Age | Commit message (Collapse) | Author | Files | Lines |
|
[ Upstream commit f792565326825ed806626da50c6f9a928f1079c1 ]
Users of rdpmc rely on the mmapped user page to calculate accurate
time_enabled. Currently, userpage->time_enabled is only updated when the
event is added to the pmu. As a result, inactive event (due to counter
multiplexing) does not have accurate userpage->time_enabled. This can
be reproduced with something like:
/* open 20 task perf_event "cycles", to create multiplexing */
fd = perf_event_open(); /* open task perf_event "cycles" */
userpage = mmap(fd); /* use mmap and rdmpc */
while (true) {
time_enabled_mmap = xxx; /* use logic in perf_event_mmap_page */
time_enabled_read = read(fd).time_enabled;
if (time_enabled_mmap > time_enabled_read)
BUG();
}
Fix this by updating userpage for inactive events in merge_sched_in.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reported-and-tested-by: Lucian Grijincu <lucian@fb.com>
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210929194313.2398474-1-songliubraving@fb.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 30e29a9a2bc6a4888335a6ede968b75cd329657a ]
In prealloc_elems_and_freelist(), the multiplication to calculate the
size passed to bpf_map_area_alloc() could lead to an integer overflow.
As a result, out-of-bounds write could occur in pcpu_freelist_populate()
as reported by KASAN:
[...]
[ 16.968613] BUG: KASAN: slab-out-of-bounds in pcpu_freelist_populate+0xd9/0x100
[ 16.969408] Write of size 8 at addr ffff888104fc6ea0 by task crash/78
[ 16.970038]
[ 16.970195] CPU: 0 PID: 78 Comm: crash Not tainted 5.15.0-rc2+ #1
[ 16.970878] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
[ 16.972026] Call Trace:
[ 16.972306] dump_stack_lvl+0x34/0x44
[ 16.972687] print_address_description.constprop.0+0x21/0x140
[ 16.973297] ? pcpu_freelist_populate+0xd9/0x100
[ 16.973777] ? pcpu_freelist_populate+0xd9/0x100
[ 16.974257] kasan_report.cold+0x7f/0x11b
[ 16.974681] ? pcpu_freelist_populate+0xd9/0x100
[ 16.975190] pcpu_freelist_populate+0xd9/0x100
[ 16.975669] stack_map_alloc+0x209/0x2a0
[ 16.976106] __sys_bpf+0xd83/0x2ce0
[...]
The possibility of this overflow was originally discussed in [0], but
was overlooked.
Fix the integer overflow by changing elem_size to u64 from u32.
[0] https://lore.kernel.org/bpf/728b238e-a481-eb50-98e9-b0f430ab01e7@gmail.com/
Fixes: 557c0c6e7df8 ("bpf: convert stackmap to pre-allocation")
Signed-off-by: Tatsuhiko Yasumatsu <th.yasumatsu@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210930135545.173698-1-th.yasumatsu@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 8a98ae12fbefdb583a7696de719a1d57e5e940a2 ]
When introducing CAP_BPF, bpf_jit_charge_modmem() was not changed to treat
programs with CAP_BPF as privileged for the purpose of JIT memory allocation.
This means that a program without CAP_BPF can block a program with CAP_BPF
from loading a program.
Fix this by checking bpf_capable() in bpf_jit_charge_modmem().
Fixes: 2c78ee898d8f ("bpf: Implement CAP_BPF")
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210922111153.19843-1-lmb@cloudflare.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 356ed64991c6847a0c4f2e8fa3b1133f7a14f1fc ]
Currently if a function ptr in struct_ops has a return value, its
caller will get a random return value from it, because the return
value of related BPF_PROG_TYPE_STRUCT_OPS prog is just dropped.
So adding a new flag BPF_TRAMP_F_RET_FENTRY_RET to tell bpf trampoline
to save and return the return value of struct_ops prog if ret_size of
the function ptr is greater than 0. Also restricting the flag to be
used alone.
Fixes: 85d33df357b6 ("bpf: Introduce BPF_MAP_TYPE_STRUCT_OPS")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210914023351.3664499-1-houtao1@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 8646e53633f314e4d746a988240d3b951a92f94a upstream.
Invoke rseq's NOTIFY_RESUME handler when processing the flag prior to
transferring to a KVM guest, which is roughly equivalent to an exit to
userspace and processes many of the same pending actions. While the task
cannot be in an rseq critical section as the KVM path is reachable only
by via ioctl(KVM_RUN), the side effects that apply to rseq outside of a
critical section still apply, e.g. the current CPU needs to be updated if
the task is migrated.
Clearing TIF_NOTIFY_RESUME without informing rseq can lead to segfaults
and other badness in userspace VMMs that use rseq in combination with KVM,
e.g. due to the CPU ID being stale after task migration.
Fixes: 72c3c0fe54a3 ("x86/kvm: Use generic xfer to guest work function")
Reported-by: Peter Foley <pefoley@google.com>
Bisected-by: Doug Evans <dje@google.com>
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210901203030.1292304-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[sean: Resolve benign conflict due to unrelated access_ok() check in 5.10]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit e5c6b312ce3cc97e90ea159446e6bfa06645364d ]
The struct sugov_tunables is protected by the kobject, so we can't free
it directly. Otherwise we would get a call trace like this:
ODEBUG: free active (active state 0) object type: timer_list hint: delayed_work_timer_fn+0x0/0x30
WARNING: CPU: 3 PID: 720 at lib/debugobjects.c:505 debug_print_object+0xb8/0x100
Modules linked in:
CPU: 3 PID: 720 Comm: a.sh Tainted: G W 5.14.0-rc1-next-20210715-yocto-standard+ #507
Hardware name: Marvell OcteonTX CN96XX board (DT)
pstate: 40400009 (nZcv daif +PAN -UAO -TCO BTYPE=--)
pc : debug_print_object+0xb8/0x100
lr : debug_print_object+0xb8/0x100
sp : ffff80001ecaf910
x29: ffff80001ecaf910 x28: ffff00011b10b8d0 x27: ffff800011043d80
x26: ffff00011a8f0000 x25: ffff800013cb3ff0 x24: 0000000000000000
x23: ffff80001142aa68 x22: ffff800011043d80 x21: ffff00010de46f20
x20: ffff800013c0c520 x19: ffff800011d8f5b0 x18: 0000000000000010
x17: 6e6968207473696c x16: 5f72656d6974203a x15: 6570797420746365
x14: 6a626f2029302065 x13: 303378302f307830 x12: 2b6e665f72656d69
x11: ffff8000124b1560 x10: ffff800012331520 x9 : ffff8000100ca6b0
x8 : 000000000017ffe8 x7 : c0000000fffeffff x6 : 0000000000000001
x5 : ffff800011d8c000 x4 : ffff800011d8c740 x3 : 0000000000000000
x2 : ffff0001108301c0 x1 : ab3c90eedf9c0f00 x0 : 0000000000000000
Call trace:
debug_print_object+0xb8/0x100
__debug_check_no_obj_freed+0x1c0/0x230
debug_check_no_obj_freed+0x20/0x88
slab_free_freelist_hook+0x154/0x1c8
kfree+0x114/0x5d0
sugov_exit+0xbc/0xc0
cpufreq_exit_governor+0x44/0x90
cpufreq_set_policy+0x268/0x4a8
store_scaling_governor+0xe0/0x128
store+0xc0/0xf0
sysfs_kf_write+0x54/0x80
kernfs_fop_write_iter+0x128/0x1c0
new_sync_write+0xf0/0x190
vfs_write+0x2d4/0x478
ksys_write+0x74/0x100
__arm64_sys_write+0x24/0x30
invoke_syscall.constprop.0+0x54/0xe0
do_el0_svc+0x64/0x158
el0_svc+0x2c/0xb0
el0t_64_sync_handler+0xb0/0xb8
el0t_64_sync+0x198/0x19c
irq event stamp: 5518
hardirqs last enabled at (5517): [<ffff8000100cbd7c>] console_unlock+0x554/0x6c8
hardirqs last disabled at (5518): [<ffff800010fc0638>] el1_dbg+0x28/0xa0
softirqs last enabled at (5504): [<ffff8000100106e0>] __do_softirq+0x4d0/0x6c0
softirqs last disabled at (5483): [<ffff800010049548>] irq_exit+0x1b0/0x1b8
So split the original sugov_tunables_free() into two functions,
sugov_clear_global_tunables() is just used to clear the global_tunables
and the new sugov_tunables_free() is used as kobj_type::release to
release the sugov_tunables safely.
Fixes: 9bdcb44e391d ("cpufreq: schedutil: New governor based on scheduler utilization data")
Cc: 4.7+ <stable@vger.kernel.org> # 4.7+
Signed-off-by: Kevin Hao <haokexin@gmail.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 0e6491b559704da720f6da09dd0a52c4df44c514 ]
Commit 7661809d493b ("mm: don't allow oversized kvmalloc() calls") add the
oversize check. When the allocation is larger than what kmalloc() supports,
the following warning triggered:
WARNING: CPU: 0 PID: 8408 at mm/util.c:597 kvmalloc_node+0x108/0x110 mm/util.c:597
Modules linked in:
CPU: 0 PID: 8408 Comm: syz-executor221 Not tainted 5.14.0-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:kvmalloc_node+0x108/0x110 mm/util.c:597
Call Trace:
kvmalloc include/linux/mm.h:806 [inline]
kvmalloc_array include/linux/mm.h:824 [inline]
kvcalloc include/linux/mm.h:829 [inline]
check_btf_line kernel/bpf/verifier.c:9925 [inline]
check_btf_info kernel/bpf/verifier.c:10049 [inline]
bpf_check+0xd634/0x150d0 kernel/bpf/verifier.c:13759
bpf_prog_load kernel/bpf/syscall.c:2301 [inline]
__sys_bpf+0x11181/0x126e0 kernel/bpf/syscall.c:4587
__do_sys_bpf kernel/bpf/syscall.c:4691 [inline]
__se_sys_bpf kernel/bpf/syscall.c:4689 [inline]
__x64_sys_bpf+0x78/0x90 kernel/bpf/syscall.c:4689
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
Reported-by: syzbot+f3e749d4c662818ae439@syzkaller.appspotmail.com
Signed-off-by: Bixuan Cui <cuibixuan@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210911005557.45518-1-cuibixuan@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 5afedf670caf30a2b5a52da96eb7eac7dee6a9c9 ]
There is an use-after-free problem triggered by following process:
P1(sda) P2(sdb)
echo 0 > /sys/block/sdb/trace/enable
blk_trace_remove_queue
synchronize_rcu
blk_trace_free
relay_close
rcu_read_lock
__blk_add_trace
trace_note_tsk
(Iterate running_trace_list)
relay_close_buf
relay_destroy_buf
kfree(buf)
trace_note(sdb's bt)
relay_reserve
buf->offset <- nullptr deference (use-after-free) !!!
rcu_read_unlock
[ 502.714379] BUG: kernel NULL pointer dereference, address:
0000000000000010
[ 502.715260] #PF: supervisor read access in kernel mode
[ 502.715903] #PF: error_code(0x0000) - not-present page
[ 502.716546] PGD 103984067 P4D 103984067 PUD 17592b067 PMD 0
[ 502.717252] Oops: 0000 [#1] SMP
[ 502.720308] RIP: 0010:trace_note.isra.0+0x86/0x360
[ 502.732872] Call Trace:
[ 502.733193] __blk_add_trace.cold+0x137/0x1a3
[ 502.733734] blk_add_trace_rq+0x7b/0xd0
[ 502.734207] blk_add_trace_rq_issue+0x54/0xa0
[ 502.734755] blk_mq_start_request+0xde/0x1b0
[ 502.735287] scsi_queue_rq+0x528/0x1140
...
[ 502.742704] sg_new_write.isra.0+0x16e/0x3e0
[ 502.747501] sg_ioctl+0x466/0x1100
Reproduce method:
ioctl(/dev/sda, BLKTRACESETUP, blk_user_trace_setup[buf_size=127])
ioctl(/dev/sda, BLKTRACESTART)
ioctl(/dev/sdb, BLKTRACESETUP, blk_user_trace_setup[buf_size=127])
ioctl(/dev/sdb, BLKTRACESTART)
echo 0 > /sys/block/sdb/trace/enable &
// Add delay(mdelay/msleep) before kernel enters blk_trace_free()
ioctl$SG_IO(/dev/sda, SG_IO, ...)
// Enters trace_note_tsk() after blk_trace_free() returned
// Use mdelay in rcu region rather than msleep(which may schedule out)
Remove blk_trace from running_list before calling blk_trace_free() by
sysfs if blk_trace is at Blktrace_running state.
Fixes: c71a896154119f ("blktrace: add ftrace plugin")
Signed-off-by: Zhihao Cheng <chengzhihao1@huawei.com>
Link: https://lore.kernel.org/r/20210923134921.109194-1-chengzhihao1@huawei.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 9848417926353daa59d2b05eb26e185063dbac6e ]
The intel powerclamp driver will setup a per-CPU worker with RT
priority. The worker will then invoke play_idle() in which it remains in
the idle poll loop until it is stopped by the timer it started earlier.
That timer needs to expire in hard interrupt context on PREEMPT_RT.
Otherwise the timer will expire in ksoftirqd as a SOFT timer but that task
won't be scheduled on the CPU because its priority is lower than the
priority of the worker which is in the idle loop.
Always expire the idle timer in hard interrupt context.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210906113034.jgfxrjdvxnjqgtmc@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 2d186afd04d669fe9c48b994c41a7405a3c9f16d upstream.
Syzbot reported shift-out-of-bounds bug in profile_init().
The problem was in incorrect prof_shift. Since prof_shift value comes from
userspace we need to clamp this value into [0, BITS_PER_LONG -1]
boundaries.
Second possible shiht-out-of-bounds was found by Tetsuo:
sample_step local variable in read_profile() had "unsigned int" type,
but prof_shift allows to make a BITS_PER_LONG shift. So, to prevent
possible shiht-out-of-bounds sample_step type was changed to
"unsigned long".
Also, "unsigned short int" will be sufficient for storing
[0, BITS_PER_LONG] value, that's why there is no need for
"unsigned long" prof_shift.
Link: https://lkml.kernel.org/r/20210813140022.5011-1-paskripkin@gmail.com
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Reported-and-tested-by: syzbot+e68c89a9510c159d9684@syzkaller.appspotmail.com
Suggested-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Pavel Skripkin <paskripkin@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit e1fbbd073137a9d63279f6bf363151a938347640 upstream.
Keno Fischer reported that when a binray loaded via ld-linux-x the
prctl(PR_SET_MM_MAP) doesn't allow to setup brk value because it lays
before mm:end_data.
For example a test program shows
| # ~/t
|
| start_code 401000
| end_code 401a15
| start_stack 7ffce4577dd0
| start_data 403e10
| end_data 40408c
| start_brk b5b000
| sbrk(0) b5b000
and when executed via ld-linux
| # /lib64/ld-linux-x86-64.so.2 ~/t
|
| start_code 7fc25b0a4000
| end_code 7fc25b0c4524
| start_stack 7fffcc6b2400
| start_data 7fc25b0ce4c0
| end_data 7fc25b0cff98
| start_brk 55555710c000
| sbrk(0) 55555710c000
This of course prevent criu from restoring such programs. Looking into
how kernel operates with brk/start_brk inside brk() syscall I don't see
any problem if we allow to setup brk/start_brk without checking for
end_data. Even if someone pass some weird address here on a purpose then
the worst possible result will be an unexpected unmapping of existing vma
(own vma, since prctl works with the callers memory) but test for
RLIMIT_DATA is still valid and a user won't be able to gain more memory in
case of expanding VMAs via new values shipped with prctl call.
Link: https://lkml.kernel.org/r/20210121221207.GB2174@grain
Fixes: bbdc6076d2e5 ("binfmt_elf: move brk out of mmap when doing direct loader exec")
Signed-off-by: Cyrill Gorcunov <gorcunov@gmail.com>
Reported-by: Keno Fischer <keno@juliacomputing.com>
Acked-by: Andrey Vagin <avagin@gmail.com>
Tested-by: Andrey Vagin <avagin@gmail.com>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Pavel Tikhomirov <ptikhomirov@virtuozzo.com>
Cc: Alexander Mikhalitsyn <alexander.mikhalitsyn@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 6fe7c745f2acb73e4cc961d7f91125eef5a8861f ]
Fixes a build error when CONFIG_HIST_TRIGGERS=n with boot-time
tracing. Since the trigger_process_regex() is defined only
when CONFIG_HIST_TRIGGERS=y, if it is disabled, the 'actions'
event option also must be disabled.
Link: https://lkml.kernel.org/r/162856123376.203126.582144262622247352.stgit@devnote2
Fixes: 81a59555ff15 ("tracing/boot: Add per-event settings")
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 8e242060c6a4947e8ae7d29794af6a581db08841 ]
Since kprobe_events and uprobe_events only check whether the
other same-type probe event has the same name or not, if the
user gives the same name of the existing tracepoint event (or
the other type of probe events), it silently fails to create
the tracefs entry (but registered.) as below.
/sys/kernel/tracing # ls events/task/task_rename
enable filter format hist id trigger
/sys/kernel/tracing # echo p:task/task_rename vfs_read >> kprobe_events
[ 113.048508] Could not create tracefs 'task_rename' directory
/sys/kernel/tracing # cat kprobe_events
p:task/task_rename vfs_read
To fix this issue, check whether the existing events have the
same name or not in trace_probe_register_event_call(). If exists,
it rejects to register the new event.
Link: https://lkml.kernel.org/r/162936876189.187130.17558311387542061930.stgit@devnote2
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit b89a05b21f46150ac10a962aa50109250b56b03b upstream.
In perf_event_addr_filters_apply, the task associated with
the event (event->ctx->task) is read using READ_ONCE at the beginning
of the function, checked, and then re-read from event->ctx->task,
voiding all guarantees of the checks. Reuse the value that was read by
READ_ONCE to ensure the consistency of the task struct throughout the
function.
Fixes: 375637bc52495 ("perf/core: Introduce address range filtering")
Signed-off-by: Baptiste Lepers <baptiste.lepers@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210906015310.12802-1-baptiste.lepers@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit fab827dbee8c2e06ca4ba000fa6c48bcf9054aba upstream.
Commit 5d097056c9a0 ("kmemcg: account certain kmem allocations to memcg")
enabled memcg accounting for pids allocated from init_pid_ns.pid_cachep,
but forgot to adjust the setting for nested pid namespaces. As a result,
pid memory is not accounted exactly where it is really needed, inside
memcg-limited containers with their own pid namespaces.
Pid was one the first kernel objects enabled for memcg accounting.
init_pid_ns.pid_cachep marked by SLAB_ACCOUNT and we can expect that any
new pids in the system are memcg-accounted.
Though recently I've noticed that it is wrong. nested pid namespaces
creates own slab caches for pid objects, nested pids have increased size
because contain id both for all parent and for own pid namespaces. The
problem is that these slab caches are _NOT_ marked by SLAB_ACCOUNT, as a
result any pids allocated in nested pid namespaces are not
memcg-accounted.
Pid struct in nested pid namespace consumes up to 500 bytes memory, 100000
such objects gives us up to ~50Mb unaccounted memory, this allow container
to exceed assigned memcg limits.
Link: https://lkml.kernel.org/r/8b6de616-fd1a-02c6-cbdb-976ecdcfa604@virtuozzo.com
Fixes: 5d097056c9a0 ("kmemcg: account certain kmem allocations to memcg")
Cc: stable@vger.kernel.org
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 13db8c50477d83ad3e3b9b0ae247e5cd833a7ae4 upstream.
After fork, the child process will get incorrect (2x) hugetlb_usage. If
a process uses 5 2MB hugetlb pages in an anonymous mapping,
HugetlbPages: 10240 kB
and then forks, the child will show,
HugetlbPages: 20480 kB
The reason for double the amount is because hugetlb_usage will be copied
from the parent and then increased when we copy page tables from parent
to child. Child will have 2x actual usage.
Fix this by adding hugetlb_count_init in mm_init.
Link: https://lkml.kernel.org/r/20210826071742.877-1-liuzixian4@huawei.com
Fixes: 5d317b2b6536 ("mm: hugetlb: proc: add HugetlbPages field to /proc/PID/status")
Signed-off-by: Liu Zixian <liuzixian4@huawei.com>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit f728c4a9e8405caae69d4bc1232c54ff57b5d20f ]
In error handling branch "if (WARN_ON(node == NUMA_NO_NODE))", the
previously allocated memories are not released. Doing this before
allocating memory eliminates memory leaks.
tj: Note that the condition only occurs when the arch code is pretty broken
and the WARN_ON might as well be BUG_ON().
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit fed31a4dd3adb5455df7c704de2abb639a1dc1c0 ]
This commit fixes several typos where CONFIG_TASKS_RCU_TRACE should
instead be CONFIG_TASKS_TRACE_RCU. Among other things, these typos
could cause CONFIG_TASKS_TRACE_RCU_READ_MB=y kernels to suffer from
memory-ordering bugs that could result in false-positive quiescent
states and too-short grace periods.
Signed-off-by: Zhouyi Zhou <zhouzhouyi@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 173735c346c412d9f084825ecb04f24ada0e2986 ]
Due to link order, dma_debug_init is called before debugfs has a chance
to initialize (via debugfs_init which also happens in the core initcall
stage), so the directories for dma-debug are never created.
Decouple dma_debug_fs_init from dma_debug_init and defer its init until
core_initcall_sync (after debugfs has been initialized) while letting
dma-debug initialization occur as soon as possible to catch any early
mappings, as suggested in [1].
[1] https://lore.kernel.org/linux-iommu/YIgGa6yF%2Fadg8OSN@kroah.com/
Fixes: 15b28bbcd567 ("dma-debug: move initialization to common code")
Signed-off-by: Anthony Iliopoulos <ailiop@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
This reverts commit 13ccaef77ee86047033c50bf59cb19e0dda3aa97 which is
commit 406dd42bd1ba0c01babf9cde169bb319e52f6147 upstream.
It is reported to cause regressions. A proposed fix has been posted,
but it is not in a released kernel yet. So just revert this from the
stable release so that the bug is fixed. If it's really needed we can
add it back in in a future release.
Link: https://lore.kernel.org/r/87ilz1pwaq.fsf@wylie.me.uk
Reported-by: "Alan J. Wylie" <alan@wylie.me.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit d7af7e497f0308bc97809cc48b58e8e0f13887e1 ]
Fix a verifier bug found by smatch static checker in [0].
This problem has never been seen in prod to my best knowledge. Fixing it
still seems to be a good idea since it's hard to say for sure whether
it's possible or not to have a scenario where a combination of
convert_ctx_access() and a narrow load would lead to an out of bound
write.
When narrow load is handled, one or two new instructions are added to
insn_buf array, but before it was only checked that
cnt >= ARRAY_SIZE(insn_buf)
And it's safe to add a new instruction to insn_buf[cnt++] only once. The
second try will lead to out of bound write. And this is what can happen
if `shift` is set.
Fix it by making sure that if the BPF_RSH instruction has to be added in
addition to BPF_AND then there is enough space for two more instructions
in insn_buf.
The full report [0] is below:
kernel/bpf/verifier.c:12304 convert_ctx_accesses() warn: offset 'cnt' incremented past end of array
kernel/bpf/verifier.c:12311 convert_ctx_accesses() warn: offset 'cnt' incremented past end of array
kernel/bpf/verifier.c
12282
12283 insn->off = off & ~(size_default - 1);
12284 insn->code = BPF_LDX | BPF_MEM | size_code;
12285 }
12286
12287 target_size = 0;
12288 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
12289 &target_size);
12290 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Bounds check.
12291 (ctx_field_size && !target_size)) {
12292 verbose(env, "bpf verifier is misconfigured\n");
12293 return -EINVAL;
12294 }
12295
12296 if (is_narrower_load && size < target_size) {
12297 u8 shift = bpf_ctx_narrow_access_offset(
12298 off, size, size_default) * 8;
12299 if (ctx_field_size <= 4) {
12300 if (shift)
12301 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
^^^^^
increment beyond end of array
12302 insn->dst_reg,
12303 shift);
--> 12304 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
^^^^^
out of bounds write
12305 (1 << size * 8) - 1);
12306 } else {
12307 if (shift)
12308 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
12309 insn->dst_reg,
12310 shift);
12311 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
^^^^^^^^^^^^^^^
Same.
12312 (1ULL << size * 8) - 1);
12313 }
12314 }
12315
12316 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12317 if (!new_prog)
12318 return -ENOMEM;
12319
12320 delta += cnt - 1;
12321
12322 /* keep walking new program and skip insns we just inserted */
12323 env->prog = new_prog;
12324 insn = new_prog->insnsi + i + delta;
12325 }
12326
12327 return 0;
12328 }
[0] https://lore.kernel.org/bpf/20210817050843.GA21456@kili/
v1->v2:
- clarify that problem was only seen by static checker but not in prod;
Fixes: 46f53a65d2de ("bpf: Allow narrow loads with offset > 0")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210820163935.1902398-1-rdna@fb.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit dfd5e3f5fe27bda91d5cc028c86ffbb7a0614489 ]
The local_lock_t's are special, because they cannot form IRQ
inversions, make sure we can tell them apart from the rest of the
locks.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit b2f6662ac08d0e7c25574ce53623c71bdae9dd78 ]
Invoking atomic_notifier_chain_notify() requires acquiring a spinlock_t,
which can block under CONFIG_PREEMPT_RT. Notifications for members of the
cpu_pm notification chain will be issued by the idle task, which can never
block.
Making *all* atomic_notifiers use a raw_spinlock is too big of a hammer, as
only notifications issued by the idle task are problematic.
Special-case cpu_pm_notifier_chain by kludging a raw_notifier and
raw_spinlock_t together, matching the atomic_notifier behavior with a
raw_spinlock_t.
Fixes: 70d932985757 ("notifier: Fix broken error handling pattern")
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 6ba34d3c73674e46d9e126e4f0cee79e5ef2481c ]
The cpuset fields that manage partition root state do not strictly
follow the cpuset locking rule that update to cpuset has to be done
with both the callback_lock and cpuset_mutex held. This is now fixed
by making sure that the locking rule is upheld.
Fixes: 3881b86128d0 ("cpuset: Add an error state to cpuset.sched.partition")
Fixes: 4b842da276a8 ("cpuset: Make CPU hotplug work with partition")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 0f3adb8a1e5f36e792598c1d77a2cfac9c90a4f9 ]
Use more descriptive variable names for update_prstate(), remove
unnecessary code and fix some typos. There is no functional change.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 7fcc17d0cb12938d2b3507973a6f93fc9ed2c7a1 ]
The Energy Model (EM) provides useful information about device power in
each performance state to other subsystems like: Energy Aware Scheduler
(EAS). The energy calculation in EAS does arithmetic operation based on
the EM em_cpu_energy(). Current implementation of that function uses
em_perf_state::cost as a pre-computed cost coefficient equal to:
cost = power * max_frequency / frequency.
The 'power' is expressed in milli-Watts (or in abstract scale).
There are corner cases when the EAS energy calculation for two Performance
Domains (PDs) return the same value. The EAS compares these values to
choose smaller one. It might happen that this values are equal due to
rounding error. In such scenario, we need better resolution, e.g. 1000
times better. To provide this possibility increase the resolution in the
em_perf_state::cost for 64-bit architectures. The cost of increasing
resolution on 32-bit is pretty high (64-bit division) and is not justified
since there are no new 32bit big.LITTLE EAS systems expected which would
benefit from this higher resolution.
This patch allows to avoid the rounding to milli-Watt errors, which might
occur in EAS energy estimation for each PD. The rounding error is common
for small tasks which have small utilization value.
There are two places in the code where it makes a difference:
1. In the find_energy_efficient_cpu() where we are searching for
best_delta. We might suffer there when two PDs return the same result,
like in the example below.
Scenario:
Low utilized system e.g. ~200 sum_util for PD0 and ~220 for PD1. There
are quite a few small tasks ~10-15 util. These tasks would suffer for
the rounding error. These utilization values are typical when running games
on Android. One of our partners has reported 5..10mA less battery drain
when running with increased resolution.
Some details:
We have two PDs: PD0 (big) and PD1 (little)
Let's compare w/o patch set ('old') and w/ patch set ('new')
We are comparing energy w/ task and w/o task placed in the PDs
a) 'old' w/o patch set, PD0
task_util = 13
cost = 480
sum_util_w/o_task = 215
sum_util_w_task = 228
scale_cpu = 1024
energy_w/o_task = 480 * 215 / 1024 = 100.78 => 100
energy_w_task = 480 * 228 / 1024 = 106.87 => 106
energy_diff = 106 - 100 = 6
(this is equal to 'old' PD1's energy_diff in 'c)')
b) 'new' w/ patch set, PD0
task_util = 13
cost = 480 * 1000 = 480000
sum_util_w/o_task = 215
sum_util_w_task = 228
energy_w/o_task = 480000 * 215 / 1024 = 100781
energy_w_task = 480000 * 228 / 1024 = 106875
energy_diff = 106875 - 100781 = 6094
(this is not equal to 'new' PD1's energy_diff in 'd)')
c) 'old' w/o patch set, PD1
task_util = 13
cost = 160
sum_util_w/o_task = 283
sum_util_w_task = 293
scale_cpu = 355
energy_w/o_task = 160 * 283 / 355 = 127.55 => 127
energy_w_task = 160 * 296 / 355 = 133.41 => 133
energy_diff = 133 - 127 = 6
(this is equal to 'old' PD0's energy_diff in 'a)')
d) 'new' w/ patch set, PD1
task_util = 13
cost = 160 * 1000 = 160000
sum_util_w/o_task = 283
sum_util_w_task = 293
scale_cpu = 355
energy_w/o_task = 160000 * 283 / 355 = 127549
energy_w_task = 160000 * 296 / 355 = 133408
energy_diff = 133408 - 127549 = 5859
(this is not equal to 'new' PD0's energy_diff in 'b)')
2. Difference in the 6% energy margin filter at the end of
find_energy_efficient_cpu(). With this patch the margin comparison also
has better resolution, so it's possible to have better task placement
thanks to that.
Fixes: 27871f7a8a341ef ("PM: Introduce an Energy Model management framework")
Reported-by: CCJ Yeh <CCj.Yeh@mediatek.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Lukasz Luba <lukasz.luba@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 15d428e6fe77fffc3f4fff923336036f5496ef17 ]
In cpuset_hotplug_workfn(), the detection of whether the cpu list
has been changed is done by comparing the effective cpus of the top
cpuset with the cpu_active_mask. However, in the rare case that just
all the CPUs in the subparts_cpus are offlined, the detection fails
and the partition states are not updated correctly. Fix it by forcing
the cpus_updated flag to true in this particular case.
Fixes: 4b842da276a8 ("cpuset: Make CPU hotplug work with partition")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 75f0fc7b48ad45a2e5736bcf8de26c8872fe8695 ]
In bpf_patch_insn_data(), we first use the bpf_patch_insn_single() to
insert new instructions, then use adjust_insn_aux_data() to adjust
insn_aux_data. If the old env->prog have no enough room for new inserted
instructions, we use bpf_prog_realloc to construct new_prog and free the
old env->prog.
There have two errors here. First, if adjust_insn_aux_data() return
ENOMEM, we should free the new_prog. Second, if adjust_insn_aux_data()
return ENOMEM, bpf_patch_insn_data() will return NULL, and env->prog has
been freed in bpf_prog_realloc, but we will use it in bpf_check().
So in this patch, we make the adjust_insn_aux_data() never fails. In
bpf_patch_insn_data(), we first pre-malloc memory for the new
insn_aux_data, then call bpf_patch_insn_single() to insert new
instructions, at last call adjust_insn_aux_data() to adjust
insn_aux_data.
Fixes: 8041902dae52 ("bpf: adjust insn_aux_data when patching insns")
Signed-off-by: He Fengqing <hefengqing@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20210714101815.164322-1-hefengqing@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 290fdc4b7ef14e33d0e30058042b0e9bfd02b89b ]
Return a negative error code from the error handling case instead of 0, as
done elsewhere in this function.
Fixes: f52da98d900e ("genirq/timings: Add selftest for irqs circular buffer")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210811093333.2376-1-thunder.leizhen@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit dc87740c8a6806bd2162bfb441770e4e53be5601 ]
If rcu_print_task_stall() is invoked on an rcu_node structure that does
not contain any tasks blocking the current grace period, it takes an
early exit that fails to release that rcu_node structure's lock. This
results in a self-deadlock, which is detected by lockdep.
To reproduce this bug:
tools/testing/selftests/rcutorture/bin/kvm.sh --allcpus --duration 3 --trust-make --configs "TREE03" --kconfig "CONFIG_PROVE_LOCKING=y" --bootargs "rcutorture.stall_cpu=30 rcutorture.stall_cpu_block=1 rcutorture.fwd_progress=0 rcutorture.test_boost=0"
This will also result in other complaints, including RCU's scheduler
hook complaining about blocking rather than preemption and an rcutorture
writer stall.
Only a partial RCU CPU stall warning message will be printed because of
the self-deadlock.
This commit therefore releases the lock on the rcu_print_task_stall()
function's early exit path.
Fixes: c583bcb8f5ed ("rcu: Don't invoke try_invoke_on_locked_down_task() with irqs disabled")
Tested-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Yanfei Xu <yanfei.xu@windriver.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit a649d25dcc671a33b9cc3176411920fdc5fbd98e ]
This commit adds a number of lockdep_assert_irqs_disabled() calls
to rcu_sched_clock_irq() and a number of the functions that it calls.
The point of this is to help track down a situation where lockdep appears
to be insisting that interrupts are enabled within these functions, which
should only ever be invoked from the scheduling-clock interrupt handler.
Link: https://lore.kernel.org/lkml/20201111133813.GA81547@elver.google.com/
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit e6a901a44f76878ed1653626c9ff4cfc5a3f58f8 ]
The for loop in rcu_print_task_stall() always omits ts[0], which points
to the first task blocking the stalled grace period. This in turn fails
to count this first task, which means that ndetected will be equal to
zero when all CPUs have passed through their quiescent states and only
one task is blocking the stalled grace period. This zero value for
ndetected will in turn result in an incorrect "All QSes seen" message:
rcu: INFO: rcu_preempt detected stalls on CPUs/tasks:
rcu: Tasks blocked on level-1 rcu_node (CPUs 12-23):
(detected by 15, t=6504 jiffies, g=164777, q=9011209)
rcu: All QSes seen, last rcu_preempt kthread activity 1 (4295252379-4295252378), jiffies_till_next_fqs=1, root ->qsmask 0x2
BUG: sleeping function called from invalid context at include/linux/uaccess.h:156
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 70613, name: msgstress04
INFO: lockdep is turned off.
Preemption disabled at:
[<ffff8000104031a4>] create_object.isra.0+0x204/0x4b0
CPU: 15 PID: 70613 Comm: msgstress04 Kdump: loaded Not tainted
5.12.2-yoctodev-standard #1
Hardware name: Marvell OcteonTX CN96XX board (DT)
Call trace:
dump_backtrace+0x0/0x2cc
show_stack+0x24/0x30
dump_stack+0x110/0x188
___might_sleep+0x214/0x2d0
__might_sleep+0x7c/0xe0
This commit therefore fixes the loop to include ts[0].
Fixes: c583bcb8f5ed ("rcu: Don't invoke try_invoke_on_locked_down_task() with irqs disabled")
Tested-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Yanfei Xu <yanfei.xu@windriver.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit ca4984a7dd863f3e1c0df775ae3e744bff24c303 ]
The UCLAMP_FLAG_IDLE flag is set on a runqueue when dequeueing the last
uclamp active task (that is, when buckets.tasks reaches 0 for all
buckets) to maintain the last uclamp.max and prevent blocked util from
suddenly becoming visible.
However, there is an asymmetry in how the flag is set and cleared which
can lead to having the flag set whilst there are active tasks on the rq.
Specifically, the flag is cleared in the uclamp_rq_inc() path, which is
called at enqueue time, but set in uclamp_rq_dec_id() which is called
both when dequeueing a task _and_ in the update_uclamp_active() path. As
a result, when both uclamp_rq_{dec,ind}_id() are called from
update_uclamp_active(), the flag ends up being set but not cleared,
hence leaving the runqueue in a broken state.
Fix this by clearing the flag in update_uclamp_active() as well.
Fixes: e496187da710 ("sched/uclamp: Enforce last task's UCLAMP_MAX")
Reported-by: Rick Yiu <rickyiu@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Qais Yousef <qais.yousef@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20210805102154.590709-2-qperret@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 1c6829cfd3d5124b125e6df41158665aea413b35 ]
Use the loop variable instead of the function argument to test the
other SMT siblings for idle.
Fixes: ff7db0bf24db ("sched/numa: Prefer using an idle CPU as a migration target instead of comparing tasks")
Signed-off-by: Mika Penttilä <mika.penttila@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Pankaj Gupta <pankaj.gupta@ionos.com>
Link: https://lkml.kernel.org/r/20210722063946.28951-1-mika.penttila@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 8c3b5e6ec0fee18bc2ce38d1dfe913413205f908 ]
If high resolution timers are disabled the timerfd notification about a
clock was set event is not happening for all cases which use
clock_was_set_delayed() because that's a NOP for HIGHRES=n, which is wrong.
Make clock_was_set_delayed() unconditially available to fix that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.196661266@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 627ef5ae2df8eeccb20d5af0e4cfa4df9e61ed28 ]
If __hrtimer_start_range_ns() is invoked with an already armed hrtimer then
the timer has to be canceled first and then added back. If the timer is the
first expiring timer then on removal the clockevent device is reprogrammed
to the next expiring timer to avoid that the pending expiry fires needlessly.
If the new expiry time ends up to be the first expiry again then the clock
event device has to reprogrammed again.
Avoid this by checking whether the timer is the first to expire and in that
case, keep the timer on the current CPU and delay the reprogramming up to
the point where the timer has been enqueued again.
Reported-by: Lorenzo Colitti <lorenzo@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135157.873137732@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
|