summaryrefslogtreecommitdiff
path: root/mm/huge_memory.c
AgeCommit message (Collapse)AuthorFilesLines
7 daysmm/huge_memory: don't ignore queried cachemode in vmf_insert_pfn_pud()David Hildenbrand1-4/+3
commit 09fefdca80aebd1023e827cb0ee174983d829d18 upstream. Patch series "mm/huge_memory: vmf_insert_folio_*() and vmf_insert_pfn_pud() fixes", v3. While working on improving vm_normal_page() and friends, I stumbled over this issues: refcounted "normal" folios must not be marked using pmd_special() / pud_special(). Otherwise, we're effectively telling the system that these folios are no "normal", violating the rules we documented for vm_normal_page(). Fortunately, there are not many pmd_special()/pud_special() users yet. So far there doesn't seem to be serious damage. Tested using the ndctl tests ("ndctl:dax" suite). This patch (of 3): We set up the cache mode but ... don't forward the updated pgprot to insert_pfn_pud(). Only a problem on x86-64 PAT when mapping PFNs using PUDs that require a special cachemode. Fix it by using the proper pgprot where the cachemode was setup. It is unclear in which configurations we would get the cachemode wrong: through vfio seems possible. Getting cachemodes wrong is usually ... bad. As the fix is easy, let's backport it to stable. Identified by code inspection. Link: https://lkml.kernel.org/r/20250613092702.1943533-1-david@redhat.com Link: https://lkml.kernel.org/r/20250613092702.1943533-2-david@redhat.com Fixes: 7b806d229ef1 ("mm: remove vmf_insert_pfn_xxx_prot() for huge page-table entries") Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Tested-by: Dan Williams <dan.j.williams@intel.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Dev Jain <dev.jain@arm.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Mariano Pache <npache@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2025-05-07mm/huge_memory: fix dereferencing invalid pmd migration entryGavin Guo1-3/+8
When migrating a THP, concurrent access to the PMD migration entry during a deferred split scan can lead to an invalid address access, as illustrated below. To prevent this invalid access, it is necessary to check the PMD migration entry and return early. In this context, there is no need to use pmd_to_swp_entry and pfn_swap_entry_to_page to verify the equality of the target folio. Since the PMD migration entry is locked, it cannot be served as the target. Mailing list discussion and explanation from Hugh Dickins: "An anon_vma lookup points to a location which may contain the folio of interest, but might instead contain another folio: and weeding out those other folios is precisely what the "folio != pmd_folio((*pmd)" check (and the "risk of replacing the wrong folio" comment a few lines above it) is for." BUG: unable to handle page fault for address: ffffea60001db008 CPU: 0 UID: 0 PID: 2199114 Comm: tee Not tainted 6.14.0+ #4 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:split_huge_pmd_locked+0x3b5/0x2b60 Call Trace: <TASK> try_to_migrate_one+0x28c/0x3730 rmap_walk_anon+0x4f6/0x770 unmap_folio+0x196/0x1f0 split_huge_page_to_list_to_order+0x9f6/0x1560 deferred_split_scan+0xac5/0x12a0 shrinker_debugfs_scan_write+0x376/0x470 full_proxy_write+0x15c/0x220 vfs_write+0x2fc/0xcb0 ksys_write+0x146/0x250 do_syscall_64+0x6a/0x120 entry_SYSCALL_64_after_hwframe+0x76/0x7e The bug is found by syzkaller on an internal kernel, then confirmed on upstream. Link: https://lkml.kernel.org/r/20250421113536.3682201-1-gavinguo@igalia.com Link: https://lore.kernel.org/all/20250414072737.1698513-1-gavinguo@igalia.com/ Link: https://lore.kernel.org/all/20250418085802.2973519-1-gavinguo@igalia.com/ Fixes: 84c3fc4e9c56 ("mm: thp: check pmd migration entry in common path") Signed-off-by: Gavin Guo <gavinguo@igalia.com> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Gavin Shan <gshan@redhat.com> Cc: Florent Revest <revest@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-21mm: separate folio_split_memcg_refs() from split_page_memcg()Matthew Wilcox (Oracle)1-12/+4
Patch series "Minor memcg cleanups & prep for memdescs", v2. Separate the handling of accounted folios and GFP_ACCOUNT pages for easier to understand code. For more detail, see https://lore.kernel.org/linux-mm/Z9LwTOudOlCGny3f@casper.infradead.org/ This patch (of 5): Folios always use memcg_data to refer to the mem_cgroup while pages allocated with GFP_ACCOUNT have a pointer to the obj_cgroup. Since the caller already knows what it has, split the function into two and then we don't need to check. Move the assignment of split folio memcg_data to the point where we set up the other parts of the new folio. That leaves folio_split_memcg_refs() just handling the memcg accounting. Link: https://lkml.kernel.org/r/20250314133617.138071-1-willy@infradead.org Link: https://lkml.kernel.org/r/20250314133617.138071-2-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Shakeel Butt <shakeel.butt@linux.dev> Acked-by: Zi Yan <ziy@nvidia.com> Acked-by: Roman Gushchin <roman.gushchin@linux.dev> Cc: David Hildenbrand <david@redhat.com> Cc: Matthew Wilcow (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm: convert lru_add_page_tail() to lru_add_split_folio()Matthew Wilcox (Oracle)1-9/+9
Remove three hidden calls to compound_head() and accesses to page->lru. Link: https://lkml.kernel.org/r/20250313151458.4145978-1-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/truncate: use folio_split() in truncate operationZi Yan1-3/+3
Instead of splitting the large folio uniformly during truncation, try to use buddy allocator like folio_split() at the start and the end of a truncation range to minimize the number of resulting folios if it is supported. try_folio_split() is introduced to use folio_split() if supported and it falls back to uniform split otherwise. For example, to truncate a order-4 folio [0, 1, 2, 3, 4, 5, ..., 15] between [3, 10] (inclusive), folio_split() splits the folio at 3 to [0,1], [2], [3], [4..7], [8..15] and [3], [4..7] can be dropped and [8..15] is kept with zeros in [8..10], then another folio_split() is done at 10, so [8..10] can be dropped. One possible optimization is to make folio_split() to split a folio based on a given range, like [3..10] above. But that complicates folio_split(), so it will be investigated when necessary. Link: https://lkml.kernel.org/r/20250226210032.2044041-8-ziy@nvidia.com Link: https://lkml.kernel.org/r/20250307174001.242794-8-ziy@nvidia.com Signed-off-by: Zi Yan <ziy@nvidia.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shuemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Yang Shi <yang@os.amperecomputing.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Kairui Song <kasong@tencent.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/huge_memory: add folio_split() to debugfs testing interfaceZi Yan1-13/+34
This allows to test folio_split() by specifying an additional in folio page offset parameter to split_huge_page debugfs interface. Link: https://lkml.kernel.org/r/20250307174001.242794-7-ziy@nvidia.com Signed-off-by: Zi Yan <ziy@nvidia.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shuemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Yang Shi <yang@os.amperecomputing.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Kairui Song <kasong@tencent.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/huge_memory: remove the old, unused __split_huge_page()Zi Yan1-215/+0
Now split_huge_page_to_list_to_order() uses the new backend split code in __split_unmapped_folio(), the old __split_huge_page() and __split_huge_page_tail() can be removed. Link: https://lkml.kernel.org/r/20250307174001.242794-6-ziy@nvidia.com Signed-off-by: Zi Yan <ziy@nvidia.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shuemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Yang Shi <yang@os.amperecomputing.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Kairui Song <kasong@tencent.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/huge_memory: add buddy allocator like (non-uniform) folio_split()Zi Yan1-42/+128
folio_split() splits a large folio in the same way as buddy allocator splits a large free page for allocation. The purpose is to minimize the number of folios after the split. For example, if user wants to free the 3rd subpage in a order-9 folio, folio_split() will split the order-9 folio as: O-0, O-0, O-0, O-0, O-2, O-3, O-4, O-5, O-6, O-7, O-8 if it is anon, since anon folio does not support order-1 yet. ----------------------------------------------------------------- | | | | | | | | | |O-0|O-0|O-0|O-0| O-2 |...| O-7 | O-8 | | | | | | | | | | ----------------------------------------------------------------- O-1, O-0, O-0, O-2, O-3, O-4, O-5, O-6, O-7, O-9 if it is pagecache --------------------------------------------------------------- | | | | | | | | | O-1 |O-0|O-0| O-2 |...| O-7 | O-8 | | | | | | | | | --------------------------------------------------------------- It generates fewer folios (i.e., 11 or 10) than existing page split approach, which splits the order-9 to 512 order-0 folios. It also reduces the number of new xa_node needed during a pagecache folio split from 8 to 1, potentially decreasing the folio split failure rate due to memory constraints. folio_split() and existing split_huge_page_to_list_to_order() share the folio unmapping and remapping code in __folio_split() and the common backend split code in __split_unmapped_folio() using uniform_split variable to distinguish their operations. uniform_split_supported() and non_uniform_split_supported() are added to factor out check code and will be used outside __folio_split() in the following commit. Link: https://lkml.kernel.org/r/20250307174001.242794-5-ziy@nvidia.com Signed-off-by: Zi Yan <ziy@nvidia.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shuemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Yang Shi <yang@os.amperecomputing.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Kairui Song <kasong@tencent.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/huge_memory: move folio split common code to __folio_split()Zi Yan1-50/+62
This is a preparation patch for folio_split(). In the upcoming patch folio_split() will share folio unmapping and remapping code with split_huge_page_to_list_to_order(), so move the code to a common function __folio_split() first. Add a TODO for splitting large shmem folio in swap cache. Link: https://lkml.kernel.org/r/20250307174001.242794-4-ziy@nvidia.com Signed-off-by: Zi Yan <ziy@nvidia.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shuemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Yang Shi <yang@os.amperecomputing.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Kairui Song <kasong@tencent.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/huge_memory: add two new (not yet used) functions for folio_split()Zi Yan1-1/+353
This is a preparation patch, both added functions are not used yet. The added __split_unmapped_folio() is able to split a folio with its mapping removed in two manners: 1) uniform split (the existing way), and 2) buddy allocator like (or non-uniform) split. The added __split_folio_to_order() can split a folio into any lower order. For uniform split, __split_unmapped_folio() calls it once to split the given folio to the new order. For buddy allocator like (non-uniform) split, __split_unmapped_folio() calls it (folio_order - new_order) times and each time splits the folio containing the given page to one lower order. [ziy@nvidia.com: unfreeze head folio after page cache entries are updated] Link: https://lkml.kernel.org/r/0F15DA7F-1977-412F-9A3E-F06B515D4BD2@nvidia.com [ziy@nvidia.com: use NULL instead of 0 for folio->private assignment] Link: https://lkml.kernel.org/r/1E11B9DD-3A87-4C9C-8FB4-E1324FB6A21A@nvidia.com Link: https://lkml.kernel.org/r/20250307174001.242794-3-ziy@nvidia.com Signed-off-by: Zi Yan <ziy@nvidia.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shuemov <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Yang Shi <yang@os.amperecomputing.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Kairui Song <kasong@tencent.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm: remove redundant return in set_huge_zero_folio()Dev Jain1-2/+0
It is the responsibility of the caller to check pmd_none(); in any case, we are not achieving anything by returning since there is no return value to tell the caller that we succeeded or not. So remove this check. Link: https://lkml.kernel.org/r/20250306144315.21907-1-dev.jain@arm.com Signed-off-by: Dev Jain <dev.jain@arm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Matthew Wilcow (Oracle) <willy@infradead.org> Cc: Ryan Roberts <ryan.roberts@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm: convert folio_likely_mapped_shared() to folio_maybe_mapped_shared()David Hildenbrand1-1/+1
Let's reuse our new MM ownership tracking infrastructure for large folios to make folio_likely_mapped_shared() never return false negatives -- never indicating "not mapped shared" although the folio *is* mapped shared. With that, we can rename it to folio_maybe_mapped_shared() and get rid of the dependency on the mapcount of the first folio page. The semantics are now arguably clearer: no mixture of "false negatives" and "false positives", only the remaining possibility for "false positives". Thoroughly document the new semantics. We might now detect that a large folio is "maybe mapped shared" although it *no longer* is -- but once was. Now, if more than two MMs mapped a folio at the same time, and the MM mapping the folio exclusively at the end is not one tracked in the two folio MM slots, we will detect the folio as "maybe mapped shared". For anonymous folios, usually (except weird corner cases) all PTEs that target a "maybe mapped shared" folio are R/O. As soon as a child process would write to them (iow, actively use them), we would CoW and effectively replace these PTEs. Most cases (below) are not expected to really matter with large anonymous folios for this reason. Most importantly, there will be no change at all for: * small folios * hugetlb folios * PMD-mapped PMD-sized THPs (single mapping) This change has the potential to affect existing callers of folio_likely_mapped_shared() -> folio_maybe_mapped_shared(): (1) fs/proc/task_mmu.c: no change (hugetlb) (2) khugepaged counts PTEs that target shared folios towards max_ptes_shared (default: HPAGE_PMD_NR / 2), meaning we could skip a collapse where we would have previously collapsed. This only applies to anonymous folios and is not expected to matter in practice. Worth noting that this change sorts out case (A) documented in commit 1bafe96e89f0 ("mm/khugepaged: replace page_mapcount() check by folio_likely_mapped_shared()") by removing the possibility for "false negatives". (3) MADV_COLD / MADV_PAGEOUT / MADV_FREE will not try splitting PTE-mapped THPs that are considered shared but not fully covered by the requested range, consequently not processing them. PMD-mapped PMD-sized THP are not affected, or when all PTEs are covered. These functions are usually only called on anon/file folios that are exclusively mapped most of the time (no other file mappings or no fork()), so the "false negatives" are not expected to matter in practice. (4) mbind() / migrate_pages() / move_pages() will refuse to migrate shared folios unless MPOL_MF_MOVE_ALL is effective (requires CAP_SYS_NICE). We will now reject some folios that could be migrated. Similar to (3), especially with MPOL_MF_MOVE_ALL, so this is not expected to matter in practice. Note that cpuset_migrate_mm_workfn() calls do_migrate_pages() with MPOL_MF_MOVE_ALL. (5) NUMA hinting mm/migrate.c:migrate_misplaced_folio_prepare() will skip file folios that are probably shared libraries (-> "mapped shared" and executable). This check would have detected it as a shared library at some point (at least 3 MMs mapping it), so detecting it afterwards does not sound wrong (still a shared library). Not expected to matter. mm/memory.c:numa_migrate_check() will indicate TNF_SHARED in MAP_SHARED file mappings when encountering a shared folio. Similar reasoning, not expected to matter. mm/mprotect.c:change_pte_range() will skip folios detected as shared in CoW mappings. Similarly, this is not expected to matter in practice, but if it would ever be a problem we could relax that check a bit (e.g., basing it on the average page-mapcount in a folio), because it was only an optimization when many (e.g., 288) processes were mapping the same folios -- see commit 859d4adc3415 ("mm: numa: do not trap faults on shared data section pages.") (6) mm/rmap.c:folio_referenced_one() will skip exclusive swapbacked folios in dying processes. Applies to anonymous folios only. Without "false negatives", we'll now skip all actually shared ones. Skipping ones that are actually exclusive won't really matter, it's a pure optimization, and is not expected to matter in practice. In theory, one can detect the problematic scenario: folio_mapcount() > 0 and no folio MM slot is occupied ("state unknown"). One could reset the MM slots while doing an rmap walk, which migration / folio split already do when setting everything up. Further, when batching PTEs we might naturally learn about a owner (e.g., folio_mapcount() == nr_ptes) and could update the owner. However, we'll defer that until the scenarios where it would really matter are clear. Link: https://lkml.kernel.org/r/20250303163014.1128035-15-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Andy Lutomirks^H^Hski <luto@kernel.org> Cc: Borislav Betkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lance Yang <ioworker0@gmail.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Matthew Wilcow (Oracle) <willy@infradead.org> Cc: Michal Koutn <mkoutny@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: tejun heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/rmap: pass dst_vma to folio_dup_file_rmap_pte() and friendsDavid Hildenbrand1-1/+1
We'll need access to the destination MM when modifying the large mapcount of a non-hugetlb large folios next. So pass in the destination VMA. Link: https://lkml.kernel.org/r/20250303163014.1128035-8-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Andy Lutomirks^H^Hski <luto@kernel.org> Cc: Borislav Betkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lance Yang <ioworker0@gmail.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Matthew Wilcow (Oracle) <willy@infradead.org> Cc: Michal Koutn <mkoutny@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: tejun heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm: let _folio_nr_pages overlay memcg_data in first tail pageDavid Hildenbrand1-0/+8
Let's free up some more of the "unconditionally available on 64BIT" space in order-1 folios by letting _folio_nr_pages overlay memcg_data in the first tail page (second folio page). Consequently, we have the optimization now whenever we have CONFIG_MEMCG, independent of 64BIT. We have to make sure that page->memcg on tail pages does not return "surprises". page_memcg_check() already properly refuses PageTail(). Let's do that earlier in print_page_owner_memcg() to avoid printing wrong "Slab cache page" information. No other code should touch that field on tail pages of compound pages. Reset the "_nr_pages" to 0 when splitting folios, or when freeing them back to the buddy (to avoid false page->memcg_data "bad page" reports). Note that in __split_huge_page(), folio_nr_pages() would stop working already as soon as we start messing with the subpages. Most kernel configs should have at least CONFIG_MEMCG enabled, even if disabled at runtime. 64byte "struct memmap" is what we usually have on 64BIT. While at it, rename "_folio_nr_pages" to "_nr_pages". Hopefully memdescs / dynamically allocating "strut folio" in the future will further clean this up, e.g., making _nr_pages available in all configs and maybe even in small folios. Doing that should be fairly easy on top of this change. [david@redhat.com: make "make htmldoc" happy] Link: https://lkml.kernel.org/r/a97f8a91-ec41-4796-81e3-7c9e0e491ba4@redhat.com Link: https://lkml.kernel.org/r/20250303163014.1128035-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andy Lutomirks^H^Hski <luto@kernel.org> Cc: Borislav Betkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Lance Yang <ioworker0@gmail.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Matthew Wilcow (Oracle) <willy@infradead.org> Cc: Michal Koutn <mkoutny@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: tejun heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17fs/dax: properly refcount fs dax pagesAlistair Popple1-2/+4
Currently fs dax pages are considered free when the refcount drops to one and their refcounts are not increased when mapped via PTEs or decreased when unmapped. This requires special logic in mm paths to detect that these pages should not be properly refcounted, and to detect when the refcount drops to one instead of zero. On the other hand get_user_pages(), etc. will properly refcount fs dax pages by taking a reference and dropping it when the page is unpinned. Tracking this special behaviour requires extra PTE bits (eg. pte_devmap) and introduces rules that are potentially confusing and specific to FS DAX pages. To fix this, and to possibly allow removal of the special PTE bits in future, convert the fs dax page refcounts to be zero based and instead take a reference on the page each time it is mapped as is currently the case for normal pages. This may also allow a future clean-up to remove the pgmap refcounting that is currently done in mm/gup.c. Link: https://lkml.kernel.org/r/c7d886ad7468a20452ef6e0ddab6cfe220874e7c.1740713401.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Tested-by: Alison Schofield <alison.schofield@intel.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Asahi Lina <lina@asahilina.net> Cc: Balbir Singh <balbirs@nvidia.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chunyan Zhang <zhang.lyra@gmail.com> Cc: "Darrick J. Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: John Hubbard <jhubbard@nvidia.com> Cc: linmiaohe <linmiaohe@huawei.com> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: Matthew Wilcow (Oracle) <willy@infradead.org> Cc: Michael "Camp Drill Sergeant" Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Ted Ts'o <tytso@mit.edu> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/huge_memory: add vmf_insert_folio_pmd()Alistair Popple1-12/+53
Currently DAX folio/page reference counts are managed differently to normal pages. To allow these to be managed the same as normal pages introduce vmf_insert_folio_pmd. This will map the entire PMD-sized folio and take references as it would for a normally mapped page. This is distinct from the current mechanism, vmf_insert_pfn_pmd, which simply inserts a special devmap PMD entry into the page table without holding a reference to the page for the mapping. It is not currently useful to implement a more generic vmf_insert_folio() which selects the correct behaviour based on folio_order(). This is because PTE faults require only a subpage of the folio to be PTE mapped rather than the entire folio. It would be possible to add this context somewhere but callers already need to handle PTE faults and PMD faults separately so a more generic function is not useful. Link: https://lkml.kernel.org/r/7bf92a2e68225d13ea368d53bbfee327314d1c40.1740713401.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Acked-by: David Hildenbrand <david@redhat.com> Tested-by: Alison Schofield <alison.schofield@intel.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Asahi Lina <lina@asahilina.net> Cc: Balbir Singh <balbirs@nvidia.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chunyan Zhang <zhang.lyra@gmail.com> Cc: Dan Wiliams <dan.j.williams@intel.com> Cc: "Darrick J. Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: John Hubbard <jhubbard@nvidia.com> Cc: linmiaohe <linmiaohe@huawei.com> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: Matthew Wilcow (Oracle) <willy@infradead.org> Cc: Michael "Camp Drill Sergeant" Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Ted Ts'o <tytso@mit.edu> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/huge_memory: add vmf_insert_folio_pud()Alistair Popple1-12/+87
Currently DAX folio/page reference counts are managed differently to normal pages. To allow these to be managed the same as normal pages introduce vmf_insert_folio_pud. This will map the entire PUD-sized folio and take references as it would for a normally mapped page. This is distinct from the current mechanism, vmf_insert_pfn_pud, which simply inserts a special devmap PUD entry into the page table without holding a reference to the page for the mapping. Link: https://lkml.kernel.org/r/649a1ef91d556593948351e94f51ef73a14f6794.1740713401.git-series.apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Acked-by: David Hildenbrand <david@redhat.com> Tested-by: Alison Schofield <alison.schofield@intel.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Asahi Lina <lina@asahilina.net> Cc: Balbir Singh <balbirs@nvidia.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Chunyan Zhang <zhang.lyra@gmail.com> Cc: "Darrick J. Wong" <djwong@kernel.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huacai Chen <chenhuacai@kernel.org> Cc: Ira Weiny <ira.weiny@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: John Hubbard <jhubbard@nvidia.com> Cc: linmiaohe <linmiaohe@huawei.com> Cc: Logan Gunthorpe <logang@deltatee.com> Cc: Matthew Wilcow (Oracle) <willy@infradead.org> Cc: Michael "Camp Drill Sergeant" Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Peter Xu <peterx@redhat.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Ted Ts'o <tytso@mit.edu> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: WANG Xuerui <kernel@xen0n.name> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16mm: avoid splitting pmd for lazyfree pmd-mapped THP in try_to_unmapBarry Song1-7/+17
The try_to_unmap_one() function currently handles PMD-mapped THPs inefficiently. It first splits the PMD into PTEs, copies the dirty state from the PMD to the PTEs, iterates over the PTEs to locate the dirty state, and then marks the THP as swap-backed. This process involves unnecessary PMD splitting and redundant iteration. Instead, this functionality can be efficiently managed in __discard_anon_folio_pmd_locked(), avoiding the extra steps and improving performance. The following microbenchmark redirties folios after invoking MADV_FREE, then measures the time taken to perform memory reclamation (actually set those folios swapbacked again) on the redirtied folios. #include <stdio.h> #include <sys/mman.h> #include <string.h> #include <time.h> #define SIZE 128*1024*1024 // 128 MB int main(int argc, char *argv[]) { while(1) { volatile int *p = mmap(0, SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); memset((void *)p, 1, SIZE); madvise((void *)p, SIZE, MADV_FREE); /* redirty after MADV_FREE */ memset((void *)p, 1, SIZE); clock_t start_time = clock(); madvise((void *)p, SIZE, MADV_PAGEOUT); clock_t end_time = clock(); double elapsed_time = (double)(end_time - start_time) / CLOCKS_PER_SEC; printf("Time taken by reclamation: %f seconds\n", elapsed_time); munmap((void *)p, SIZE); } return 0; } Testing results are as below, w/o patch: ~ # ./a.out Time taken by reclamation: 0.007300 seconds Time taken by reclamation: 0.007226 seconds Time taken by reclamation: 0.007295 seconds Time taken by reclamation: 0.007731 seconds Time taken by reclamation: 0.007134 seconds Time taken by reclamation: 0.007285 seconds Time taken by reclamation: 0.007720 seconds Time taken by reclamation: 0.007128 seconds Time taken by reclamation: 0.007710 seconds Time taken by reclamation: 0.007712 seconds Time taken by reclamation: 0.007236 seconds Time taken by reclamation: 0.007690 seconds Time taken by reclamation: 0.007174 seconds Time taken by reclamation: 0.007670 seconds Time taken by reclamation: 0.007169 seconds Time taken by reclamation: 0.007305 seconds Time taken by reclamation: 0.007432 seconds Time taken by reclamation: 0.007158 seconds Time taken by reclamation: 0.007133 seconds … w/ patch ~ # ./a.out Time taken by reclamation: 0.002124 seconds Time taken by reclamation: 0.002116 seconds Time taken by reclamation: 0.002150 seconds Time taken by reclamation: 0.002261 seconds Time taken by reclamation: 0.002137 seconds Time taken by reclamation: 0.002173 seconds Time taken by reclamation: 0.002063 seconds Time taken by reclamation: 0.002088 seconds Time taken by reclamation: 0.002169 seconds Time taken by reclamation: 0.002124 seconds Time taken by reclamation: 0.002111 seconds Time taken by reclamation: 0.002224 seconds Time taken by reclamation: 0.002297 seconds Time taken by reclamation: 0.002260 seconds Time taken by reclamation: 0.002246 seconds Time taken by reclamation: 0.002272 seconds Time taken by reclamation: 0.002277 seconds Time taken by reclamation: 0.002462 seconds … This patch significantly speeds up try_to_unmap_one() by allowing it to skip redirtied THPs without splitting the PMD. Link: https://lkml.kernel.org/r/20250214093015.51024-5-21cnbao@gmail.com Signed-off-by: Barry Song <v-songbaohua@oppo.com> Suggested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Suggested-by: Lance Yang <ioworker0@gmail.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Lance Yang <ioworker0@gmail.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chis Li <chrisl@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Gavin Shan <gshan@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Kairui Song <kasong@tencent.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Mauricio Faria de Oliveira <mfo@canonical.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Shaoqin Huang <shahuang@redhat.com> Cc: Tangquan Zheng <zhengtangquan@oppo.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Cc: Yicong Yang <yangyicong@hisilicon.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16mm: completely abstract unnecessary adj_start calculationLorenzo Stoakes1-13/+6
The adj_start calculation has been a constant source of confusion in the VMA merge code. There are two cases to consider, one where we adjust the start of the vmg->middle VMA (i.e. the vmg->__adjust_middle_start merge flag is set), in which case adj_start is calculated as: (1) adj_start = vmg->end - vmg->middle->vm_start And the case where we adjust the start of the vmg->next VMA (i.e. the vmg->__adjust_next_start merge flag is set), in which case adj_start is calculated as: (2) adj_start = -(vmg->middle->vm_end - vmg->end) We apply (1) thusly: vmg->middle->vm_start = vmg->middle->vm_start + vmg->end - vmg->middle->vm_start Which simplifies to: vmg->middle->vm_start = vmg->end Similarly, we apply (2) as: vmg->next->vm_start = vmg->next->vm_start + -(vmg->middle->vm_end - vmg->end) Noting that for these VMAs to be mergeable vmg->middle->vm_end == vmg->next->vm_start and so this simplifies to: vmg->next->vm_start = vmg->next->vm_start + -(vmg->next->vm_start - vmg->end) Which simplifies to: vmg->next->vm_start = vmg->end Therefore in each case, we simply need to adjust the start of the VMA to vmg->end (!) and can do away with this adj_start calculation. The only caveat is that we must ensure we update the vm_pgoff field correctly. We therefore abstract this entire calculation to a new function vmg_adjust_set_range() which performs this calculation and sets the adjusted VMA's new range using the general vma_set_range() function. We also must update vma_adjust_trans_huge() which expects the now-abstracted adj_start parameter. It turns out this is wholly unnecessary. In vma_adjust_trans_huge() the relevant code is: if (adjust_next > 0) { struct vm_area_struct *next = find_vma(vma->vm_mm, vma->vm_end); unsigned long nstart = next->vm_start; nstart += adjust_next; split_huge_pmd_if_needed(next, nstart); } The only case where this is relevant is when vmg->__adjust_middle_start is specified (in which case adj_next would have been positive), i.e. the one in which the vma specified is vmg->prev and this the sought 'next' VMA would be vmg->middle. We can therefore eliminate the find_vma() invocation altogether and simply provide the vmg->middle VMA in this instance, or NULL otherwise. Again we have an adj_next offset calculation: next->vm_start + vmg->end - vmg->middle->vm_start Where next == vmg->middle this simplifies to vmg->end as previously demonstrated. Therefore nstart is equal to vmg->end, which is already passed to vma_adjust_trans_huge() via the 'end' parameter and so this code (rather delightfully) simplifies to: if (next) split_huge_pmd_if_needed(next, end); With these changes in place, it becomes silly for commit_merge() to return vmg->target, as it is always the same and threaded through vmg, so we finally change commit_merge() to return an error value once again. This patch has no change in functional behaviour. Link: https://lkml.kernel.org/r/7bce2cd4b5afb56211822835d145471280c3dccc.1738326519.git.lorenzo.stoakes@oracle.com Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Jann Horn <jannh@google.com> Cc: Liam Howlett <liam.howlett@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16mm/huge_memory: allow split shmem large folio to any lower orderZi Yan1-7/+1
Commit 4d684b5f92ba ("mm: shmem: add large folio support for tmpfs") has added large folio support to shmem. Remove the restriction in split_huge_page*(). Link: https://lkml.kernel.org/r/20250122161928.1240637-2-ziy@nvidia.com Signed-off-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Yang Shi <yang@os.amperecomputing.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shuemov <kirill.shutemov@linux.intel.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16mm: memcontrol: move memsw charge callbacks to v1Johannes Weiner1-1/+1
The interweaving of two entirely different swap accounting strategies has been one of the more confusing parts of the memcg code. Split out the v1 code to clarify the implementation and a handful of callsites, and to avoid building the v1 bits when !CONFIG_MEMCG_V1. text data bss dec hex filename 39253 6446 4160 49859 c2c3 mm/memcontrol.o.old 38877 6382 4160 49419 c10b mm/memcontrol.o Link: https://lkml.kernel.org/r/20250124054132.45643-1-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Roman Gushchin <roman.gushchin@linux.dev> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Balbir Singh <balbirs@nvidia.com> Acked-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16mm/huge_memory: drop beyond-EOF folios with the right number of refsZi Yan1-1/+1
When an after-split folio is large and needs to be dropped due to EOF, folio_put_refs(folio, folio_nr_pages(folio)) should be used to drop all page cache refs. Otherwise, the folio will not be freed, causing memory leak. This leak would happen on a filesystem with blocksize > page_size and a truncate is performed, where the blocksize makes folios split to >0 order ones, causing truncated folios not being freed. Link: https://lkml.kernel.org/r/20250310155727.472846-1-ziy@nvidia.com Fixes: c010d47f107f ("mm: thp: split huge page to any lower order pages") Signed-off-by: Zi Yan <ziy@nvidia.com> Reported-by: Hugh Dickins <hughd@google.com> Closes: https://lore.kernel.org/all/fcbadb7f-dd3e-21df-f9a7-2853b53183c4@google.com/ Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: David Hildenbrand <david@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Kirill A. Shuemov <kirill.shutemov@linux.intel.com> Cc: Luis Chamberalin <mcgrof@kernel.org> Cc: Matthew Wilcow (Oracle) <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Pankaj Raghav <p.raghav@samsung.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Yang Shi <yang@os.amperecomputing.com> Cc: Yu Zhao <yuzhao@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/huge_memory: convert has_hwpoisoned into a pure folio flagDavid Hildenbrand1-1/+1
Patch series "mm: hugetlb+THP folio and migration cleanups", v2. Some cleanups around more folio conversion and migration handling that I collected working on random stuff. This patch (of 6): Let's stop setting it on pages, there is no need to anymore. Link: https://lkml.kernel.org/r/20250113131611.2554758-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm/huge_memory.c: rename shadowed localAndrew Morton1-4/+5
split_huge_pages_write() has a lccal `buf' which shadows incoming arg `buf'. Reviewer confusion resulted. Rename the inner local to `tok_buf'. Cc: Leo Stone <leocstone@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-13mm: add per-order mTHP swap-in fallback/fallback_charge countersWenchao Hao1-0/+6
Currently, large folio swap-in is supported, but we lack a method to analyze their success ratio. Similar to anon_fault_fallback, we introduce per-order mTHP swpin_fallback and swpin_fallback_charge counters for calculating their success ratio. The new counters are located at: /sys/kernel/mm/transparent_hugepage/hugepages-<size>/stats/ swpin_fallback swpin_fallback_charge Link: https://lkml.kernel.org/r/20241202124730.2407037-1-haowenchao22@gmail.com Signed-off-by: Wenchao Hao <haowenchao22@gmail.com> Reviewed-by: Barry Song <baohua@kernel.org> Reviewed-by: Lance Yang <ioworker0@gmail.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Usama Arif <usamaarif642@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-13mm: migrate: remove unused argument vma from migrate_misplaced_folio()Donet Tom1-1/+1
Commit ee86814b0562 ("mm/migrate: move NUMA hinting fault folio isolation + checks under PTL") removed the code that had used the vma argument in migrate_misplaced_folio. Since the vma argument was no longer used in migrate_misplaced_folio, this patch removes it. Link: https://lkml.kernel.org/r/20241126155655.466186-1-donettom@linux.ibm.com Signed-off-by: Donet Tom <donettom@linux.ibm.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Ritesh Harjani (IBM) <ritesh.list@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-12mm: clear uffd-wp PTE/PMD state on mremap()Ryan Roberts1-0/+12
When mremap()ing a memory region previously registered with userfaultfd as write-protected but without UFFD_FEATURE_EVENT_REMAP, an inconsistency in flag clearing leads to a mismatch between the vma flags (which have uffd-wp cleared) and the pte/pmd flags (which do not have uffd-wp cleared). This mismatch causes a subsequent mprotect(PROT_WRITE) to trigger a warning in page_table_check_pte_flags() due to setting the pte to writable while uffd-wp is still set. Fix this by always explicitly clearing the uffd-wp pte/pmd flags on any such mremap() so that the values are consistent with the existing clearing of VM_UFFD_WP. Be careful to clear the logical flag regardless of its physical form; a PTE bit, a swap PTE bit, or a PTE marker. Cover PTE, huge PMD and hugetlb paths. Link: https://lkml.kernel.org/r/20250107144755.1871363-2-ryan.roberts@arm.com Co-developed-by: Mikołaj Lenczewski <miko.lenczewski@arm.com> Signed-off-by: Mikołaj Lenczewski <miko.lenczewski@arm.com> Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Closes: https://lore.kernel.org/linux-mm/810b44a8-d2ae-4107-