Age | Commit message (Collapse) | Author | Files | Lines |
|
commit 7dd5d437c258bbf4cc15b35229e5208b87b8b4e0 upstream.
In 32-bit architecture, the result of sizeof() is a 32-bit integer so
the expression becomes the multiplication between 2 32-bit integer which
can potentially leads to integer overflow. As a result,
bpf_map_area_alloc() allocates less memory than needed.
Fix this by casting 1 operand to u64.
Fixes: 0d2c4f964050 ("bpf: Eliminate rlimit-based memory accounting for sockmap and sockhash maps")
Fixes: 99c51064fb06 ("devmap: Use bpf_map_area_alloc() for allocating hash buckets")
Fixes: 546ac1ffb70d ("bpf: add devmap, a map for storing net device references")
Signed-off-by: Bui Quang Minh <minhquangbui99@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210613143440.71975-1-minhquangbui99@gmail.com
Signed-off-by: Connor O'Brien <connoro@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit f25667e5980a4333729cac3101e5de1bb851f71a ]
Doing the command:
echo 'hist:key=common_pid.execname,common_timestamp' > /sys/kernel/debug/tracing/events/xxx/trigger
Triggers many kmemleak reports:
unreferenced object 0xffff0000c7ea4980 (size 128):
comm "bash", pid 338, jiffies 4294912626 (age 9339.324s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000f3469921>] kmem_cache_alloc_trace+0x4c0/0x6f0
[<0000000054ca40c3>] hist_trigger_elt_data_alloc+0x140/0x178
[<00000000633bd154>] tracing_map_init+0x1f8/0x268
[<000000007e814ab9>] event_hist_trigger_func+0xca0/0x1ad0
[<00000000bf8520ed>] trigger_process_regex+0xd4/0x128
[<00000000f549355a>] event_trigger_write+0x7c/0x120
[<00000000b80f898d>] vfs_write+0xc4/0x380
[<00000000823e1055>] ksys_write+0x74/0xf8
[<000000008a9374aa>] __arm64_sys_write+0x24/0x30
[<0000000087124017>] do_el0_svc+0x88/0x1c0
[<00000000efd0dcd1>] el0_svc+0x1c/0x28
[<00000000dbfba9b3>] el0_sync_handler+0x88/0xc0
[<00000000e7399680>] el0_sync+0x148/0x180
unreferenced object 0xffff0000c7ea4980 (size 128):
comm "bash", pid 338, jiffies 4294912626 (age 9339.324s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000f3469921>] kmem_cache_alloc_trace+0x4c0/0x6f0
[<0000000054ca40c3>] hist_trigger_elt_data_alloc+0x140/0x178
[<00000000633bd154>] tracing_map_init+0x1f8/0x268
[<000000007e814ab9>] event_hist_trigger_func+0xca0/0x1ad0
[<00000000bf8520ed>] trigger_process_regex+0xd4/0x128
[<00000000f549355a>] event_trigger_write+0x7c/0x120
[<00000000b80f898d>] vfs_write+0xc4/0x380
[<00000000823e1055>] ksys_write+0x74/0xf8
[<000000008a9374aa>] __arm64_sys_write+0x24/0x30
[<0000000087124017>] do_el0_svc+0x88/0x1c0
[<00000000efd0dcd1>] el0_svc+0x1c/0x28
[<00000000dbfba9b3>] el0_sync_handler+0x88/0xc0
[<00000000e7399680>] el0_sync+0x148/0x180
The reason is elts->pages[i] is alloced by get_zeroed_page.
and kmemleak will not scan the area alloced by get_zeroed_page.
The address stored in elts->pages will be regarded as leaked.
That is, the elts->pages[i] will have pointers loaded onto it as well, and
without telling kmemleak about it, those pointers will look like memory
without a reference.
To fix this, call kmemleak_alloc to tell kmemleak to scan elts->pages[i]
Link: https://lkml.kernel.org/r/20211124140801.87121-1-chenjun102@huawei.com
Signed-off-by: Chen Jun <chenjun102@huawei.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 42288cb44c4b5fff7653bc392b583a2b8bd6a8c0 upstream.
Several ->poll() implementations are special in that they use a
waitqueue whose lifetime is the current task, rather than the struct
file as is normally the case. This is okay for blocking polls, since a
blocking poll occurs within one task; however, non-blocking polls
require another solution. This solution is for the queue to be cleared
before it is freed, using 'wake_up_poll(wq, EPOLLHUP | POLLFREE);'.
However, that has a bug: wake_up_poll() calls __wake_up() with
nr_exclusive=1. Therefore, if there are multiple "exclusive" waiters,
and the wakeup function for the first one returns a positive value, only
that one will be called. That's *not* what's needed for POLLFREE;
POLLFREE is special in that it really needs to wake up everyone.
Considering the three non-blocking poll systems:
- io_uring poll doesn't handle POLLFREE at all, so it is broken anyway.
- aio poll is unaffected, since it doesn't support exclusive waits.
However, that's fragile, as someone could add this feature later.
- epoll doesn't appear to be broken by this, since its wakeup function
returns 0 when it sees POLLFREE. But this is fragile.
Although there is a workaround (see epoll), it's better to define a
function which always sends POLLFREE to all waiters. Add such a
function. Also make it verify that the queue really becomes empty after
all waiters have been woken up.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20211209010455.42744-2-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 2fa7d94afc1afbb4d702760c058dc2d7ed30f226 upstream.
The first commit cited below attempts to fix the off-by-one error that
appeared in some comparisons with an open range. Due to this error,
arithmetically equivalent pieces of code could get different verdicts
from the verifier, for example (pseudocode):
// 1. Passes the verifier:
if (data + 8 > data_end)
return early
read *(u64 *)data, i.e. [data; data+7]
// 2. Rejected by the verifier (should still pass):
if (data + 7 >= data_end)
return early
read *(u64 *)data, i.e. [data; data+7]
The attempted fix, however, shifts the range by one in a wrong
direction, so the bug not only remains, but also such piece of code
starts failing in the verifier:
// 3. Rejected by the verifier, but the check is stricter than in #1.
if (data + 8 >= data_end)
return early
read *(u64 *)data, i.e. [data; data+7]
The change performed by that fix converted an off-by-one bug into
off-by-two. The second commit cited below added the BPF selftests
written to ensure than code chunks like #3 are rejected, however,
they should be accepted.
This commit fixes the off-by-two error by adjusting new_range in the
right direction and fixes the tests by changing the range into the
one that should actually fail.
Fixes: fb2a311a31d3 ("bpf: fix off by one for range markings with L{T, E} patterns")
Fixes: b37242c773b2 ("bpf: add test cases to bpf selftests to cover all access tests")
Signed-off-by: Maxim Mikityanskiy <maximmi@nvidia.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20211130181607.593149-1-maximmi@nvidia.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 315c4f884800c45cb6bd8c90422fad554a8b9588 ]
Commit d81ae8aac85c ("sched/uclamp: Fix initialization of struct
uclamp_rq") introduced a bug where uclamp_max of the rq is not reset to
match the woken up task's uclamp_max when the rq is idle.
The code was relying on rq->uclamp_max initialized to zero, so on first
enqueue
static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
enum uclamp_id clamp_id)
{
...
if (uc_se->value > READ_ONCE(uc_rq->value))
WRITE_ONCE(uc_rq->value, uc_se->value);
}
was actually resetting it. But since commit d81ae8aac85c changed the
default to 1024, this no longer works. And since rq->uclamp_flags is
also initialized to 0, neither above code path nor uclamp_idle_reset()
update the rq->uclamp_max on first wake up from idle.
This is only visible from first wake up(s) until the first dequeue to
idle after enabling the static key. And it only matters if the
uclamp_max of this task is < 1024 since only then its uclamp_max will be
effectively ignored.
Fix it by properly initializing rq->uclamp_flags = UCLAMP_FLAG_IDLE to
ensure uclamp_idle_reset() is called which then will update the rq
uclamp_max value as expected.
Fixes: d81ae8aac85c ("sched/uclamp: Fix initialization of struct uclamp_rq")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <Valentin.Schneider@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lkml.kernel.org/r/20211202112033.1705279-1-qais.yousef@arm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 450fec13d9170127678f991698ac1a5b05c02e2f upstream.
When comparing two strings for the "onmatch" histogram trigger, fields
that are strings use string comparisons, which do not care about being
signed or not.
Do not fail to match two string fields if one is unsigned char array and
the other is a signed char array.
Link: https://lore.kernel.org/all/20211129123043.5cfd687a@gandalf.local.home/
Cc: stable@vgerk.kernel.org
Cc: Tom Zanussi <zanussi@kernel.org>
Cc: Yafang Shao <laoar.shao@gmail.com>
Fixes: b05e89ae7cf3b ("tracing: Accept different type for synthetic event fields")
Reviewed-by: Masami Hiramatsu <mhiramatsu@kernel.org>
Reported-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6bbfa44116689469267f1a6e3d233b52114139d2 upstream.
The 'kprobe::data_size' is unsigned, thus it can not be negative. But if
user sets it enough big number (e.g. (size_t)-8), the result of 'data_size
+ sizeof(struct kretprobe_instance)' becomes smaller than sizeof(struct
kretprobe_instance) or zero. In result, the kretprobe_instance are
allocated without enough memory, and kretprobe accesses outside of
allocated memory.
To avoid this issue, introduce a max limitation of the
kretprobe::data_size. 4KB per instance should be OK.
Link: https://lkml.kernel.org/r/163836995040.432120.10322772773821182925.stgit@devnote2
Cc: stable@vger.kernel.org
Fixes: f47cd9b553aa ("kprobes: kretprobe user entry-handler")
Reported-by: zhangyue <zhangyue1@kylinos.cn>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 6cb206508b621a9a0a2c35b60540e399225c8243 upstream.
When pid filtering is activated in an instance, all of the events trace
files for that instance has the PID_FILTER flag set. This determines
whether or not pid filtering needs to be done on the event, otherwise the
event is executed as normal.
If pid filtering is enabled when an event is created (via a dynamic event
or modules), its flag is not updated to reflect the current state, and the
events are not filtered properly.
Cc: stable@vger.kernel.org
Fixes: 3fdaf80f4a836 ("tracing: Implement event pid filtering")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit dce1ca0525bfdc8a69a9343bc714fbc19a2f04b3 ]
To hot unplug a CPU, the idle task on that CPU calls a few layers of C
code before finally leaving the kernel. When KASAN is in use, poisoned
shadow is left around for each of the active stack frames, and when
shadow call stacks are in use. When shadow call stacks (SCS) are in use
the task's saved SCS SP is left pointing at an arbitrary point within
the task's shadow call stack.
When a CPU is offlined than onlined back into the kernel, this stale
state can adversely affect execution. Stale KASAN shadow can alias new
stackframes and result in bogus KASAN warnings. A stale SCS SP is
effectively a memory leak, and prevents a portion of the shadow call
stack being used. Across a number of hotplug cycles the idle task's
entire shadow call stack can become unusable.
We previously fixed the KASAN issue in commit:
e1b77c92981a5222 ("sched/kasan: remove stale KASAN poison after hotplug")
... by removing any stale KASAN stack poison immediately prior to
onlining a CPU.
Subsequently in commit:
f1a0a376ca0c4ef1 ("sched/core: Initialize the idle task with preemption disabled")
... the refactoring left the KASAN and SCS cleanup in one-time idle
thread initialization code rather than something invoked prior to each
CPU being onlined, breaking both as above.
We fixed SCS (but not KASAN) in commit:
63acd42c0d4942f7 ("sched/scs: Reset the shadow stack when idle_task_exit")
... but as this runs in the context of the idle task being offlined it's
potentially fragile.
To fix these consistently and more robustly, reset the SCS SP and KASAN
shadow of a CPU's idle task immediately before we online that CPU in
bringup_cpu(). This ensures the idle task always has a consistent state
when it is running, and removes the need to so so when exiting an idle
task.
Whenever any thread is created, dup_task_struct() will give the task a
stack which is free of KASAN shadow, and initialize the task's SCS SP,
so there's no need to specially initialize either for idle thread within
init_idle(), as this was only necessary to handle hotplug cycles.
I've tested this on arm64 with:
* gcc 11.1.0, defconfig +KASAN_INLINE, KASAN_STACK
* clang 12.0.0, defconfig +KASAN_INLINE, KASAN_STACK, SHADOW_CALL_STACK
... offlining and onlining CPUS with:
| while true; do
| for C in /sys/devices/system/cpu/cpu*/online; do
| echo 0 > $C;
| echo 1 > $C;
| done
| done
Fixes: f1a0a376ca0c4ef1 ("sched/core: Initialize the idle task with preemption disabled")
Reported-by: Qian Cai <quic_qiancai@quicinc.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Qian Cai <quic_qiancai@quicinc.com>
Link: https://lore.kernel.org/lkml/20211115113310.35693-1-mark.rutland@arm.com/
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit cefcf24b4d351daf70ecd945324e200d3736821e ]
Commit 39fbef4b0f77 ("PM: hibernate: Get block device exclusively in
swsusp_check()") changed the opening mode of the block device to
(FMODE_READ | FMODE_EXCL).
In the corresponding calls to swsusp_close(), the mode is still just
FMODE_READ which triggers the warning in blkdev_flush_mapping() on
resume from hibernate.
So, use the mode (FMODE_READ | FMODE_EXCL) also when closing the
device.
Fixes: 39fbef4b0f77 ("PM: hibernate: Get block device exclusively in swsusp_check()")
Signed-off-by: Thomas Zeitlhofer <thomas.zeitlhofer+lkml@ze-it.at>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit a55f224ff5f238013de8762c4287117e47b86e22 upstream.
If a event is filtered by pid and a trigger that requires processing of
the event to happen is a attached to the event, the discard portion does
not take the pid filtering into account, and the event will then be
recorded when it should not have been.
Cc: stable@vger.kernel.org
Fixes: 3fdaf80f4a836 ("tracing: Implement event pid filtering")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 1880ed71ce863318c1ce93bf324876fb5f92854f upstream.
Add missing 'tu' variable initialization in the probes loop,
otherwise the head 'tu' is used instead of added probes.
Link: https://lkml.kernel.org/r/20211123142801.182530-1-jolsa@kernel.org
Cc: stable@vger.kernel.org
Fixes: 99c9a923e97a ("tracing/uprobe: Fix double perf_event linking on multiprobe uprobe")
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit 353050be4c19e102178ccc05988101887c25ae53 upstream.
Commit a23740ec43ba ("bpf: Track contents of read-only maps as scalars") is
checking whether maps are read-only both from BPF program side and user space
side, and then, given their content is constant, reading out their data via
map->ops->map_direct_value_addr() which is then subsequently used as known
scalar value for the register, that is, it is marked as __mark_reg_known()
with the read value at verification time. Before a23740ec43ba, the register
content was marked as an unknown scalar so the verifier could not make any
assumptions about the map content.
The current implementation however is prone to a TOCTOU race, meaning, the
value read as known scalar for the register is not guaranteed to be exactly
the same at a later point when the program is executed, and as such, the
prior made assumptions of the verifier with regards to the program will be
invalid which can cause issues such as OOB access, etc.
While the BPF_F_RDONLY_PROG map flag is always fixed and required to be
specified at map creation time, the map->frozen property is initially set to
false for the map given the map value needs to be populated, e.g. for global
data sections. Once complete, the loader "freezes" the map from user space
such that no subsequent updates/deletes are possible anymore. For the rest
of the lifetime of the map, this freeze one-time trigger cannot be undone
anymore after a successful BPF_MAP_FREEZE cmd return. Meaning, any new BPF_*
cmd calls which would update/delete map entries will be rejected with -EPERM
since map_get_sys_perms() removes the FMODE_CAN_WRITE permission. This also
means that pending update/delete map entries must still complete before this
guarantee is given. This corner case is not an issue for loaders since they
create and prepare such program private map in successive steps.
However, a malicious user is able to trigger this TOCTOU race in two different
ways: i) via userfaultfd, and ii) via batched updates. For i) userfaultfd is
used to expand the competition interval, so that map_update_elem() can modify
the contents of the map after map_freeze() and bpf_prog_load() were executed.
This works, because userfaultfd halts the parallel thread which triggered a
map_update_elem() at the time where we copy key/value from the user buffer and
this already passed the FMODE_CAN_WRITE capability test given at that time the
map was not "frozen". Then, the main thread performs the map_freeze() and
bpf_prog_load(), and once that had completed successfully, the other thread
is woken up to complete the pending map_update_elem() which then changes the
map content. For ii) the idea of the batched update is similar, meaning, when
there are a large number of updates to be processed, it can increase the
competition interval between the two. It is therefore possible in practice to
modify the contents of the map after executing map_freeze() and bpf_prog_load().
One way to fix both i) and ii) at the same time is to expand the use of the
map's map->writecnt. The latter was introduced in fc9702273e2e ("bpf: Add mmap()
support for BPF_MAP_TYPE_ARRAY") and further refined in 1f6cb19be2e2 ("bpf:
Prevent re-mmap()'ing BPF map as writable for initially r/o mapping") with
the rationale to make a writable mmap()'ing of a map mutually exclusive with
read-only freezing. The counter indicates writable mmap() mappings and then
prevents/fails the freeze operation. Its semantics can be expanded beyond
just mmap() by generally indicating ongoing write phases. This would essentially
span any parallel regular and batched flavor of update/delete operation and
then also have map_freeze() fail with -EBUSY. For the check_mem_access() in
the verifier we expand upon the bpf_map_is_rdonly() check ensuring that all
last pending writes have completed via bpf_map_write_active() test. Once the
map->frozen is set and bpf_map_write_active() indicates a map->writecnt of 0
only then we are really guaranteed to use the map's data as known constants.
For map->frozen being set and pending writes in process of still being completed
we fall back to marking that register as unknown scalar so we don't end up
making assumptions about it. With this, both TOCTOU reproducers from i) and
ii) are fixed.
Note that the map->writecnt has been converted into a atomic64 in the fix in
order to avoid a double freeze_mutex mutex_{un,}lock() pair when updating
map->writecnt in the various map update/delete BPF_* cmd flavors. Spanning
the freeze_mutex over entire map update/delete operations in syscall side
would not be possible due to then causing everything to be serialized.
Similarly, something like synchronize_rcu() after setting map->frozen to wait
for update/deletes to complete is not possible either since it would also
have to span the user copy which can sleep. On the libbpf side, this won't
break d66562fba1ce ("libbpf: Add BPF object skeleton support") as the
anonymous mmap()-ed "map initialization image" is remapped as a BPF map-backed
mmap()-ed memory where for .rodata it's non-writable.
Fixes: a23740ec43ba ("bpf: Track contents of read-only maps as scalars")
Reported-by: w1tcher.bupt@gmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
[fix conflict to call bpf_map_write_active_dec() in err_put block.
fix conflict to insert new functions after find_and_alloc_map().]
Reference: CVE-2021-4001
Signed-off-by: Masami Ichikawa(CIP) <masami.ichikawa@cybertrust.co.jp>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This reverts commit 94902ee2996a7f71471138093495df452dab87b6 which is
upstream commit ef54c1a476aef7eef26fe13ea10dc090952c00f8.
Reverting for now due to issues that need to get fixed upstream.
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 938aa33f14657c9ed9deea348b7d6f14b6d69cb7 ]
The string copies to the histogram storage has a max size of 256 bytes
(defined by MAX_FILTER_STR_VAL). Only the string size of the event field
needs to be copied to the event storage, but no more than what is in the
event storage. Although nothing should be bigger than 256 bytes, there's
no protection against overwriting of the storage if one day there is.
Copy no more than the destination size, and enforce it.
Also had to turn MAX_FILTER_STR_VAL into an unsigned int, to keep the
min() comparison of the string sizes of comparable types.
Link: https://lore.kernel.org/all/CAHk-=wjREUihCGrtRBwfX47y_KrLCGjiq3t6QtoNJpmVrAEb1w@mail.gmail.com/
Link: https://lkml.kernel.org/r/20211114132834.183429a4@rorschach.local.home
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Tom Zanussi <zanussi@kernel.org>
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Fixes: 63f84ae6b82b ("tracing/histogram: Do not copy the fixed-size char array field over the field size")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
field size
[ Upstream commit 63f84ae6b82bb4dff672f76f30c6fd7b9d3766bc ]
Do not copy the fixed-size char array field of the events over
the field size. The histogram treats char array as a string and
there are 2 types of char array in the event, fixed-size and
dynamic string. The dynamic string (__data_loc) field must be
null terminated, but the fixed-size char array field may not
be null terminated (not a string, but just a data).
In that case, histogram can copy the data after the field.
This uses the original field size for fixed-size char array
field to restrict the histogram not to access over the original
field size.
Link: https://lkml.kernel.org/r/163673292822.195747.3696966210526410250.stgit@devnote2
Fixes: 02205a6752f2 (tracing: Add support for 'field variables')
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 42dc938a590c96eeb429e1830123fef2366d9c80 ]
Nothing protects the access to the per_cpu variable sd_llc_id. When testing
the same CPU (i.e. this_cpu == that_cpu), a race condition exists with
update_top_cache_domain(). One scenario being:
CPU1 CPU2
==================================================================
per_cpu(sd_llc_id, CPUX) => 0
partition_sched_domains_locked()
detach_destroy_domains()
cpus_share_cache(CPUX, CPUX) update_top_cache_domain(CPUX)
per_cpu(sd_llc_id, CPUX) => 0
per_cpu(sd_llc_id, CPUX) = CPUX
per_cpu(sd_llc_id, CPUX) => CPUX
return false
ttwu_queue_cond() wouldn't catch smp_processor_id() == cpu and the result
is a warning triggered from ttwu_queue_wakelist().
Avoid a such race in cpus_share_cache() by always returning true when
this_cpu == that_cpu.
Fixes: 518cd6234178 ("sched: Only queue remote wakeups when crossing cache boundaries")
Reported-by: Jing-Ting Wu <jing-ting.wu@mediatek.com>
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20211104175120.857087-1-vincent.donnefort@arm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
commit 4716023a8f6a0f4a28047f14dd7ebdc319606b84 upstream.
PEBS PERF_SAMPLE_PHYS_ADDR events use perf_virt_to_phys() to convert PMU
sampled virtual addresses to physical using get_user_page_fast_only()
and page_to_phys().
Some get_user_page_fast_only() error cases return false, indicating no
page reference, but still initialize the output page pointer with an
unreferenced page. In these error cases perf_virt_to_phys() calls
put_page(). This causes page reference count underflow, which can lead
to unintentional page sharing.
Fix perf_virt_to_phys() to only put_page() if get_user_page_fast_only()
returns a referenced page.
Fixes: fc7ce9c74c3ad ("perf/core, x86: Add PERF_SAMPLE_PHYS_ADDR")
Signed-off-by: Greg Thelen <gthelen@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20211111021814.757086-1-gthelen@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
commit ca7752caeaa70bd31d1714af566c9809688544af upstream.
copy_process currently copies task_struct.posix_cputimers_work as-is. If a
timer interrupt arrives while handling clone and before dup_task_struct
completes then the child task will have:
1. posix_cputimers_work.scheduled = true
2. posix_cputimers_work.work queued.
copy_process clears task_struct.task_works, so (2) will have no effect and
posix_cpu_timers_work will never run (not to mention it doesn't make sense
for two tasks to share a common linked list).
Since posix_cpu_timers_work never runs, posix_cputimers_work.scheduled is
never cleared. Since scheduled is set, future timer interrupts will skip
scheduling work, with the ultimate result that the task will never receive
timer expirations.
Together, the complete flow is:
1. Task 1 calls clone(), enters kernel.
2. Timer interrupt fires, schedules task work on Task 1.
2a. task_struct.posix_cputimers_work.scheduled = true
2b. task_struct.posix_cputimers_work.work added to
task_struct.task_works.
3. dup_task_struct() copies Task 1 to Task 2.
4. copy_process() clears task_struct.task_works for Task 2.
5. Future timer interrupts on Task 2 see
task_struct.posix_cputimers_work.scheduled = true and skip scheduling
work.
Fix this by explicitly clearing contents of task_struct.posix_cputimers_work
in copy_process(). This was never meant to be shared or inherited across
tasks in the first place.
Fixes: 1fb497dd0030 ("posix-cpu-timers: Provide mechanisms to defer timer handling to task_work")
Reported-by: Rhys Hiltner <rhys@justin.tv>
Signed-off-by: Michael Pratt <mpratt@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20211101210615.716522-1-mpratt@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
[ Upstream commit 388e2c0b978339dee9b0a81a2e546f8979e021e2 ]
Similar to unsigned bounds propagation fix signed bounds.
The 'Fixes' tag is a hint. There is no security bug here.
The verifier was too conservative.
Fixes: 3f50f132d840 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20211101222153.78759-2-alexei.starovoitov@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit b9979db8340154526d9ab38a1883d6f6ba9b6d47 ]
Before this fix:
166: (b5) if r2 <= 0x1 goto pc+22
from 166 to 189: R2=invP(id=1,umax_value=1,var_off=(0x0; 0xffffffff))
After this fix:
166: (b5) if r2 <= 0x1 goto pc+22
from 166 to 189: R2=invP(id=1,umax_value=1,var_off=(0x0; 0x1))
While processing BPF_JLE the reg_set_min_max() would set true_reg->umax_value = 1
and call __reg_combine_64_into_32(true_reg).
Without the fix it would not pass the condition:
if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value))
since umin_value == 0 at this point.
Before commit 10bf4e83167c the umin was incorrectly ingored.
The commit 10bf4e83167c fixed the correctness issue, but pessimized
propagation of 64-bit min max into 32-bit min max and corresponding var_off.
Fixes: 10bf4e83167c ("bpf: Fix propagation of 32 bit unsigned bounds from 64 bit bounds")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20211101222153.78759-1-alexei.starovoitov@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 81c49d39aea8a10e6d05d3aa1cb65ceb721e19b0 ]
In account_guest_time in kernel/sched/cputime.c guest time is
attributed to both CPUTIME_NICE and CPUTIME_USER in addition to
CPUTIME_GUEST_NICE and CPUTIME_GUEST respectively. Therefore, adding
both to calculate usage results in double counting any guest time at
the rootcg.
Fixes: 936f2a70f207 ("cgroup: add cpu.stat file to root cgroup")
Signed-off-by: Dan Schatzberg <schatzberg.dan@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 01de5fcd8b1ac0ca28d2bb0921226a54fdd62684 ]
When building the kernel with sparse enabled 'C=1' the following
warnings shows up:
kernel/power/swap.c:390:29: warning: incorrect type in assignment (different base types)
kernel/power/swap.c:390:29: expected int ret
kernel/power/swap.c:390:29: got restricted blk_status_t
This is due to function hib_wait_io() returns a 'blk_status_t' which is
a bitwise u8. Commit 5416da01ff6e ("PM: hibernate: Remove
blk_status_to_errno in hib_wait_io") seemed to have mixed up the return
type. However, the 4e4cbee93d56 ("block: switch bios to blk_status_t")
actually broke the behaviour by returning the wrong type.
Rework so function hib_wait_io() returns a 'int' instead of
'blk_status_t' and make sure to call function
blk_status_to_errno(hb->error)' when returning from function
hib_wait_io() a int gets returned.
Fixes: 4e4cbee93d56 ("block: switch bios to blk_status_t")
Fixes: 5416da01ff6e ("PM: hibernate: Remove blk_status_to_errno in hib_wait_io")
Signed-off-by: Anders Roxell <anders.roxell@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 4ef0c5c6b5ba1f38f0ea1cedad0cad722f00c14a ]
There is a small race between copy_process() and sched_fork()
where child->sched_task_group point to an already freed pointer.
parent doing fork() | someone moving the parent
| to another cgroup
-------------------------------+-------------------------------
copy_process()
+ dup_task_struct()<1>
parent move to another cgroup,
and free the old cgroup. <2>
+ sched_fork()
+ __set_task_cpu()<3>
+ task_fork_fair()
+ sched_slice()<4>
In the worst case, this bug can lead to "use-after-free" and
cause panic as shown above:
(1) parent copy its sched_task_group to child at <1>;
(2) someone move the parent to another cgroup and free the old
cgroup at <2>;
(3) the sched_task_group and cfs_rq that belong to the old cgroup
will be accessed at <3> and <4>, which cause a panic:
[] BUG: unable to handle kernel NULL pointer dereference at 0000000000000000
[] PGD 8000001fa0a86067 P4D 8000001fa0a86067 PUD 2029955067 PMD 0
[] Oops: 0000 [#1] SMP PTI
[] CPU: 7 PID: 648398 Comm: ebizzy Kdump: loaded Tainted: G OE --------- - - 4.18.0.x86_64+ #1
[] RIP: 0010:sched_slice+0x84/0xc0
[] Call Trace:
[] task_fork_fair+0x81/0x120
[] sched_fork+0x132/0x240
[] copy_process.part.5+0x675/0x20e0
[] ? __handle_mm_fault+0x63f/0x690
[] _do_fork+0xcd/0x3b0
[] do_syscall_64+0x5d/0x1d0
[] entry_SYSCALL_64_after_hwframe+0x65/0xca
[] RIP: 0033:0x7f04418cd7e1
Between cgroup_can_fork() and cgroup_post_fork(), the cgroup
membership and thus sched_task_group can't change. So update child's
sched_task_group at sched_post_fork() and move task_fork() and
__set_task_cpu() (where accees the sched_task_group) from sched_fork()
to sched_post_fork().
Fixes: 8323f26ce342 ("sched: Fix race in task_group")
Signed-off-by: Zhang Qiao <zhangqiao22@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lkml.kernel.org/r/20210915064030.2231-1-zhangqiao22@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 7663ad9a5dbcc27f3090e6bfd192c7e59222709f ]
RCU managed to grow a few noinstr violations:
vmlinux.o: warning: objtool: rcu_dynticks_eqs_enter()+0x0: call to rcu_dynticks_task_trace_enter() leaves .noinstr.text section
vmlinux.o: warning: objtool: rcu_dynticks_eqs_exit()+0xe: call to rcu_dynticks_task_trace_exit() leaves .noinstr.text section
Fix them by adding __always_inline to the relevant trivial functions.
Also replace the noinstr with __always_inline for the existing
rcu_dynticks_task_*() functions since noinstr would force noinline
them, even when empty, which seems silly.
Fixes: 7d0c9c50c5a1 ("rcu-tasks: Avoid IPIing userspace/idle tasks if kernel is so built")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit aa1a43262ad5df010768f69530fa179ff81651d3 ]
Currently, a debug message is printed if an inefficient state is detected
in the Energy Model. Unfortunately, it won't detect if the first state is
inefficient or if two successive states are. Fix this behavior.
Fixes: 27871f7a8a34 (PM: Introduce an Energy Model management framework)
Signed-off-by: Vincent Donnefort <vincent.donnefort@arm.com>
Reviewed-by: Quentin Perret <qperret@google.com>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Matthias Kaehlcke <mka@chromium.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 8f7262cd66699a4b02eb7549b35c81b2116aad95 ]
debugfs_create_file() takes a pointer argument that can be used during
file operation callbacks (accessible via i_private in the inode
structure). An obvious requirement is for the pointer to refer to
valid memory when used.
When creating the debugfs file to dynamically enable / disable
kprobes, a pointer to local variable is passed to
debugfs_create_file(); which will go out of scope when the init
function returns. The reason this hasn't triggered random memory
corruption is because the pointer is not accessed during the debugfs
file callbacks.
Since the enabled state is managed by the kprobes_all_disabled global
variable, the local variable is not needed. Fix the incorrect (and
unnecessary) usage of local variable during debugfs_file_create() by
passing NULL instead.
Link: https://lkml.kernel.org/r/163163031686.489837.4476867635937014973.stgit@devnote2
Fixes: bf8f6e5b3e51 ("Kprobes: The ON/OFF knob thru debugfs")
Signed-off-by: Punit Agrawal <punitagrawal@gmail.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 7ee285395b211cad474b2b989db52666e0430daf ]
It was found that the following warning was displayed when remounting
controllers from cgroup v2 to v1:
[ 8042.997778] WARNING: CPU: 88 PID: 80682 at kernel/cgroup/cgroup.c:3130 cgroup_apply_control_disable+0x158/0x190
:
[ 8043.091109] RIP: 0010:cgroup_apply_control_disable+0x158/0x190
[ 8043.096946] Code: ff f6 45 54 01 74 39 48 8d 7d 10 48 c7 c6 e0 46 5a a4 e8 7b 67 33 00 e9 41 ff ff ff 49 8b 84 24 e8 01 00 00 0f b7 40 08 eb 95 <0f> 0b e9 5f ff ff ff 48 83 c4 08 5b 5d 41 5c 41 5d 41 5e 41 5f c3
[ 8043.115692] RSP: 0018:ffffba8a47c23d28 EFLAGS: 00010202
[ 8043.120916] RAX: 0000000000000036 RBX: ffffffffa624ce40 RCX: 000000000000181a
[ 8043.128047] RDX: ffffffffa63c43e0 RSI: ffffffffa63c43e0 RDI: ffff9d7284ee1000
[ 8043.135180] RBP: ffff9d72874c5800 R08: ffffffffa624b090 R09: 0000000000000004
[ 8043.142314] R10: ffffffffa624b080 R11: 0000000000002000 R12: ffff9d7284ee1000
[ 8043.149447] R13: ffff9d7284ee1000 R14: ffffffffa624ce70 R15: ffffffffa6269e20
[ 8043.156576] FS: 00007f7747cff740(0000) GS:ffff9d7a5fc00000(0000) knlGS:0000000000000000
[ 8043.164663] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 8043.170409] CR2: 00007f7747e96680 CR3: 0000000887d60001 CR4: 00000000007706e0
[ 8043.177539] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 8043.184673] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 8043.191804] PKRU: 55555554
[ 8043.194517] Call Trace:
[ 8043.196970] rebind_subsystems+0x18c/0x470
[ 8043.201070] cgroup_setup_root+0x16c/0x2f0
[ 8043.205177] cgroup1_root_to_use+0x204/0x2a0
[ 8043.209456] cgroup1_get_tree+0x3e/0x120
[ 8043.213384] vfs_get_tree+0x22/0xb0
[ 8043.216883] do_new_mount+0x176/0x2d0
[ 8043.220550] __x64_sys_mount+0x103/0x140
[ 8043.224474] do_syscall_64+0x38/0x90
[ 8043.228063] entry_SYSCALL_64_after_hwframe+0x44/0xae
It was caused by the fact that rebind_subsystem() disables
controllers to be rebound one by one. If more than one disabled
controllers are originally from the default hierarchy, it means that
cgroup_apply_control_disable() will be called multiple times for the
same default hierarchy. A controller may be killed by css_kill() in
the first round. In the second round, the killed controller may not be
completely dead yet leading to the warning.
To avoid this problem, we collect all the ssid's of controllers that
needed to be disabled from the default hierarchy and then disable them
in one go instead of one by one.
Fixes: 334c3679ec4b ("cgroup: reimplement rebind_subsystems() using cgroup_apply_control() and friends")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 2507003a1d10917c9158077bf6030719d02c941e ]
lock_is_held_type(, 1) detects acquired read locks. It only recognized
locks acquired with lock_acquire_shared(). Read locks acquired with
lock_acquire_shared_recursive() are not recognized because a `2' is
stored as the read value.
Rework the check to additionally recognise lock's read value one and two
as a read held lock.
Fixes: e918188611f07 ("locking: More accurate annotations for read_lock()")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Boqun Feng <boqun.feng@gmail.com>
Acked-by: Waiman Long <longman@redhat.com>
Link: https://lkml.kernel.org/r/20210903084001.lblecrvz4esl4mrr@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit f0b2b2df5423fb369ac762c77900bc7765496d58 ]
The sync_sched_exp_online_cleanup() checks to see if RCU needs
an expedited quiescent state from the incoming CPU, sending it
an IPI if so. Before sending IPI, it checks whether expedited
qs need has been already requested for the incoming CPU, by
checking rcu_data.cpu_no_qs.b.exp for the current cpu, on which
sync_sched_exp_online_cleanup() is running. This works for the
case where incoming CPU is same as self. However, for the case
where incoming CPU is different from self, expedited request
won't get marked, which can potentially delay reporting of
expedited quiescent state for the incoming CPU.
Fixes: e015a3411220 ("rcu: Avoid self-IPI in sync_sched_exp_online_cleanup()")
Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 39fbef4b0f77f9c89c8f014749ca533643a37c9f ]
The following kernel crash can be triggered:
[ 89.266592] ------------[ cut here ]------------
[ 89.267427] kernel BUG at fs/buffer.c:3020!
[ 89.268264] invalid opcode: 0000 [#1] SMP KASAN PTI
[ 89.269116] CPU: 7 PID: 1750 Comm: kmmpd-loop0 Not tainted 5.10.0-862.14.0.6.x86_64-08610-gc932cda3cef4-dirty #20
[ 89.273169] RIP: 0010:submit_bh_wbc.isra.0+0x538/0x6d0
[ 89.277157] RSP: 0018:ffff888105ddfd08 EFLAGS: 00010246
[ 89.278093] RAX: 0000000000000005 RBX: ffff888124231498 RCX: ffffffffb2772612
[ 89.279332] RDX: 1ffff11024846293 RSI: 0000000000000008 RDI: ffff888124231498
[ 89.280591] RBP: ffff8881248cc000 R08: 0000000000000001 R09: ffffed1024846294
[ 89.281851] R10: ffff88812423149f R11: ffffed1024846293 R12: 0000000000003800
[ 89.283095] R13: 0000000000000001 R14: 0000000000000000 R15: ffff8881161f7000
[ 89.284342] FS: 0000000000000000(0000) GS:ffff88839b5c0000(0000) knlGS:0000000000000000
[ 89.285711] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 89.286701] CR2: 00007f166ebc01a0 CR3: 0000000435c0e000 CR4: 00000000000006e0
[ 89.287919] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 89.289138] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 89.290368] Call Trace:
[ 89.290842] write_mmp_block+0x2ca/0x510
[ 89.292218] kmmpd+0x433/0x9a0
[ 89.294902] kthread+0x2dd/0x3e0
[ 89.296268] ret_from_fork+0x22/0x30
[ 89.296906] Modules linked in:
by running the following commands:
1. mkfs.ext4 -O mmp /dev/sda -b 1024
2. mount /dev/sda /home/test
3. echo "/dev/sda" > /sys/power/resume
That happens because swsusp_check() calls set_blocksize() on the
target partition which confuses the file system:
Thread1 Thread2
mount /dev/sda /home/test
get s_mmp_bh --> has mapped flag
start kmmpd thread
echo "/dev/sda" > /sys/power/resume
resume_store
software_resume
swsusp_check
set_blocksize
truncate_inode_pages_range
truncate_cleanup_page
block_invalidatepage
discard_buffer --> clean mapped flag
write_mmp_block
submit_bh
submit_bh_wbc
BUG_ON(!buffer_mapped(bh))
To address this issue, modify swsusp_check() to open the target block
device with exclusive access.
Signed-off-by: Ye Bin <yebin10@huawei.com>
[ rjw: Subject and changelog edits ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit 7ce1bb83a14019f8c396d57ec704d19478747716 ]
If CONFIG_CFI_CLANG=y, attempting to read an event histogram will cause
the kernel to panic due to failed CFI check.
1. echo 'hist:keys=common_pid' >> events/sched/sched_switch/trigger
2. cat events/sched/sched_switch/hist
3. kernel panics on attempting to read hist
This happens because the sort() function expects a generic
int (*)(const void *, const void *) pointer for the compare function.
To prevent this CFI failure, change tracing map cmp_entries_* function
signatures to match this.
Also, fix the build error reported by the kernel test robot [1].
[1] https://lore.kernel.org/r/202110141140.zzi4dRh4-lkp@intel.com/
Link: https://lkml.kernel.org/r/20211014045217.3265162-1-kaleshsingh@google.com
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
[ Upstream commit d25302e46592c97d29f70ccb1be558df31a9a360 ]
Some unfriendly component, such as dpdk, write the same mask to
unbound kworker cpumask again and again. Eve |