Age | Commit message (Collapse) | Author | Files | Lines |
|
The linear address masking (LAM) code made access_ok() more complicated,
in that it now needs to untag the address in order to verify the access
range. See commit 74c228d20a51 ("x86/uaccess: Provide untagged_addr()
and remove tags before address check").
We were able to avoid that overhead in the get_user/put_user code paths
by simply using the sign bit for the address check, and depending on the
GP fault if the address was non-canonical, which made it all independent
of LAM.
And we can do the same thing for access_ok(): simply check that the user
pointer range has the high bit clear. No need to bother with any
address bit masking.
In fact, we can go a bit further, and just check the starting address
for known small accesses ranges: any accesses that overflow will still
be in the non-canonical area and will still GP fault.
To still make syzkaller catch any potentially unchecked user addresses,
we'll continue to warn about GP faults that are caused by accesses in
the non-canonical range. But we'll limit that to purely "high bit set
and past the one-page 'slop' area".
We could probably just do that "check only starting address" for any
arbitrary range size: realistically all kernel accesses to user space
will be done starting at the low address. But let's leave that kind of
optimization for later. As it is, this already allows us to generate
simpler code and not worry about any tag bits in the address.
The one thing to look out for is the GUP address check: instead of
actually copying data in the virtual address range (and thus bad
addresses being caught by the GP fault), GUP will look up the page
tables manually. As a result, the page table limits need to be checked,
and that was previously implicitly done by the access_ok().
With the relaxed access_ok() check, we need to just do an explicit check
for TASK_SIZE_MAX in the GUP code instead. The GUP code already needs
to do the tag bit unmasking anyway, so there this is all very
straightforward, and there are no LAM issues.
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 LAM (Linear Address Masking) support from Dave Hansen:
"Add support for the new Linear Address Masking CPU feature.
This is similar to ARM's Top Byte Ignore and allows userspace to store
metadata in some bits of pointers without masking it out before use"
* tag 'x86_mm_for_6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm/iommu/sva: Do not allow to set FORCE_TAGGED_SVA bit from outside
x86/mm/iommu/sva: Fix error code for LAM enabling failure due to SVA
selftests/x86/lam: Add test cases for LAM vs thread creation
selftests/x86/lam: Add ARCH_FORCE_TAGGED_SVA test cases for linear-address masking
selftests/x86/lam: Add inherit test cases for linear-address masking
selftests/x86/lam: Add io_uring test cases for linear-address masking
selftests/x86/lam: Add mmap and SYSCALL test cases for linear-address masking
selftests/x86/lam: Add malloc and tag-bits test cases for linear-address masking
x86/mm/iommu/sva: Make LAM and SVA mutually exclusive
iommu/sva: Replace pasid_valid() helper with mm_valid_pasid()
mm: Expose untagging mask in /proc/$PID/status
x86/mm: Provide arch_prctl() interface for LAM
x86/mm: Reduce untagged_addr() overhead for systems without LAM
x86/uaccess: Provide untagged_addr() and remove tags before address check
mm: Introduce untagged_addr_remote()
x86/mm: Handle LAM on context switch
x86: CPUID and CR3/CR4 flags for Linear Address Masking
x86: Allow atomic MM_CONTEXT flags setting
x86/mm: Rework address range check in get_user() and put_user()
|
|
Link: https://lkml.kernel.org/r/20230309104813.170309-1-jingyuwang_vip@163.com
Signed-off-by: Jingyu Wang <jingyuwang_vip@163.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
untagged_addr() removes tags/metadata from the address and brings it to
the canonical form. The helper is implemented on arm64 and sparc. Both of
them do untagging based on global rules.
However, Linear Address Masking (LAM) on x86 introduces per-process
settings for untagging. As a result, untagged_addr() is now only
suitable for untagging addresses for the current proccess.
The new helper untagged_addr_remote() has to be used when the address
targets remote process. It requires the mmap lock for target mm to be
taken.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Alexander Potapenko <glider@google.com>
Link: https://lore.kernel.org/all/20230312112612.31869-6-kirill.shutemov%40linux.intel.com
|
|
Patch series "Change the return value for page isolation functions", v3.
Now the page isolation functions did not return a boolean to indicate
success or not, instead it will return a negative error when failed
to isolate a page. So below code used in most places seem a boolean
success/failure thing, which can confuse people whether the isolation
is successful.
if (folio_isolate_lru(folio))
continue;
Moreover the page isolation functions only return 0 or -EBUSY, and
most users did not care about the negative error except for few users,
thus we can convert all page isolation functions to return a boolean
value, which can remove the confusion to make code more clear.
No functional changes intended in this patch series.
This patch (of 4):
Now the folio_isolate_lru() did not return a boolean value to indicate
isolation success or not, however below code checking the return value can
make people think that it was a boolean success/failure thing, which makes
people easy to make mistakes (see the fix patch[1]).
if (folio_isolate_lru(folio))
continue;
Thus it's better to check the negative error value expilictly returned by
folio_isolate_lru(), which makes code more clear per Linus's
suggestion[2]. Moreover Matthew suggested we can convert the isolation
functions to return a boolean[3], since most users did not care about the
negative error value, and can also remove the confusing of checking return
value.
So this patch converts the folio_isolate_lru() to return a boolean value,
which means return 'true' to indicate the folio isolation is successful,
and 'false' means a failure to isolation. Meanwhile changing all users'
logic of checking the isolation state.
No functional changes intended.
[1] https://lore.kernel.org/all/20230131063206.28820-1-Kuan-Ying.Lee@mediatek.com/T/#u
[2] https://lore.kernel.org/all/CAHk-=wiBrY+O-4=2mrbVyxR+hOqfdJ=Do6xoucfJ9_5az01L4Q@mail.gmail.com/
[3] https://lore.kernel.org/all/Y+sTFqwMNAjDvxw3@casper.infradead.org/
Link: https://lkml.kernel.org/r/cover.1676424378.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/8a4e3679ed4196168efadf7ea36c038f2f7d5aa9.1676424378.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "continue hugetlb folio conversion", v3.
This series continues the conversion of core hugetlb functions to use
folios. This series converts many helper funtions in the hugetlb fault
path. This is in preparation for another series to convert the hugetlb
fault code paths to operate on folios.
This patch (of 8):
Convert isolate_hugetlb() to take in a folio and convert its callers to
pass a folio. Use page_folio() to convert the callers to use a folio is
safe as isolate_hugetlb() operates on a head page.
Link: https://lkml.kernel.org/r/20230113223057.173292-1-sidhartha.kumar@oracle.com
Link: https://lkml.kernel.org/r/20230113223057.173292-2-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
To pick up depended-upon changes
|
|
There are only two callers, both can handle the common return code:
- get_user_page_fast_only() checks == 1
- gfn_to_page_many_atomic() already returns -1, and the only caller
checks for negative return values
Remove the restriction against returning negative values.
Link: https://lkml.kernel.org/r/11-v2-987e91b59705+36b-gup_tidy_jgg@nvidia.com
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Commit ed29c2691188 ("drm/i915: Fix userptr so we do not have to worry
about obj->mm.lock, v7.") removed the only caller, remove this dead code
too.
Link: https://lkml.kernel.org/r/10-v2-987e91b59705+36b-gup_tidy_jgg@nvidia.com
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Now that NULL locked doesn't have a special meaning we can just make it
non-NULL in all cases and remove the special tests.
get_user_pages() and pin_user_pages() can safely pass in a locked = 1
get_user_pages_remote) and pin_user_pages_remote() can swap in a local
variable for locked if NULL is passed.
Remove all the NULL checks.
Link: https://lkml.kernel.org/r/9-v2-987e91b59705+36b-gup_tidy_jgg@nvidia.com
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Setting FOLL_UNLOCKABLE allows GUP to lock/unlock the mmap lock on its
own. It is a more explicit replacement for locked != NULL. This clears
the way for passing in locked = 1, without intending that the lock can be
unlocked.
Set the flag in all cases where it is used, eg locked is present in the
external interface or locked is used internally with locked = 0.
Link: https://lkml.kernel.org/r/8-v2-987e91b59705+36b-gup_tidy_jgg@nvidia.com
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The only caller of this function always passes in a non-NULL locked, so
just remove this obsolete comment.
Link: https://lkml.kernel.org/r/7-v2-987e91b59705+36b-gup_tidy_jgg@nvidia.com
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Since commit 5b78ed24e8ec ("mm/pagemap: add mmap_assert_locked()
annotations to find_vma*()") we already have this assertion, it is just
buried in find_vma():
__get_user_pages_locked()
__get_user_pages()
find_extend_vma()
find_vma()
Also check it at the top of __get_user_pages_locked() as a form of
documentation.
Link: https://lkml.kernel.org/r/6-v2-987e91b59705+36b-gup_tidy_jgg@nvidia.com
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The GUP family of functions have a complex, but fairly well defined, set
of invariants for their arguments. Currently these are sprinkled about,
sometimes in duplicate through many functions.
Internally we don't follow all the invariants that the external interface
has to follow, so place these checks directly at the exported interface.
This ensures the internal functions never reach a violated invariant.
Remove the duplicated invariant checks.
The end result is to make these functions fully internal:
__get_user_pages_locked()
internal_get_user_pages_fast()
__gup_longterm_locked()
And all the other functions call directly into one of these.
Link: https://lkml.kernel.org/r/5-v2-987e91b59705+36b-gup_tidy_jgg@nvidia.com
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Suggested-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
get_user_pages_remote(), get_user_pages_unlocked() and get_user_pages()
are never called with FOLL_LONGTERM, so directly call
__get_user_pages_locked()
The next patch will add an assertion for this.
Link: https://lkml.kernel.org/r/3-v2-987e91b59705+36b-gup_tidy_jgg@nvidia.com
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Suggested-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "Simplify the external interface for GUP", v2.
It is quite a maze of EXPORTED symbols leading up to the three actual
worker functions of GUP. Simplify this by reorganizing some of the code so
the EXPORTED symbols directly call the correct internal function with
validated and consistent arguments.
Consolidate all the assertions into one place at the top of the call
chains.
Remove some dead code.
Move more things into the mm/internal.h header
This patch (of 13):
__get_user_pages_locked() and __gup_longterm_locked() both require the
mmap lock to be held. They have a slightly unusual locked parameter that
is used to allow these functions to unlock and relock the mmap lock and
convey that fact to the caller.
Several places wrap these functions with a simple mmap_read_lock() just so
they can follow the optimized locked protocol.
Consolidate this internally to the functions. Allow internal callers to
set locked = 0 to cause the functions to acquire and release the lock on
their own.
Reorganize __gup_longterm_locked() to use the autolocking in
__get_user_pages_locked().
Replace all the places obtaining the mmap_read_lock() just to call
__get_user_pages_locked() with the new mechanism. Replace all the
internal callers of get_user_pages_unlocked() with direct calls to
__gup_longterm_locked() using the new mechanism.
A following patch will add assertions ensuring the external interface
continues to always pass in locked = 1.
Link: https://lkml.kernel.org/r/0-v2-987e91b59705+36b-gup_tidy_jgg@nvidia.com
Link: https://lkml.kernel.org/r/1-v2-987e91b59705+36b-gup_tidy_jgg@nvidia.com
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
If we call folio_isolate_lru() successfully, we will get return value 0.
We need to add this folio to the movable_pages_list.
Link: https://lkml.kernel.org/r/20230131063206.28820-1-Kuan-Ying.Lee@mediatek.com
Fixes: 67e139b02d99 ("mm/gup.c: refactor check_and_migrate_movable_pages()")
Signed-off-by: Kuan-Ying Lee <Kuan-Ying.Lee@mediatek.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Andrew Yang <andrew.yang@mediatek.com>
Cc: Chinwen Chang <chinwen.chang@mediatek.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Link: https://lkml.kernel.org/r/20230125180847.4542-1-jongwooo.han@gmail.com
Signed-off-by: Jongwoo Han <jongwooo.han@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We can use folio->_pincount directly, since all users are guarded by tests
of compound/large.
Link: https://lkml.kernel.org/r/20230111142915.1001531-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm updates from Dave Hansen:
"New Feature:
- Randomize the per-cpu entry areas
Cleanups:
- Have CR3_ADDR_MASK use PHYSICAL_PAGE_MASK instead of open coding it
- Move to "native" set_memory_rox() helper
- Clean up pmd_get_atomic() and i386-PAE
- Remove some unused page table size macros"
* tag 'x86_mm_for_6.2_v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (35 commits)
x86/mm: Ensure forced page table splitting
x86/kasan: Populate shadow for shared chunk of the CPU entry area
x86/kasan: Add helpers to align shadow addresses up and down
x86/kasan: Rename local CPU_ENTRY_AREA variables to shorten names
x86/mm: Populate KASAN shadow for entire per-CPU range of CPU entry area
x86/mm: Recompute physical address for every page of per-CPU CEA mapping
x86/mm: Rename __change_page_attr_set_clr(.checkalias)
x86/mm: Inhibit _PAGE_NX changes from cpa_process_alias()
x86/mm: Untangle __change_page_attr_set_clr(.checkalias)
x86/mm: Add a few comments
x86/mm: Fix CR3_ADDR_MASK
x86/mm: Remove P*D_PAGE_MASK and P*D_PAGE_SIZE macros
mm: Convert __HAVE_ARCH_P..P_GET to the new style
mm: Remove pointless barrier() after pmdp_get_lockless()
x86/mm/pae: Get rid of set_64bit()
x86_64: Remove pointless set_64bit() usage
x86/mm/pae: Be consistent with pXXp_get_and_clear()
x86/mm/pae: Use WRITE_ONCE()
x86/mm/pae: Don't (ab)use atomic64
mm/gup: Fix the lockless PMD access
...
|
|
Pull kvm updates from Paolo Bonzini:
"ARM64:
- Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
- Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
- Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
option, which multi-process VMMs such as crosvm rely on (see merge
commit 382b5b87a97d: "Fix a number of issues with MTE, such as
races on the tags being initialised vs the PG_mte_tagged flag as
well as the lack of support for VM_SHARED when KVM is involved.
Patches from Catalin Marinas and Peter Collingbourne").
- Merge the pKVM shadow vcpu state tracking that allows the
hypervisor to have its own view of a vcpu, keeping that state
private.
- Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
- Fix a handful of minor issues around 52bit VA/PA support (64kB
pages only) as a prefix of the oncoming support for 4kB and 16kB
pages.
- Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
s390:
- Second batch of the lazy destroy patches
- First batch of KVM changes for kernel virtual != physical address
support
- Removal of a unused function
x86:
- Allow compiling out SMM support
- Cleanup and documentation of SMM state save area format
- Preserve interrupt shadow in SMM state save area
- Respond to generic signals during slow page faults
- Fixes and optimizations for the non-executable huge page errata
fix.
- Reprogram all performance counters on PMU filter change
- Cleanups to Hyper-V emulation and tests
- Process Hyper-V TLB flushes from a nested guest (i.e. from a L2
guest running on top of a L1 Hyper-V hypervisor)
- Advertise several new Intel features
- x86 Xen-for-KVM:
- Allow the Xen runstate information to cross a page boundary
- Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured
- Add support for 32-bit guests in SCHEDOP_poll
- Notable x86 fixes and cleanups:
- One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
- Reinstate IBPB on emulated VM-Exit that was incorrectly dropped
a few years back when eliminating unnecessary barriers when
switching between vmcs01 and vmcs02.
- Clean up vmread_error_trampoline() to make it more obvious that
params must be passed on the stack, even for x86-64.
- Let userspace set all supported bits in MSR_IA32_FEAT_CTL
irrespective of the current guest CPUID.
- Fudge around a race with TSC refinement that results in KVM
incorrectly thinking a guest needs TSC scaling when running on a
CPU with a constant TSC, but no hardware-enumerated TSC
frequency.
- Advertise (on AMD) that the SMM_CTL MSR is not supported
- Remove unnecessary exports
Generic:
- Support for responding to signals during page faults; introduces
new FOLL_INTERRUPTIBLE flag that was reviewed by mm folks
Selftests:
- Fix an inverted check in the access tracking perf test, and restore
support for asserting that there aren't too many idle pages when
running on bare metal.
- Fix build errors that occur in certain setups (unsure exactly what
is unique about the problematic setup) due to glibc overriding
static_assert() to a variant that requires a custom message.
- Introduce actual atomics for clear/set_bit() in selftests
- Add support for pinning vCPUs in dirty_log_perf_test.
- Rename the so called "perf_util" framework to "memstress".
- Add a lightweight psuedo RNG for guest use, and use it to randomize
the access pattern and write vs. read percentage in the memstress
tests.
- Add a common ucall implementation; code dedup and pre-work for
running SEV (and beyond) guests in selftests.
- Provide a common constructor and arch hook, which will eventually
be used by x86 to automatically select the right hypercall (AMD vs.
Intel).
- A bunch of added/enabled/fixed selftests for ARM64, covering
memslots, breakpoints, stage-2 faults and access tracking.
- x86-specific selftest changes:
- Clean up x86's page table management.
- Clean up and enhance the "smaller maxphyaddr" test, and add a
related test to cover generic emulation failure.
- Clean up the nEPT support checks.
- Add X86_PROPERTY_* framework to retrieve multi-bit CPUID values.
- Fix an ordering issue in the AMX test introduced by recent
conversions to use kvm_cpu_has(), and harden the code to guard
against similar bugs in the future. Anything that tiggers
caching of KVM's supported CPUID, kvm_cpu_has() in this case,
effectively hides opt-in XSAVE features if the caching occurs
before the test opts in via prctl().
Documentation:
- Remove deleted ioctls from documentation
- Clean up the docs for the x86 MSR filter.
- Various fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (361 commits)
KVM: x86: Add proper ReST tables for userspace MSR exits/flags
KVM: selftests: Allocate ucall pool from MEM_REGION_DATA
KVM: arm64: selftests: Align VA space allocator with TTBR0
KVM: arm64: Fix benign bug with incorrect use of VA_BITS
KVM: arm64: PMU: Fix period computation for 64bit counters with 32bit overflow
KVM: x86: Advertise that the SMM_CTL MSR is not supported
KVM: x86: remove unnecessary exports
KVM: selftests: Fix spelling mistake "probabalistic" -> "probabilistic"
tools: KVM: selftests: Convert clear/set_bit() to actual atomics
tools: Drop "atomic_" prefix from atomic test_and_set_bit()
tools: Drop conflicting non-atomic test_and_{clear,set}_bit() helpers
KVM: selftests: Use non-atomic clear/set bit helpers in KVM tests
perf tools: Use dedicated non-atomic clear/set bit helpers
tools: Take @bit as an "unsigned long" in {clear,set}_bit() helpers
KVM: arm64: selftests: Enable single-step without a "full" ucall()
KVM: x86: fix APICv/x2AVIC disabled when vm reboot by itself
KVM: Remove stale comment about KVM_REQ_UNHALT
KVM: Add missing arch for KVM_CREATE_DEVICE and KVM_{SET,GET}_DEVICE_ATTR
KVM: Reference to kvm_userspace_memory_region in doc and comments
KVM: Delete all references to removed KVM_SET_MEMORY_ALIAS ioctl
...
|
|
On architectures where the PTE/PMD is larger than the native word size
(i386-PAE for example), READ_ONCE() can do the wrong thing. Use
pmdp_get_lockless() just like we use ptep_get_lockless().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221022114424.906110403%40infradead.org
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- More userfaultfs work from Peter Xu
- Several convert-to-folios series from Sidhartha Kumar and Huang Ying
- Some filemap cleanups from Vishal Moola
- David Hildenbrand added the ability to selftest anon memory COW
handling
- Some cpuset simplifications from Liu Shixin
- Addition of vmalloc tracing support by Uladzislau Rezki
- Some pagecache folioifications and simplifications from Matthew
Wilcox
- A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use
it
- Miguel Ojeda contributed some cleanups for our use of the
__no_sanitize_thread__ gcc keyword.
This series should have been in the non-MM tree, my bad
- Naoya Horiguchi improved the interaction between memory poisoning and
memory section removal for huge pages
- DAMON cleanups and tuneups from SeongJae Park
- Tony Luck fixed the handling of COW faults against poisoned pages
- Peter Xu utilized the PTE marker code for handling swapin errors
- Hugh Dickins reworked compound page mapcount handling, simplifying it
and making it more efficient
- Removal of the autonuma savedwrite infrastructure from Nadav Amit and
David Hildenbrand
- zram support for multiple compression streams from Sergey Senozhatsky
- David Hildenbrand reworked the GUP code's R/O long-term pinning so
that drivers no longer need to use the FOLL_FORCE workaround which
didn't work very well anyway
- Mel Gorman altered the page allocator so that local IRQs can remnain
enabled during per-cpu page allocations
- Vishal Moola removed the try_to_release_page() wrapper
- Stefan Roesch added some per-BDI sysfs tunables which are used to
prevent network block devices from dirtying excessive amounts of
pagecache
- David Hildenbrand did some cleanup and repair work on KSM COW
breaking
- Nhat Pham and Johannes Weiner have implemented writeback in zswap's
zsmalloc backend
- Brian Foster has fixed a longstanding corner-case oddity in
file[map]_write_and_wait_range()
- sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
Chen
- Shiyang Ruan has done some work on fsdax, to make its reflink mode
work better under xfstests. Better, but still not perfect
- Christoph Hellwig has removed the .writepage() method from several
filesystems. They only need .writepages()
- Yosry Ahmed wrote a series which fixes the memcg reclaim target
beancounting
- David Hildenbrand has fixed some of our MM selftests for 32-bit
machines
- Many singleton patches, as usual
* tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (313 commits)
mm/hugetlb: set head flag before setting compound_order in __prep_compound_gigantic_folio
mm: mmu_gather: allow more than one batch of delayed rmaps
mm: fix typo in struct pglist_data code comment
kmsan: fix memcpy tests
mm: add cond_resched() in swapin_walk_pmd_entry()
mm: do not show fs mm pc for VM_LOCKONFAULT pages
selftests/vm: ksm_functional_tests: fixes for 32bit
selftests/vm: cow: fix compile warning on 32bit
selftests/vm: madv_populate: fix missing MADV_POPULATE_(READ|WRITE) definitions
mm/gup_test: fix PIN_LONGTERM_TEST_READ with highmem
mm,thp,rmap: fix races between updates of subpages_mapcount
mm: memcg: fix swapcached stat accounting
mm: add nodes= arg to memory.reclaim
mm: disable top-tier fallback to reclaim on proactive reclaim
selftests: cgroup: make sure reclaim target memcg is unprotected
selftests: cgroup: refactor proactive reclaim code to reclaim_until()
mm: memcg: fix stale protection of reclaim target memcg
mm/mmap: properly unaccount memory on mas_preallocate() failure
omfs: remove ->writepage
jfs: remove ->writepage
...
|
|
Pull block updates from Jens Axboe:
- NVMe pull requests via Christoph:
- Support some passthrough commands without CAP_SYS_ADMIN (Kanchan
Joshi)
- Refactor PCIe probing and reset (Christoph Hellwig)
- Various fabrics authentication fixes and improvements (Sagi
Grimberg)
- Avoid fallback to sequential scan due to transient issues (Uday
Shankar)
- Implement support for the DEAC bit in Write Zeroes (Christoph
Hellwig)
- Allow overriding the IEEE OUI and firmware revision in configfs
for nvmet (Aleksandr Miloserdov)
- Force reconnect when number of queue changes in nvmet (Daniel
Wagner)
- Minor fixes and improvements (Uros Bizjak, Joel Granados, Sagi
Grimberg, Christoph Hellwig, Christophe JAILLET)
- Fix and cleanup nvme-fc req allocation (Chaitanya Kulkarni)
- Use the common tagset helpers in nvme-pci driver (Christoph
Hellwig)
- Cleanup the nvme-pci removal path (Christoph Hellwig)
- Use kstrtobool() instead of strtobool (Christophe JAILLET)
- Allow unprivileged passthrough of Identify Controller (Joel
Granados)
- Support io stats on the mpath device (Sagi Grimberg)
- Minor nvmet cleanup (Sagi Grimberg)
- MD pull requests via Song:
- Code cleanups (Christoph)
- Various fixes
- Floppy pull request from Denis:
- Fix a memory leak in the init error path (Yuan)
- Series fixing some batch wakeup issues with sbitmap (Gabriel)
- Removal of the pktcdvd driver that was deprecated more than 5 years
ago, and subsequent removal of the devnode callback in struct
block_device_operations as no users are now left (Greg)
- Fix for partition read on an exclusively opened bdev (Jan)
- Series of elevator API cleanups (Jinlong, Christoph)
- Series of fixes and cleanups for blk-iocost (Kemeng)
- Series of fixes and cleanups for blk-throttle (Kemeng)
- Series adding concurrent support for sync queues in BFQ (Yu)
- Series bringing drbd a bit closer to the out-of-tree maintained
version (Christian, Joel, Lars, Philipp)
- Misc drbd fixes (Wang)
- blk-wbt fixes and tweaks for enable/disable (Yu)
- Fixes for mq-deadline for zoned devices (Damien)
- Add support for read-only and offline zones for null_blk
(Shin'ichiro)
- Series fixing the delayed holder tracking, as used by DM (Yu,
Christoph)
- Series enabling bio alloc caching for IRQ based IO (Pavel)
- Series enabling userspace peer-to-peer DMA (Logan)
- BFQ waker fixes (Khazhismel)
- Series fixing elevator refcount issues (Christoph, Jinlong)
- Series cleaning up references around queue destruction (Christoph)
- Series doing quiesce by tagset, enabling cleanups in drivers
(Christoph, Chao)
- Series untangling the queue kobject and queue references (Christoph)
- Misc fixes and cleanups (Bart, David, Dawei, Jinlong, Kemeng, Ye,
Yang, Waiman, Shin'ichiro, Randy, Pankaj, Christoph)
* tag 'for-6.2/block-2022-12-08' of git://git.kernel.dk/linux: (247 commits)
blktrace: Fix output non-blktrace event when blk_classic option enabled
block: sed-opal: Don't include <linux/kernel.h>
sed-opal: allow using IOC_OPAL_SAVE for locking too
blk-cgroup: Fix typo in comment
block: remove bio_set_op_attrs
nvmet: don't open-code NVME_NS_ATTR_RO enumeration
nvme-pci: use the tagset alloc/free helpers
nvme: add the Apple shared tag workaround to nvme_alloc_io_tag_set
nvme: only set reserved_tags in nvme_alloc_io_tag_set for fabrics controllers
nvme: consolidate setting the tagset flags
nvme: pass nr_maps explicitly to nvme_alloc_io_tag_set
block: bio_copy_data_iter
nvme-pci: split out a nvme_pci_ctrl_is_dead helper
nvme-pci: return early on ctrl state mismatch in nvme_reset_work
nvme-pci: rename nvme_disable_io_queues
nvme-pci: cleanup nvme_suspend_queue
nvme-pci: remove nvme_pci_disable
nvme-pci: remove nvme_disable_admin_queue
nvme: merge nvme_shutdown_ctrl into nvme_disable_ctrl
nvme: use nvme_wait_ready in nvme_shutdown_ctrl
...
|
|
Fortunately, the last user (KSM) is gone, so let's just remove this rather
special code from generic GUP handling -- especially because KSM never
required the PMD handling as KSM only deals with individual base pages.
[akpm@linux-foundation.org: fix merge snafu]Link: https://lkml.kernel.org/r/20221021101141.84170-10-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
|
|
For dax pud, pud_huge() returns true on x86. So the function works as long
as hugetlb is configured. However, dax doesn't depend on hugetlb.
Commit 414fd080d125 ("mm/gup: fix gup_pmd_range() for dax") fixed
devmap-backed huge PMDs, but missed devmap-backed huge PUDs. Fix this as
well.
This fixes the below kernel panic:
general protection fault, probably for non-canonical address 0x69e7c000cc478: 0000 [#1] SMP
< snip >
Call Trace:
<TASK>
get_user_pages_fast+0x1f/0x40
iov_iter_get_pages+0xc6/0x3b0
? mempool_alloc+0x5d/0x170
bio_iov_iter_get_pages+0x82/0x4e0
? bvec_alloc+0x91/0xc0
? bio_alloc_bioset+0x19a/0x2a0
blkdev_direct_IO+0x282/0x480
? __io_complete_rw_common+0xc0/0xc0
? filemap_range_has_page+0x82/0xc0
generic_file_direct_write+0x9d/0x1a0
? inode_update_time+0x24/0x30
__generic_file_write_iter+0xbd/0x1e0
blkdev_write_iter+0xb4/0x150
? io_import_iovec+0x8d/0x340
io_write+0xf9/0x300
io_issue_sqe+0x3c3/0x1d30
? sysvec_reschedule_ipi+0x6c/0x80
__io_queue_sqe+0x33/0x240
? fget+0x76/0xa0
io_submit_sqes+0xe6a/0x18d0
? __fget_light+0xd1/0x100
__x64_sys_io_uring_enter+0x199/0x880
? __context_tracking_enter+0x1f/0x70
? irqentry_exit_to_user_mode+0x24/0x30
? irqentry_exit+0x1d/0x30
? __context_tracking_exit+0xe/0x70
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x61/0xcb
RIP: 0033:0x7fc97c11a7be
< snip >
</TASK>
---[ end trace 48b2e0e67debcaeb ]---
RIP: 0010:internal_get_user_pages_fast+0x340/0x990
< snip >
Kernel panic - not syncing: Fatal exception
Kernel Offset: disabled
Link: https://lkml.kernel.org/r/1670392853-28252-1-git-send-email-ssengar@linux.microsoft.com
Fixes: 414fd080d125 ("mm/gup: fix gup_pmd_range() for dax")
Signed-off-by: John Starks <jostarks@microsoft.com>
Signed-off-by: Saurabh Sengar <ssengar@linux.microsoft.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
hugetlb does not support fake write-faults (write faults without write
permissions). However, we are currently able to trigger a
FAULT_FLAG_WRITE fault on a VMA without VM_WRITE.
If we'd ever want to support FOLL_FORCE|FOLL_WRITE, we'd have to teach
hugetlb to:
(1) Leave the page mapped R/O after the fake write-fault, like
maybe_mkwrite() does.
(2) Allow writing to an exclusive anon page that's mapped R/O when
FOLL_FORCE is set, like can_follow_write_pte(). E.g.,
__follow_hugetlb_must_fault() needs adjustment.
For now, it's not clear if that added complexity is really required.
History tolds us that FOLL_FORCE is dangerous and that we better limit its
use to a bare minimum.
--------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <stdint.h>
#include <sys/mman.h>
#include <linux/mman.h>
int main(int argc, char **argv)
{
char *map;
int mem_fd;
map = mmap(NULL, 2 * 1024 * 1024u, PROT_READ,
MAP_PRIVATE|MAP_ANON|MAP_HUGETLB|MAP_HUGE_2MB, -1, 0);
if (map == MAP_FAILED) {
fprintf(stderr, "mmap() failed: %d\n", errno);
return 1;
}
mem_fd = open("/proc/self/mem", O_RDWR);
if (mem_fd < 0) {
fprintf(stderr, "open(/proc/self/mem) failed: %d\n", errno);
return 1;
}
if (pwrite(mem_fd, "0", 1, (uintptr_t) map) == 1) {
fprintf(stderr, "write() succeeded, which is unexpected\n");
return 1;
}
printf("write() failed as expected: %d\n", errno);
return 0;
}
--------------------------------------------------------------------------
Fortunately, we have a sanity check in hugetlb_wp() in place ever since
commit 1d8d14641fd9 ("mm/hugetlb: support write-faults in shared
mappings"), that bails out instead of silently mapping a page writable in
a !PROT_WRITE VMA.
Consequently, above reproducer triggers a warning, similar to the one
reported by szsbot:
------------[ cut here ]------------
WARNING: CPU: 1 PID: 3612 at mm/hugetlb.c:5313 hugetlb_wp+0x20a/0x1af0 mm/hugetlb.c:5313
Modules linked in:
CPU: 1 PID: 3612 Comm: syz-executor250 Not tainted 6.1.0-rc2-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/11/2022
RIP: 0010:hugetlb_wp+0x20a/0x1af0 mm/hugetlb.c:5313
Code: ea 03 80 3c 02 00 0f 85 31 14 00 00 49 8b 5f 20 31 ff 48 89 dd 83 e5 02 48 89 ee e8 70 ab b7 ff 48 85 ed 75 5b e8 76 ae b7 ff <0f> 0b 41 bd 40 00 00 00 e8 69 ae b7 ff 48 b8 00 00 00 00 00 fc ff
RSP: 0018:ffffc90003caf620 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000008640070 RCX: 0000000000000000
RDX: ffff88807b963a80 RSI: ffffffff81c4ed2a RDI: 0000000000000007
RBP: 0000000000000000 R08: 0000000000000007 R09: 0000000000000000
R10: 0000000000000000 R11: 000000000008c07e R12: ffff888023805800
R13: 0000000000000000 R14: ffffffff91217f38 R15: ffff88801d4b0360
FS: 0000555555bba300(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fff7a47a1b8 CR3: 000000002378d000 CR4: 00000000003506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
hugetlb_no_page mm/hugetlb.c:5755 [inline]
hugetlb_fault+0x19cc/0x2060 mm/hugetlb.c:5874
follow_hugetlb_page+0x3f3/0x1850 mm/hugetlb.c:6301
__get_user_pages+0x2cb/0xf10 mm/gup.c:1202
__get_user_pages_locked mm/gup.c:1434 [inline]
__get_user_pages_remote+0x18f/0x830 mm/gup.c:2187
get_user_pages_remote+0x84/0xc0 mm/gup.c:2260
__access_remote_vm+0x287/0x6b0 mm/memory.c:5517
ptrace_access_vm+0x181/0x1d0 kernel/ptrace.c:61
generic_ptrace_pokedata kernel/ptrace.c:1323 [inline]
ptrace_request+0xb46/0x10c0 kernel/ptrace.c:1046
arch_ptrace+0x36/0x510 arch/x86/kernel/ptrace.c:828
__do_sys_ptrace kernel/ptrace.c:1296 [inline]
__se_sys_ptrace kernel/ptrace.c:1269 [inline]
__x64_sys_ptrace+0x178/0x2a0 kernel/ptrace.c:1269
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
[...]
So let's silence that warning by teaching GUP code that FOLL_FORCE -- so
far -- does not apply to hugetlb.
Note that FOLL_FORCE for read-access seems to be working as expected. The
assumption is that this has been broken forever, only ever since above
commit, we actually detect the wrong handling and WARN_ON_ONCE().
I assume this has been broken at least since 2014, when mm/gup.c came to
life. I failed to come up with a suitable Fixes tag quickly.
Link: https://lkml.kernel.org/r/20221031152524.173644-1-david@redhat.com
Fixes: 1d8d14641fd9 ("mm/hugetlb: support write-faults in shared mappings")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: <syzbot+f0b97304ef90f0d0b1dc@syzkaller.appspotmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We already support reliable R/O pinning of anonymous memory. However,
assume we end up pinning (R/O long-term) a pagecache page or the shared
zeropage inside a writable private ("COW") mapping. The next write access
will trigger a write-fault and replace the pinned page by an exclusive
anonymous page in the process page tables to break COW: the pinned page no
longer corresponds to the page mapped into the process' page table.
Now that FAULT_FLAG_UNSHARE can break COW on anything mapped into a
COW mapping, let's properly break COW first before R/O long-term
pinning something that's not an exclusive anon page inside a COW
mapping. FAULT_FLAG_UNSHARE will break COW and map an exclusive anon page
instead that can get pinned safely.
With this change, we can stop using FOLL_FORCE|FOLL_WRITE for reliable
R/O long-term pinning in COW mappings.
With this change, the new R/O long-term pinning tests for non-anonymous
memory succeed:
# [RUN] R/O longterm GUP pin ... with shared zeropage
ok 151 Longterm R/O pin is reliable
# [RUN] R/O longterm GUP pin ... with memfd
ok 152 Longterm R/O pin is reliable
# [RUN] R/O longterm GUP pin ... with tmpfile
ok 153 Longterm R/O pin is reliable
# [RUN] R/O longterm GUP pin ... with huge zeropage
ok 154 Longterm R/O pin is reliable
# [RUN] R/O longterm GUP pin ... with memfd hugetlb (2048 kB)
ok 155 Longterm R/O pin is reliable
# [RUN] R/O longterm GUP pin ... with memfd hugetlb (1048576 kB)
ok 156 Longterm R/O pin is reliable
# [RUN] R/O longterm GUP-fast pin ... with shared zeropage
ok 157 Longterm R/O pin is reliable
# [RUN] R/O longterm GUP-fast pin ... with memfd
ok 158 Longterm R/O pin is reliable
# [RUN] R/O longterm GUP-fast pin ... with tmpfile
ok 159 Longterm R/O pin is reliable
# [RUN] R/O longterm GUP-fast pin ... with huge zeropage
ok 160 Longterm R/O pin is reliable
# [RUN] R/O longterm GUP-fast pin ... with memfd hugetlb (2048 kB)
ok 161 Longterm R/O pin is reliable
# [RUN] R/O longterm GUP-fast pin ... with memfd hugetlb (1048576 kB)
ok 162 Longterm R/O pin is reliable
Note 1: We don't care about short-term R/O-pinning, because they have
snapshot semantics: they are not supposed to observe modifications that
happen after pinning.
As one example, assume we start direct I/O to read from a page and store
page content into a file: modifications to page content after starting
direct I/O are not guaranteed to end up in the file. So even if we'd pin
the shared zeropage, the end result would be as expected -- getting zeroes
stored to the file.
Note 2: For shared mappings we'll now always fallback to the slow path to
lookup the VMA when R/O long-term pining. While that's the necessary price
we have to pay right now, it's actually not that bad in practice: most
FOLL_LONGTERM users already specify FOLL_WRITE, for example, along with
FOLL_FORCE because they tried dealing with COW mappings correctly ...
Note 3: For users that use FOLL_LONGTERM right now without FOLL_WRITE,
such as VFIO, we'd now no longer pin the shared zeropage. Instead, we'd
populate exclusive anon pages that we can pin. There was a concern that
this could affect the memlock limit of existing setups.
For example, a VM running with VFIO could run into the memlock limit and
fail to run. However, we essentially had the same behavior already in
commit 17839856fd58 ("gup: document and work around "COW can break either
way" issue") which got merged into some enterprise distros, and there were
not any such complaints. So most probably, we're fine.
Link: https://lkml.kernel.org/r/20221116102659.70287-10-david@redhat.com
Signed-o |