly on kretprobe shadow stack. Reported-by: Francis Deslauriers <francis.deslauriers@efficios.com> Tested-by: Andrea Righi <righi.andrea@gmail.com> Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Acked-by: Steven Rostedt <rostedt@goodmis.org> Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/155094062044.6137.6419622920568680640.stgit@devbox Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-20kernel: hung_task.c: disable on suspendVitaly Kuznetsov1-1/+29
[ Upstream commit a1c6ca3c6de763459a6e93b644ec6518c890ba1c ] It is possible to observe hung_task complaints when system goes to suspend-to-idle state: # echo freeze > /sys/power/state PM: Syncing filesystems ... done. Freezing user space processes ... (elapsed 0.001 seconds) done. OOM killer disabled. Freezing remaining freezable tasks ... (elapsed 0.002 seconds) done. sd 0:0:0:0: [sda] Synchronizing SCSI cache INFO: task bash:1569 blocked for more than 120 seconds. Not tainted 4.19.0-rc3_+ #687 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. bash D 0 1569 604 0x00000000 Call Trace: ? __schedule+0x1fe/0x7e0 schedule+0x28/0x80 suspend_devices_and_enter+0x4ac/0x750 pm_suspend+0x2c0/0x310 Register a PM notifier to disable the detector on suspend and re-enable back on wakeup. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-04-20perf/core: Restore mmap record type correctlyStephane Eranian1-0/+2
[ Upstream commit d9c1bb2f6a2157b38e8eb63af437cb22701d31ee ] On mmap(), perf_events generates a RECORD_MMAP record and then checks which events are interested in this record. There are currently 2 versions of mmap records: RECORD_MMAP and RECORD_MMAP2. MMAP2 is larger. The event configuration controls which version the user level tool accepts. If the event->attr.mmap2=1 field then MMAP2 record is returned. The perf_event_mmap_output() takes care of this. It checks attr->mmap2 and corrects the record fields before putting it in the sampling buffer of the event. At the end the function restores the modified MMAP record fields. The problem is that the function restores the size but not the type. Thus, if a subsequent event only accepts MMAP type, then it would instead receive an MMAP2 record with a size of MMAP record. This patch fixes the problem by restoring the record type on exit. Signed-off-by: Stephane Eranian <eranian@google.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kan Liang <kan.liang@linux.intel.com> Fixes: 13d7a2410fa6 ("perf: Add attr->mmap2 attribute to an event") Link: http://lkml.kernel.org/r/20190307185233.225521-1-eranian@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-04-17sched/fair: Do not re-read ->h_load_next during hierarchical load calculationMel Gorman1-3/+3
commit 0e9f02450da07fc7b1346c8c32c771555173e397 upstream. A NULL pointer dereference bug was reported on a distribution kernel but the same issue should be present on mainline kernel. It occured on s390 but should not be arch-specific. A partial oops looks like: Unable to handle kernel pointer dereference in virtual kernel address space ... Call Trace: ... try_to_wake_up+0xfc/0x450 vhost_poll_wakeup+0x3a/0x50 [vhost] __wake_up_common+0xbc/0x178 __wake_up_common_lock+0x9e/0x160 __wake_up_sync_key+0x4e/0x60 sock_def_readable+0x5e/0x98 The bug hits any time between 1 hour to 3 days. The dereference occurs in update_cfs_rq_h_load when accumulating h_load. The problem is that cfq_rq->h_load_next is not protected by any locking and can be updated by parallel calls to task_h_load. Depending on the compiler, code may be generated that re-reads cfq_rq->h_load_next after the check for NULL and then oops when reading se->avg.load_avg. The dissassembly showed that it was possible to reread h_load_next after the check for NULL. While this does not appear to be an issue for later compilers, it's still an accident if the correct code is generated. Full locking in this path would have high overhead so this patch uses READ_ONCE to read h_load_next only once and check for NULL before dereferencing. It was confirmed that there were no further oops after 10 days of testing. As Peter pointed out, it is also necessary to use WRITE_ONCE() to avoid any potential problems with store tearing. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: <stable@vger.kernel.org> Fixes: 685207963be9 ("sched: Move h_load calculation to task_h_load()") Link: https://lkml.kernel.org/r/20190319123610.nsivgf3mjbjjesxb@techsingularity.net Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-17genirq: Respect IRQCHIP_SKIP_SET_WAKE in irq_chip_set_wake_parent()Stephen Boyd1-0/+4
commit 325aa19598e410672175ed50982f902d4e3f31c5 upstream. If a child irqchip calls irq_chip_set_wake_parent() but its parent irqchip has the IRQCHIP_SKIP_SET_WAKE flag set an error is returned. This is inconsistent behaviour vs. set_irq_wake_real() which returns 0 when the irqchip has the IRQCHIP_SKIP_SET_WAKE flag set. It doesn't attempt to walk the chain of parents and set irq wake on any chips that don't have the flag set either. If the intent is to call the .irq_set_wake() callback of the parent irqchip, then we expect irqchip implementations to omit the IRQCHIP_SKIP_SET_WAKE flag and implement an .irq_set_wake() function that calls irq_chip_set_wake_parent(). The problem has been observed on a Qualcomm sdm845 device where set wake fails on any GPIO interrupts after applying work in progress wakeup irq patches to the GPIO driver. The chain of chips looks like this: QCOM GPIO -> QCOM PDC (SKIP) -> ARM GIC (SKIP) The GPIO controllers parent is the QCOM PDC irqchip which in turn has ARM GIC as parent. The QCOM PDC irqchip has the IRQCHIP_SKIP_SET_WAKE flag set, and so does the grandparent ARM GIC. The GPIO driver doesn't know if the parent needs to set wake or not, so it unconditionally calls irq_chip_set_wake_parent() causing this function to return a failure because the parent irqchip (PDC) doesn't have the .irq_set_wake() callback set. Returning 0 instead makes everything work and irqs from the GPIO controller can be configured for wakeup. Make it consistent by returning 0 (success) from irq_chip_set_wake_parent() when a parent chip has IRQCHIP_SKIP_SET_WAKE set. [ tglx: Massaged changelog ] Fixes: 08b55e2a9208e ("genirq: Add irqchip_set_wake_parent") Signed-off-by: Stephen Boyd <swboyd@chromium.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-gpio@vger.kernel.org Cc: Lina Iyer <ilina@codeaurora.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190325181026.247796-1-swboyd@chromium.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-05genirq: Avoid summation loops for /proc/statThomas Gleixner3-4/+23
[ Upstream commit 1136b0728969901a091f0471968b2b76ed14d9ad ] Waiman reported that on large systems with a large amount of interrupts the readout of /proc/stat takes a long time to sum up the interrupt statistics. In principle this is not a problem. but for unknown reasons some enterprise quality software reads /proc/stat with a high frequency. The reason for this is that interrupt statistics are accounted per cpu. So the /proc/stat logic has to sum up the interrupt stats for each interrupt. This can be largely avoided for interrupts which are not marked as 'PER_CPU' interrupts by simply adding a per interrupt summation counter which is incremented along with the per interrupt per cpu counter. The PER_CPU interrupts need to avoid that and use only per cpu accounting because they share the interrupt number and the interrupt descriptor and concurrent updates would conflict or require unwanted synchronization. Reported-by: Waiman Long <longman@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Waiman Long <longman@redhat.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Davidlohr Bueso <dbueso@suse.de> Cc: Matthew Wilcox <willy@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Kees Cook <keescook@chromium.org> Cc: linux-fsdevel@vger.kernel.org Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Daniel Colascione <dancol@google.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Randy Dunlap <rdunlap@infradead.org> Link: https://lkml.kernel.org/r/20190208135020.925487496@linutronix.de 8<------------- v2: Undo the unintentional layout change of struct irq_desc. include/linux/irqdesc.h | 1 + kernel/irq/chip.c | 12 ++++++++++-- kernel/irq/internals.h | 8 +++++++- kernel/irq/irqdesc.c | 7 ++++++- 4 files changed, 24 insertions(+), 4 deletions(-) Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-04-05sysctl: handle overflow for file-maxChristian Brauner1-0/+3
[ Upstream commit 32a5ad9c22852e6bd9e74bdec5934ef9d1480bc5 ] Currently, when writing echo 18446744073709551616 > /proc/sys/fs/file-max /proc/sys/fs/file-max will overflow and be set to 0. That quickly crashes the system. This commit sets the max and min value for file-max. The max value is set to long int. Any higher value cannot currently be used as the percpu counters are long ints and not unsigned integers. Note that the file-max value is ultimately parsed via __do_proc_doulongvec_minmax(). This function does not report error when min or max are exceeded. Which means if a value largen that long int is written userspace will not receive an error instead the old value will be kept. There is an argument to be made that this should be changed and __do_proc_doulongvec_minmax() should return an error when a dedicated min or max value are exceeded. However this has the potential to break userspace so let's defer this to an RFC patch. Link: http://lkml.kernel.org/r/20190107222700.15954-3-christian@brauner.io Signed-off-by: Christian Brauner <christian@brauner.io> Acked-by: Kees Cook <keescook@chromium.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Joe Lawrence <joe.lawrence@redhat.com> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Waiman Long <longman@redhat.com> [christian@brauner.io: v4] Link: http://lkml.kernel.org/r/20190210203943.8227-3-christian@brauner.io Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-04-05tracing: kdb: Fix ftdump to not sleepDouglas Anderson3-6/+11
[ Upstream commit 31b265b3baaf55f209229888b7ffea523ddab366 ] As reported back in 2016-11 [1], the "ftdump" kdb command triggers a BUG for "sleeping function called from invalid context". kdb's "ftdump" command wants to call ring_buffer_read_prepare() in atomic context. A very simple solution for this is to add allocation flags to ring_buffer_read_prepare() so kdb can call it without triggering the allocation error. This patch does that. Note that in the original email thread about this, it was suggested that perhaps the solution for kdb was to either preallocate the buffer ahead of time or create our own iterator. I'm hoping that this alternative of adding allocation flags to ring_buffer_read_prepare() can be considered since it means I don't need to duplicate more of the core trace code into "trace_kdb.c" (for either creating my own iterator or re-preparing a ring allocator whose memory was already allocated). NOTE: another option for kdb is to actually figure out how to make it reuse the existing ftrace_dump() function and totally eliminate the duplication. This sounds very appealing and actually works (the "sr z" command can be seen to properly dump the ftrace buffer). The downside here is that ftrace_dump() fully consumes the trace buffer. Unless that is changed I'd rather not use it because it means "ftdump | grep xyz" won't be very useful to search the ftrace buffer since it will throw away the whole trace on the first grep. A future patch to dump only the last few lines of the buffer will also be hard to implement. [1] https://lkml.kernel.org/r/20161117191605.GA21459@google.com Link: http://lkml.kernel.org/r/20190308193205.213659-1-dianders@chromium.org Reported-by: Brian Norris <briannorris@chromium.org> Signed-off-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-04-03cpu/hotplug: Prevent crash when CPU bringup fails on CONFIG_HOTPLUG_CPU=nThomas Gleixner1-2/+18
commit 206b92353c839c0b27a0b9bec24195f93fd6cf7a upstream. Tianyu reported a crash in a CPU hotplug teardown callback when booting a kernel which has CONFIG_HOTPLUG_CPU disabled with the 'nosmt' boot parameter. It turns out that the SMP=y CONFIG_HOTPLUG_CPU=n case has been broken forever in case that a bringup callback fails. Unfortunately this issue was not recognized when the CPU hotplug code was reworked, so the shortcoming just stayed in place. When a bringup callback fails, the CPU hotplug code rolls back the operation and takes the CPU offline. The 'nosmt' command line argument uses a bringup failure to abort the bringup of SMT sibling CPUs. This partial bringup is required due to the MCE misdesign on Intel CPUs. With CONFIG_HOTPLUG_CPU=y the rollback works perfectly fine, but CONFIG_HOTPLUG_CPU=n lacks essential mechanisms to exercise the low level teardown of a CPU including the synchronizations in various facilities like RCU, NOHZ and others. As a consequence the teardown callbacks which must be executed on the outgoing CPU within stop machine with interrupts disabled are executed on the control CPU in interrupt enabled and preemptible context causing the kernel to crash and burn. The pre state machine code has a different failure mode which is more subtle and resulting in a less obvious use after free crash because the control side frees resources which are still in use by the undead CPU. But this is not a x86 only problem. Any architecture which supports the SMP=y HOTPLUG_CPU=n combination suffers from the same issue. It's just less likely to be triggered because in 99.99999% of the cases all bringup callbacks succeed. The easy solution of making HOTPLUG_CPU mandatory for SMP is not working on all architectures as the following architectures have either no hotplug support at all or not all subarchitectures support it: alpha, arc, hexagon, openrisc, riscv, sparc (32bit), mips (partial). Crashing the kernel in such a situation is not an acceptable state either. Implement a minimal rollback variant by limiting the teardown to the point where all regular teardown callbacks have been invoked and leave the CPU in the 'dead' idle state. This has the following consequences: - the CPU is brought down to the point where the stop_machine takedown would happen. - the CPU stays there forever and is idle - The CPU is cleared in the CPU active mask, but not in the CPU online mask which is a legit state. - Interrupts are not forced away from the CPU - All facilities which only look at online mask would still see it, but that is the case during normal hotplug/unplug operations as well. It's just a (way) longer time frame. This will expose issues, which haven't been exposed before or only seldom, because now the normally transient state of being non active but online is a permanent state. In testing this exposed already an issue vs. work queues where the vmstat code schedules work on the almost dead CPU which ends up in an unbound workqueue and triggers 'preemtible context' warnings. This is not a problem of this change, it merily exposes an already existing issue. Still this is better than crashing fully without a chance to debug it. This is mainly thought as workaround for those architectures which do not support HOTPLUG_CPU. All others should enforce HOTPLUG_CPU for SMP. Fixes: 2e1a3483ce74 ("cpu/hotplug: Split out the state walk into functions") Reported-by: Tianyu Lan <Tianyu.Lan@microsoft.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Tianyu Lan <Tianyu.Lan@microsoft.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Konrad Wilk <konrad.wilk@oracle.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Mukesh Ojha <mojha@codeaurora.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Rik van Riel <riel@surriel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Micheal Kelley <michael.h.kelley@microsoft.com> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Borislav Petkov <bp@alien8.de> Cc: K. Y. Srinivasan <kys@microsoft.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190326163811.503390616@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-27locking/lockdep: Add debug_locks check in __lock_downgrade()Waiman Long1-0/+3
commit 71492580571467fb7177aade19c18ce7486267f5 upstream. Tetsuo Handa had reported he saw an incorrect "downgrading a read lock" warning right after a previous lockdep warning. It is likely that the previous warning turned off lock debugging causing the lockdep to have inconsistency states leading to the lock downgrade warning. Fix that by add a check for debug_locks at the beginning of __lock_downgrade(). Debugged-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Reported-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Reported-by: syzbot+53383ae265fb161ef488@syzkaller.appspotmail.com Signed-off-by: Waiman Long <longman@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Link: https://lkml.kernel.org/r/1547093005-26085-1-git-send-email-longman@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-27futex: Ensure that futex address is aligned in handle_futex_death()Chen Jie1-0/+4
commit 5a07168d8d89b00fe1760120714378175b3ef992 upstream. The futex code requires that the user space addresses of futexes are 32bit aligned. sys_futex() checks this in futex_get_keys() but the robust list code has no alignment check in place. As a consequence the kernel crashes on architectures with strict alignment requirements in handle_futex_death() when trying to cmpxchg() on an unaligned futex address which was retrieved from the robust list. [ tglx: Rewrote changelog, proper sizeof() based alignement check and add comment ] Fixes: 0771dfefc9e5 ("[PATCH] lightweight robust futexes: core") Signed-off-by: Chen Jie <chenjie6@huawei.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: <dvhart@infradead.org> Cc: <peterz@infradead.org> Cc: <zengweilin@huawei.com> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/1552621478-119787-1-git-send-email-chenjie6@huawei.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-23rcu: Do RCU GP kthread self-wakeup from softirq and interruptZhang, Jun1-6/+14
commit 1d1f898df6586c5ea9aeaf349f13089c6fa37903 upstream. The rcu_gp_kthread_wake() function is invoked when it might be necessary to wake the RCU grace-period kthread. Because self-wakeups are normally a useless waste of CPU cycles, if rcu_gp_kthread_wake() is invoked from this kthread, it naturally refuses to do the wakeup. Unfortunately, natural though it might be, this heuristic fails when rcu_gp_kthread_wake() is invoked from an interrupt or softirq handler that interrupted the grace-period kthread just after the final check of the wait-event condition but just before the schedule() call. In this case, a wakeup is required, even though the call to rcu_gp_kthread_wake() is within the RCU grace-period kthread's context. Failing to provide this wakeup can result in grace periods failing to start, which in turn results in out-of-memory conditions. This race window is quite narrow, but it actually did happen during real testing. It would of course need to be fixed even if it was strictly theoretical in nature. This patch does not Cc stable because it does not apply cleanly to earlier kernel versions. Fixes: 48a7639ce80c ("rcu: Make callers awaken grace-period kthread") Reported-by: "He, Bo" <bo.he@intel.com> Co-developed-by: "Zhang, Jun" <jun.zhang@intel.com> Co-developed-by: "He, Bo" <bo.he@intel.com> Co-developed-by: "xiao, jin" <jin.xiao@intel.com> Co-developed-by: Bai, Jie A <jie.a.bai@intel.com> Signed-off: "Zhang, Jun" <jun.zhang@intel.com> Signed-off: "He, Bo" <bo.he@intel.com> Signed-off: "xiao, jin" <jin.xiao@intel.com> Signed-off: Bai, Jie A <jie.a.bai@intel.com> Signed-off-by: "Zhang, Jun" <jun.zhang@intel.com> [ paulmck: Switch from !in_softirq() to "!in_interrupt() && !in_serving_softirq() to avoid redundant wakeups and to also handle the interrupt-handler scenario as well as the softirq-handler scenario that actually occurred in testing. ] Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com> Link: https://lkml.kernel.org/r/CD6925E8781EFD4D8E11882D20FC406D52A11F61@SHSMSX104.ccr.corp.intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-23kernel/sysctl.c: add missing range check in do_proc_dointvec_minmax_convZev Weiss1-1/+10
commit 8cf7630b29701d364f8df4a50e4f1f5e752b2778 upstream. This bug has apparently existed since the introduction of this function in the pre-git era (4500e91754d3 in Thomas Gleixner's history.git, "[NET]: Add proc_dointvec_userhz_jiffies, use it for proper handling of neighbour sysctls."). As a minimal fix we can simply duplicate the corresponding check in do_proc_dointvec_conv(). Link: http://lkml.kernel.org/r/20190207123426.9202-3-zev@bewilderbeest.net Signed-off-by: Zev Weiss <zev@bewilderbeest.net> Cc: Brendan Higgins <brendanhiggins@google.com> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Kees Cook <keescook@chromium.org> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: <stable@vger.kernel.org> [2.6.2+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-23tracing: Do not free iter->trace in fail path of tracing_open_pipe()zhangyi (F)1-1/+0
commit e7f0c424d0806b05d6f47be9f202b037eb701707 upstream. Commit d716ff71dd12 ("tracing: Remove taking of trace_types_lock in pipe files") use the current tracer instead of the copy in tracing_open_pipe(), but it forget to remove the freeing sentence in the error path. There's an error path that can call kfree(iter->trace) after the iter->trace was assigned to tr->current_trace, which would be bad to free. Link: http://lkml.kernel.org/r/1550060946-45984-1-git-send-email-yi.zhang@huawei.com Cc: stable@vger.kernel.org Fixes: d716ff71dd12 ("tracing: Remove taking of trace_types_lock in pipe files") Signed-off-by: zhangyi (F) <yi.zhang@huawei.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-23tracing: Use strncpy instead of memcpy for string keys in hist triggersTom Zanussi1-2/+3
commit 9f0bbf3115ca9f91f43b7c74e9ac7d79f47fc6c2 upstream. Because there may be random garbage beyond a string's null terminator, it's not correct to copy the the complete character array for use as a hist trigger key. This results in multiple histogram entries for the 'same' string key. So, in the case of a string key, use strncpy instead of memcpy to avoid copying in the extra bytes. Before, using the gdbus entries in the following hist trigger as an example: # echo 'hist:key=comm' > /sys/kernel/debug/tracing/events/sched/sched_waking/trigger # cat /sys/kernel/debug/tracing/events/sched/sched_waking/hist ... { comm: ImgDecoder #4 } hitcount: 203 { comm: gmain } hitcount: 213 { comm: gmain } hitcount: 216 { comm: StreamTrans #73 } hitcount: 221 { comm: mozStorage #3 } hitcount: 230 { comm: gdbus } hitcount: 233 { comm: StyleThread#5 } hitcount: 253 { comm: gdbus } hitcount: 256 { comm: gdbus } hitcount: 260 { comm: StyleThread#4 } hitcount: 271 ... # cat /sys/kernel/debug/tracing/events/sched/sched_waking/hist | egrep gdbus | wc -l 51 After: # cat /sys/kernel/debug/tracing/events/sched/sched_waking/hist | egrep gdbus | wc -l 1 Link: http://lkml.kernel.org/r/50c35ae1267d64eee975b8125e151e600071d4dc.1549309756.git.tom.zanussi@linux.intel.com Cc: Namhyung Kim <namhyung@kernel.org> Cc: stable@vger.kernel.org Fixes: 79e577cbce4c4 ("tracing: Support string type key properly") Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-13futex,rt_mutex: Restructure rt_mutex_finish_proxy_lock()Peter Zijlstra3-12/+55
commit 38d589f2fd08f1296aea3ce62bebd185125c6d81 upstream. With the ultimate goal of keeping rt_mutex wait_list and futex_q waiters consistent it's necessary to split 'rt_mutex_futex_lock()' into finer parts, such that only the actual blocking can be done without hb->lock held. Split split_mutex_finish_proxy_lock() into two parts, one that does the blocking and one that does remove_waiter() when the lock acquire failed. When the rtmutex was acquired successfully the waiter can be removed in the acquisiton path safely, since there is no concurrency on the lock owner. This means that, except for futex_lock_pi(), all wait_list modifications are done with both hb->lock and wait_lock held. [bigeasy@linutronix.de: fix for futex_requeue_pi_signal_restart] Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: juri.lelli@arm.com Cc: bigeasy@linutronix.de Cc: xlpang@redhat.com Cc: rostedt@goodmis.org Cc: mathieu.desnoyers@efficios.com Cc: jdesfossez@efficios.com Cc: dvhart@infradead.org Cc: bristot@redhat.com Link: http://lkml.kernel.org/r/20170322104152.001659630@infradead.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Zubin Mithra <zsm@chromium.org> Signed-off-by: Greg Kroah-Hartm