summaryrefslogtreecommitdiff
path: root/mm/memcontrol.c
AgeCommit message (Collapse)AuthorFilesLines
2022-04-08mm/memcontrol: return 1 from cgroup.memory __setup() handlerRandy Dunlap1-1/+1
commit 460a79e18842caca6fa0c415de4a3ac1e671ac50 upstream. __setup() handlers should return 1 if the command line option is handled and 0 if not (or maybe never return 0; it just pollutes init's environment). The only reason that this particular __setup handler does not pollute init's environment is that the setup string contains a '.', as in "cgroup.memory". This causes init/main.c::unknown_boottoption() to consider it to be an "Unused module parameter" and ignore it. (This is for parsing of loadable module parameters any time after kernel init.) Otherwise the string "cgroup.memory=whatever" would be added to init's environment strings. Instead of relying on this '.' quirk, just return 1 to indicate that the boot option has been handled. Note that there is no warning message if someone enters: cgroup.memory=anything_invalid Link: https://lkml.kernel.org/r/20220222005811.10672-1-rdunlap@infradead.org Fixes: f7e1cb6ec51b0 ("mm: memcontrol: account socket memory in unified hierarchy memory controller") Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru> Link: lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru Reviewed-by: Michal Koutný <mkoutny@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-02-23mm: memcg: synchronize objcg lists with a dedicated spinlockRoman Gushchin1-5/+5
commit 0764db9b49c932b89ee4d9e3236dff4bb07b4a66 upstream. Alexander reported a circular lock dependency revealed by the mmap1 ltp test: LOCKDEP_CIRCULAR (suite: ltp, case: mtest06 (mmap1)) WARNING: possible circular locking dependency detected 5.17.0-20220113.rc0.git0.f2211f194038.300.fc35.s390x+debug #1 Not tainted ------------------------------------------------------ mmap1/202299 is trying to acquire lock: 00000001892c0188 (css_set_lock){..-.}-{2:2}, at: obj_cgroup_release+0x4a/0xe0 but task is already holding lock: 00000000ca3b3818 (&sighand->siglock){-.-.}-{2:2}, at: force_sig_info_to_task+0x38/0x180 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (&sighand->siglock){-.-.}-{2:2}: __lock_acquire+0x604/0xbd8 lock_acquire.part.0+0xe2/0x238 lock_acquire+0xb0/0x200 _raw_spin_lock_irqsave+0x6a/0xd8 __lock_task_sighand+0x90/0x190 cgroup_freeze_task+0x2e/0x90 cgroup_migrate_execute+0x11c/0x608 cgroup_update_dfl_csses+0x246/0x270 cgroup_subtree_control_write+0x238/0x518 kernfs_fop_write_iter+0x13e/0x1e0 new_sync_write+0x100/0x190 vfs_write+0x22c/0x2d8 ksys_write+0x6c/0xf8 __do_syscall+0x1da/0x208 system_call+0x82/0xb0 -> #0 (css_set_lock){..-.}-{2:2}: check_prev_add+0xe0/0xed8 validate_chain+0x736/0xb20 __lock_acquire+0x604/0xbd8 lock_acquire.part.0+0xe2/0x238 lock_acquire+0xb0/0x200 _raw_spin_lock_irqsave+0x6a/0xd8 obj_cgroup_release+0x4a/0xe0 percpu_ref_put_many.constprop.0+0x150/0x168 drain_obj_stock+0x94/0xe8 refill_obj_stock+0x94/0x278 obj_cgroup_charge+0x164/0x1d8 kmem_cache_alloc+0xac/0x528 __sigqueue_alloc+0x150/0x308 __send_signal+0x260/0x550 send_signal+0x7e/0x348 force_sig_info_to_task+0x104/0x180 force_sig_fault+0x48/0x58 __do_pgm_check+0x120/0x1f0 pgm_check_handler+0x11e/0x180 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&sighand->siglock); lock(css_set_lock); lock(&sighand->siglock); lock(css_set_lock); *** DEADLOCK *** 2 locks held by mmap1/202299: #0: 00000000ca3b3818 (&sighand->siglock){-.-.}-{2:2}, at: force_sig_info_to_task+0x38/0x180 #1: 00000001892ad560 (rcu_read_lock){....}-{1:2}, at: percpu_ref_put_many.constprop.0+0x0/0x168 stack backtrace: CPU: 15 PID: 202299 Comm: mmap1 Not tainted 5.17.0-20220113.rc0.git0.f2211f194038.300.fc35.s390x+debug #1 Hardware name: IBM 3906 M04 704 (LPAR) Call Trace: dump_stack_lvl+0x76/0x98 check_noncircular+0x136/0x158 check_prev_add+0xe0/0xed8 validate_chain+0x736/0xb20 __lock_acquire+0x604/0xbd8 lock_acquire.part.0+0xe2/0x238 lock_acquire+0xb0/0x200 _raw_spin_lock_irqsave+0x6a/0xd8 obj_cgroup_release+0x4a/0xe0 percpu_ref_put_many.constprop.0+0x150/0x168 drain_obj_stock+0x94/0xe8 refill_obj_stock+0x94/0x278 obj_cgroup_charge+0x164/0x1d8 kmem_cache_alloc+0xac/0x528 __sigqueue_alloc+0x150/0x308 __send_signal+0x260/0x550 send_signal+0x7e/0x348 force_sig_info_to_task+0x104/0x180 force_sig_fault+0x48/0x58 __do_pgm_check+0x120/0x1f0 pgm_check_handler+0x11e/0x180 INFO: lockdep is turned off. In this example a slab allocation from __send_signal() caused a refilling and draining of a percpu objcg stock, resulted in a releasing of another non-related objcg. Objcg release path requires taking the css_set_lock, which is used to synchronize objcg lists. This can create a circular dependency with the sighandler lock, which is taken with the locked css_set_lock by the freezer code (to freeze a task). In general it seems that using css_set_lock to synchronize objcg lists makes any slab allocations and deallocation with the locked css_set_lock and any intervened locks risky. To fix the problem and make the code more robust let's stop using css_set_lock to synchronize objcg lists and use a new dedicated spinlock instead. Link: https://lkml.kernel.org/r/Yfm1IHmoGdyUR81T@carbon.dhcp.thefacebook.com Fixes: bf4f059954dc ("mm: memcg/slab: obj_cgroup API") Signed-off-by: Roman Gushchin <guro@fb.com> Reported-by: Alexander Egorenkov <egorenar@linux.ibm.com> Tested-by: Alexander Egorenkov <egorenar@linux.ibm.com> Reviewed-by: Waiman Long <longman@redhat.com> Acked-by: Tejun Heo <tj@kernel.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Jeremy Linton <jeremy.linton@arm.com> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-18memcg: prohibit unconditional exceeding the limit of dying tasksVasily Averin1-19/+8
commit a4ebf1b6ca1e011289677239a2a361fde4a88076 upstream. Memory cgroup charging allows killed or exiting tasks to exceed the hard limit. It is assumed that the amount of the memory charged by those tasks is bound and most of the memory will get released while the task is exiting. This is resembling a heuristic for the global OOM situation when tasks get access to memory reserves. There is no global memory shortage at the memcg level so the memcg heuristic is more relieved. The above assumption is overly optimistic though. E.g. vmalloc can scale to really large requests and the heuristic would allow that. We used to have an early break in the vmalloc allocator for killed tasks but this has been reverted by commit b8c8a338f75e ("Revert "vmalloc: back off when the current task is killed""). There are likely other similar code paths which do not check for fatal signals in an allocation&charge loop. Also there are some kernel objects charged to a memcg which are not bound to a process life time. It has been observed that it is not really hard to trigger these bypasses and cause global OOM situation. One potential way to address these runaways would be to limit the amount of excess (similar to the global OOM with limited oom reserves). This is certainly possible but it is not really clear how much of an excess is desirable and still protects from global OOMs as that would have to consider the overall memcg configuration. This patch is addressing the problem by removing the heuristic altogether. Bypass is only allowed for requests which either cannot fail or where the failure is not desirable while excess should be still limited (e.g. atomic requests). Implementation wise a killed or dying task fails to charge if it has passed the OOM killer stage. That should give all forms of reclaim chance to restore the limit before the failure (ENOMEM) and tell the caller to back off. In addition, this patch renames should_force_charge() helper to task_is_dying() because now its use is not associated witch forced charging. This patch depends on pagefault_out_of_memory() to not trigger out_of_memory(), because then a memcg failure can unwind to VM_FAULT_OOM and cause a global OOM killer. Link: https://lkml.kernel.org/r/8f5cebbb-06da-4902-91f0-6566fc4b4203@virtuozzo.com Signed-off-by: Vasily Averin <vvs@virtuozzo.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Uladzislau Rezki <urezki@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Shakeel Butt <shakeelb@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-14mm: memcg/slab: properly set up gfp flags for objcg pointer arrayWaiman Long1-0/+8
[ Upstream commit 41eb5df1cbc9b302fc263ad7c9f38cfc38b4df61 ] Patch series "mm: memcg/slab: Fix objcg pointer array handling problem", v4. Since the merging of the new slab memory controller in v5.9, the page structure stores a pointer to objcg pointer array for slab pages. When the slab has no used objects, it can be freed in free_slab() which will call kfree() to free the objcg pointer array in memcg_alloc_page_obj_cgroups(). If it happens that the objcg pointer array is the last used object in its slab, that slab may then be freed which may caused kfree() to be called again. With the right workload, the slab cache may be set up in a way that allows the recursive kfree() calling loop to nest deep enough to cause a kernel stack overflow and panic the system. In fact, we have a reproducer that can cause kernel stack overflow on a s390 system involving kmalloc-rcl-256 and kmalloc-rcl-128 slabs with the following kfree() loop recursively called 74 times: [ 285.520739] [<000000000ec432fc>] kfree+0x4bc/0x560 [ 285.520740] [<000000000ec43466>] __free_slab+0xc6/0x228 [ 285.520741] [<000000000ec41fc2>] __slab_free+0x3c2/0x3e0 [ 285.520742] [<000000000ec432fc>] kfree+0x4bc/0x560 : While investigating this issue, I also found an issue on the allocation side. If the objcg pointer array happen to come from the same slab or a circular dependency linkage is formed with multiple slabs, those affected slabs can never be freed again. This patch series addresses these two issues by introducing a new set of kmalloc-cg-<n> caches split from kmalloc-<n> caches. The new set will only contain non-reclaimable and non-dma objects that are accounted in memory cgroups whereas the old set are now for unaccounted objects only. By making this split, all the objcg pointer arrays will come from the kmalloc-<n> caches, but those caches will never hold any objcg pointer array. As a result, deeply nested kfree() call and the unfreeable slab problems are now gone. This patch (of 4): Since the merging of the new slab memory controller in v5.9, the page structure may store a pointer to obj_cgroup pointer array for slab pages. Currently, only the __GFP_ACCOUNT bit is masked off. However, the array is not readily reclaimable and doesn't need to come from the DMA buffer. So those GFP bits should be masked off as well. Do the flag bit clearing at memcg_alloc_page_obj_cgroups() to make sure that it is consistently applied no matter where it is called. Link: https://lkml.kernel.org/r/20210505200610.13943-1-longman@redhat.com Link: https://lkml.kernel.org/r/20210505200610.13943-2-longman@redhat.com Fixes: 286e04b8ed7a ("mm: memcg/slab: allocate obj_cgroups for non-root slab pages") Signed-off-by: Waiman Long <longman@redhat.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-05-14mm: memcontrol: slab: fix obtain a reference to a freeing memcgMuchun Song1-1/+9
[ Upstream commit 9f38f03ae8d5f57371b71aa6b4275765b65454fd ] Patch series "Use obj_cgroup APIs to charge kmem pages", v5. Since Roman's series "The new cgroup slab memory controller" applied. All slab objects are charged with the new APIs of obj_cgroup. The new APIs introduce a struct obj_cgroup to charge slab objects. It prevents long-living objects from pinning the original memory cgroup in the memory. But there are still some corner objects (e.g. allocations larger than order-1 page on SLUB) which are not charged with the new APIs. Those objects (include the pages which are allocated from buddy allocator directly) are charged as kmem pages which still hold a reference to the memory cgroup. E.g. We know that the kernel stack is charged as kmem pages because the size of the kernel stack can be greater than 2 pages (e.g. 16KB on x86_64 or arm64). If we create a thread (suppose the thread stack is charged to memory cgroup A) and then move it from memory cgroup A to memory cgroup B. Because the kernel stack of the thread hold a reference to the memory cgroup A. The thread can pin the memory cgroup A in the memory even if we remove the cgroup A. If we want to see this scenario by using the following script. We can see that the system has added 500 dying cgroups (This is not a real world issue, just a script to show that the large kmallocs are charged as kmem pages which can pin the memory cgroup in the memory). #!/bin/bash cat /proc/cgroups | grep memory cd /sys/fs/cgroup/memory echo 1 > memory.move_charge_at_immigrate for i in range{1..500} do mkdir kmem_test echo $$ > kmem_test/cgroup.procs sleep 3600 & echo $$ > cgroup.procs echo `cat kmem_test/cgroup.procs` > cgroup.procs rmdir kmem_test done cat /proc/cgroups | grep memory This patchset aims to make those kmem pages to drop the reference to memory cgroup by using the APIs of obj_cgroup. Finally, we can see that the number of the dying cgroups will not increase if we run the above test script. This patch (of 7): The rcu_read_lock/unlock only can guarantee that the memcg will not be freed, but it cannot guarantee the success of css_get (which is in the refill_stock when cached memcg changed) to memcg. rcu_read_lock() memcg = obj_cgroup_memcg(old) __memcg_kmem_uncharge(memcg) refill_stock(memcg) if (stock->cached != memcg) // css_get can change the ref counter from 0 back to 1. css_get(&memcg->css) rcu_read_unlock() This fix is very like the commit: eefbfa7fd678 ("mm: memcg/slab: fix use after free in obj_cgroup_charge") Fix this by holding a reference to the memcg which is passed to the __memcg_kmem_uncharge() before calling __memcg_kmem_uncharge(). Link: https://lkml.kernel.org/r/20210319163821.20704-1-songmuchun@bytedance.com Link: https://lkml.kernel.org/r/20210319163821.20704-2-songmuchun@bytedance.com Fixes: 3de7d4f25a74 ("mm: memcg/slab: optimize objcg stock draining") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-03-30mm/memcg: fix 5.10 backport of splitting page memcgHugh Dickins1-1/+5
The straight backport of 5.12's e1baddf8475b ("mm/memcg: set memcg when splitting page") works fine in 5.11, but turned out to be wrong for 5.10: because that relies on a separate flag, which must also be set for the memcg to be recognized and uncharged and cleared when freeing. Fix that. Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-30mm/memcg: rename mem_cgroup_split_huge_fixup to split_page_memcg and add ↵Zhou Guanghui1-10/+5
nr_pages argument commit be6c8982e4ab9a41907555f601b711a7e2a17d4c upstream. Rename mem_cgroup_split_huge_fixup to split_page_memcg and explicitly pass in page number argument. In this way, the interface name is more common and can be used by potential users. In addition, the complete info(memcg and flag) of the memcg needs to be set to the tail pages. Link: https://lkml.kernel.org/r/20210304074053.65527-2-zhouguanghui1@huawei.com Signed-off-by: Zhou Guanghui <zhouguanghui1@huawei.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Hanjun Guo <guohanjun@huawei.com> Cc: Tianhong Ding <dingtianhong@huawei.com> Cc: Weilong Chen <chenweilong@huawei.com> Cc: Rui Xiang <rui.xiang@huawei.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-04mm: memcontrol: fix get_active_memcg return valueMuchun Song1-7/+3
commit 1685bde6b9af55923180a76152036c7fb7176db0 upstream. We use a global percpu int_active_memcg variable to store the remote memcg when we are in the interrupt context. But get_active_memcg always return the current->active_memcg or root_mem_cgroup. The remote memcg (set in the interrupt context) is ignored. This is not what we want. So fix it. Link: https://lkml.kernel.org/r/20210223091101.42150-1-songmuchun@bytedance.com Fixes: 37d5985c003d ("mm: kmem: prepare remote memcg charging infra for interrupt contexts") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-04mm: memcontrol: fix swap undercounting in cgroup2Muchun Song1-1/+13
commit cae3af62b33aa931427a0f211e04347b22180b36 upstream. When pages are swapped in, the VM may retain the swap copy to avoid repeated writes in the future. It's also retained if shared pages are faulted back in some processes, but not in others. During that time we have an in-memory copy of the page, as well as an on-swap copy. Cgroup1 and cgroup2 handle these overlapping lifetimes slightly differently due to the nature of how they account memory and swap: Cgroup1 has a unified memory+swap counter that tracks a data page regardless whether it's in-core or swapped out. On swapin, we transfer the charge from the swap entry to the newly allocated swapcache page, even though the swap entry might stick around for a while. That's why we have a mem_cgroup_uncharge_swap() call inside mem_cgroup_charge(). Cgroup2 tracks memory and swap as separate, independent resources and thus has split memory and swap counters. On swapin, we charge the newly allocated swapcache page as memory, while the swap slot in turn must remain charged to the swap counter as long as its allocated too. The cgroup2 logic was broken by commit 2d1c498072de ("mm: memcontrol: make swap tracking an integral part of memory control"), because it accidentally removed the do_memsw_account() check in the branch inside mem_cgroup_uncharge() that was supposed to tell the difference between the charge transfer in cgroup1 and the separate counters in cgroup2. As a result, cgroup2 currently undercounts retained swap to varying degrees: swap slots are cached up to 50% of the configured limit or total available swap space; partially faulted back shared pages are only limited by physical capacity. This in turn allows cgroups to significantly overconsume their alloted swap space. Add the do_memsw_account() check back to fix this problem. Link: https://lkml.kernel.org/r/20210217153237.92484-1-songmuchun@bytedance.com Fixes: 2d1c498072de ("mm: memcontrol: make swap tracking an integral part of memory control") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: <stable@vger.kernel.org> [5.8+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-04mm: memcontrol: fix NR_ANON_THPS accounting in charge movingMuchun Song1-4/+2
[ Upstream commit b0ba3bff3e7bb6b58bb248bdd2f3d8ad52fd10c3 ] Patch series "Convert all THP vmstat counters to pages", v6. This patch series is aimed to convert all THP vmstat counters to pages. The unit of some vmstat counters are pages, some are bytes, some are HPAGE_PMD_NR, and some are KiB. When we want to expose these vmstat counters to the userspace, we have to know the unit of the vmstat counters is which one. When the unit is bytes or kB, both clearly distinguishable by the B/KB suffix. But for the THP vmstat counters, we may make mistakes. For example, the below is some bug fix for the THP vmstat counters: - 7de2e9f195b9 ("mm: memcontrol: correct the NR_ANON_THPS counter of hierarchical memcg") - The first commit in this series ("fix NR_ANON_THPS accounting in charge moving") This patch series can make the code clear. And make all the unit of the THP vmstat counters in pages. Finally, the unit of the vmstat counters are pages, kB and bytes. The B/KB suffix can tell us that the unit is bytes or kB. The rest which is without suffix are pages. In this series, I changed the following vmstat counters unit from HPAGE_PMD_NR to pages. However, there is no change to the print format of output to user space. - NR_ANON_THPS - NR_FILE_THPS - NR_SHMEM_THPS - NR_SHMEM_PMDMAPPED - NR_FILE_PMDMAPPED Doing this also can make the statistics more accuracy for the THP vmstat counters. This series is consistent with 8f182270dfec ("mm/swap.c: flush lru pvecs on compound page arrival"). Because we use struct per_cpu_nodestat to cache the vmstat counters, which leads to inaccurate statistics especially THP vmstat counters. In the systems with hundreds of processors it can be GBs of memory. For example, for a 96 CPUs system, the threshold is the maximum number of 125. And the per cpu counters can cache 23.4375 GB in total. The THP page is already a form of batched addition (it will add 512 worth of memory in one go) so skipping the batching seems like sensible. Although every THP stats update overflows the per-cpu counter, resorting to atomic global updates. But it can make the statistics more accuracy for the THP vmstat counters. From this point of view, I think that do this converting is reasonable. Thanks Hugh for mentioning this. This was inspired by Johannes and Roman. Thanks to them. This patch (of 7): The unit of NR_ANON_THPS is HPAGE_PMD_NR already. So it should inc/dec by one rather than nr_pages. Link: https://lkml.kernel.org/r/20201228164110.2838-1-songmuchun@bytedance.com Link: https://lkml.kernel.org/r/20201228164110.2838-2-songmuchun@bytedance.com Fixes: 468c398233da ("mm: memcontrol: switch to native NR_ANON_THPS counter") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Pankaj Gupta <pankaj.gupta@cloud.ionos.com> Reviewed-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hugh Dickins <hughd@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: NeilBrown <neilb@suse.de> Cc: Rafael. J. Wysocki <rafael@kernel.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-02-13Revert "mm: memcontrol: avoid workload stalls when lowering memory.high"Johannes Weiner1-3/+2
commit e82553c10b0899994153f9bf0af333c0a1550fd7 upstream. This reverts commit 536d3bf261a2fc3b05b3e91e7eef7383443015cf, as it can cause writers to memory.high to get stuck in the kernel forever, performing page reclaim and consuming excessive amounts of CPU cycles. Before the patch, a write to memory.high would first put the new limit in place for the workload, and then reclaim the requested delta. After the patch, the kernel tries to reclaim the delta before putting the new limit into place, in order to not overwhelm the workload with a sudden, large excess over the limit. However, if reclaim is actively racing with new allocations from the uncurbed workload, it can keep the write() working inside the kernel indefinitely. This is causing problems in Facebook production. A privileged system-level daemon that adjusts memory.high for various workloads running on a host can get unexpectedly stuck in the kernel and essentially turn into a sort of involuntary kswapd for one of the workloads. We've observed that daemon busy-spin in a write() for minutes at a time, neglecting its other duties on the system, and expending privileged system resources on behalf of a workload. To remedy this, we have first considered changing the reclaim logic to break out after a couple of loops - whether the workload has converged to the new limit or not - and bound the write() call this way. However, the root cause that inspired the sequence change in the first place has been fixed through other means, and so a revert back to the proven limit-setting sequence, also used by memory.max, is preferable. The sequence was changed to avoid extreme latencies in the workload when the limit was lowered: the sudden, large excess created by the limit lowering would erroneously trigger the penalty sleeping code that is meant to throttle excessive growth from below. Allocating threads could end up sleeping long after the write() had already reclaimed the delta for which they were being punished. However, erroneous throttling also caused problems in other scenarios at around the same time. This resulted in commit b3ff92916af3 ("mm, memcg: reclaim more aggressively before high allocator throttling"), included in the same release as the offending commit. When allocating threads now encounter large excess caused by a racing write() to memory.high, instead of entering punitive sleeps, they will simply be tasked with helping reclaim down the excess, and will be held no longer than it takes to accomplish that. This is in line with regular limit enforcement - i.e. if the workload allocates up against or over an otherwise unchanged limit from below. With the patch breaking userspace, and the root cause addressed by other means already, revert it again. Link: https://lkml.kernel.org/r/20210122184341.292461-1-hannes@cmpxchg.org Fixes: 536d3bf261a2 ("mm: memcontrol: avoid workload stalls when lowering memory.high") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Tejun Heo <tj@kernel.org> Acked-by: Chris Down <chris@chrisdown.name> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Michal Koutný <mkoutny@suse.com> Cc: <stable@vger.kernel.org> [5.8+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-01-27mm: memcg/slab: optimize objcg stock drainingRoman Gushchin1-3/+1
commit 3de7d4f25a7438f09fef4e71ef111f1805cd8e7c upstream. Imran Khan reported a 16% regression in hackbench results caused by the commit f2fe7b09a52b ("mm: memcg/slab: charge individual slab objects instead of pages"). The regression is noticeable in the case of a consequent allocation of several relatively large slab objects, e.g. skb's. As soon as the amount of stocked bytes exceeds PAGE_SIZE, drain_obj_stock() and __memcg_kmem_uncharge() are called, and it leads to a number of atomic operations in page_counter_uncharge(). The corresponding call graph is below (provided by Imran Khan): |__alloc_skb | | | |__kmalloc_reserve.isra.61 | | | | | |__kmalloc_node_track_caller | | | | | | | |slab_pre_alloc_hook.constprop.88 | | | obj_cgroup_charge | | | | | | | | | |__memcg_kmem_charge | | | | | | | | | | | |page_counter_try_charge | | | | | | | | | |refill_obj_stock | | | | | | | | | | | |drain_obj_stock.isra.68 | | | | | | | | | | | | | |__memcg_kmem_uncharge | | | | | | | | | | | | | | | |page_counter_uncharge | | | | | | | | | | | | | | | | | |page_counter_cancel | | | | | | | | | | | |__slab_alloc | | | | | | | | | |___slab_alloc | | | | | | | | |slab_post_alloc_hook Instead of directly uncharging the accounted kernel memory, it's possible to refill the generic page-sized per-cpu stock instead. It's a much faster operation, especially on a default hierarchy. As a bonus, __memcg_kmem_uncharge_page() will also get faster, so the freeing of page-sized kernel allocations (e.g. large kmallocs) will become faster. A similar change has been done earlier for the socket memory by the commit 475d0487a2ad ("mm: memcontrol: use per-cpu stocks for socket memory uncharging"). Link: https://lkml.kernel.org/r/20210106042239.2860107-1-guro@fb.com Fixes: f2fe7b09a52b ("mm: memcg/slab: charge individual slab objects instead of pages") Signed-off-by: Roman Gushchin <guro@fb.com> Reported-by: Imran Khan <imran.f.khan@oracle.com> Tested-by: Imran Khan <imran.f.khan@oracle.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Michal Koutn <mkoutny@suse.com> Cc: Michal Koutný <mkoutny@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-12-30mm: memcg/slab: fix use after free in obj_cgroup_chargeMuchun Song1-1/+3
[ Upstream commit eefbfa7fd678805b38a46293e78543f98f353d3e ] The rcu_read_lock/unlock only can guarantee that the memcg will not be freed, but it cannot guarantee the success of css_get to memcg. If the whole process of a cgroup offlining is completed between reading a objcg->memcg pointer and bumping the css reference on another CPU, and there are exactly 0 external references to this memory cgroup (how we get to the obj_cgroup_charge() then?), css_get() can change the ref counter from 0 back to 1. Link: https://lkml.kernel.org/r/20201028035013.99711-2-songmuchun@bytedance.com Fixes: bf4f059954dc ("mm: memcg/slab: obj_cgroup API") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Roman Gushchin <guro@fb.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Yafang Shao <laoar.shao@gmail.com> Cc: Chris Down <chris@chrisdown.name> Cc: Christian Brauner <christian.brauner@ubuntu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-12-30mm: memcg/slab: fix return of child memcg objcg for root memcgMuchun Song1-0/+1
[ Upstream commit 2f7659a314736b32b66273dbf91c19874a052fde ] Consider the following memcg hierarchy. root / \ A B If we failed to get the reference on objcg of memcg A, the get_obj_cgroup_from_current can return the wrong objcg for the root memcg. Link: https://lkml.kernel.org/r/20201029164429.58703-1-songmuchun@bytedance.com Fixes: bf4f059954dc ("mm: memcg/slab: obj_cgroup API") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Yafang Shao <laoar.shao@gmail.com> Cc: Chris Down <chris@chrisdown.name> Cc: Christian Brauner <christian.brauner@ubuntu.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Eugene Syromiatnikov <esyr@redhat.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Adrian Reber <areber@redhat.com> Cc: Marco Elver <elver@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-11-22mm: memcg/slab: fix root memcg vmstatsMuchun Song1-2/+7
If we reparent the slab objects to the root memcg, when we free the slab object, we need to update the per-memcg vmstats to keep it correct for the root memcg. Now this at least affects the vmstat of NR_KERNEL_STACK_KB for !CONFIG_VMAP_STACK when the thread stack size is smaller than the PAGE_SIZE. David said: "I assume that without this fix that the root memcg's vmstat would always be inflated if we reparented" Fixes: ec9f02384f60 ("mm: workingset: fix vmstat counters for shadow nodes") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Christopher Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Roman Gushchin <guro@fb.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yafang Shao <laoar.shao@gmail.com> Cc: Chris Down <chris@chrisdown.name> Cc: <stable@vger.kernel.org> [5.3+] Link: https://lkml.kernel.org/r/20201110031015.15715-1-songmuchun@bytedance.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-02mm: memcg: link page counters to root if use_hierarchy is falseRoman Gushchin1-5/+10
Richard reported a warning which can be reproduced by running the LTP madvise6 test (cgroup v1 in the non-hierarchical mode should be used): WARNING: CPU: 0 PID: 12 at mm/page_counter.c:57 page_counter_uncharge (mm/page_counter.c:57 mm/page_counter.c:50 mm/page_counter.c:156) Modules linked in: CPU: 0 PID: 12 Comm: kworker/0:1 Not tainted 5.9.0-rc7-22-default #77 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-48-gd9c812d-rebuilt.opensuse.org 04/01/2014 Workqueue: events drain_local_stock RIP: 0010:page_counter_uncharge (mm/page_counter.c:57 mm/page_counter.c:50 mm/page_counter.c:156) Call Trace: __memcg_kmem_uncharge (mm/memcontrol.c:3022) drain_obj_stock (./include/linux/rcupdate.h:689 mm/memcontrol.c:3114) drain_local_stock (mm/memcontrol.c:2255) process_one_work (./arch/x86/include/asm/jump_label.h:25 ./include/linux/jump_label.h:200 ./include/trace/events/workqueue.h:108 kernel/workqueue.c:2274) worker_thread (./include/linux/list.h:282 kernel/workqueue.c:2416) kthread (kernel/kthread.c:292) ret_from_fork (arch/x86/entry/entry_64.S:300) The problem occurs because in the non-hierarchical mode non-root page counters are not linked to root page counters, so the charge is not propagated to the root memory cgroup. After the removal of the original memory cgroup and reparenting of the object cgroup, the root cgroup might be uncharged by draining a objcg stock, for example. It leads to an eventual underflow of the charge and triggers a warning. Fix it by linking all page counters to corresponding root page counters in the non-hierarchical mode. Please note, that in the non-hierarchical mode all objcgs are always reparented to the root memory cgroup, even if the hierarchy has more than 1 level. This patch doesn't change it. The patch also doesn't affect how the hierarchical mode is working, which is the only sane and truly supported mode now. Thanks to Richard for reporting, debugging and providing an alternative version of the fix! Fixes: bf4f059954dc ("mm: memcg/slab: obj_cgroup API") Reported-by: <ltp@lists.linux.it> Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Michal Koutný <mkoutny@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20201026231326.3212225-1-guro@fb.com Debugged-by: Richard Palethorpe <rpalethorpe@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-02mm: memcontrol: correct the NR_ANON_THPS counter of hierarchical memcgzhongjiang-ali1-2/+8
memcg_page_state will get the specified number in hierarchical memcg, It should multiply by HPAGE_PMD_NR rather than an page if the item is NR_ANON_THPS. [akpm@linux-foundation.org: fix printk warning] [akpm@linux-foundation.org: use u64 cast, per Michal] Fixes: 468c398233da ("mm: memcontrol: switch to native NR_ANON_THPS counter") Signed-off-by: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Link: https://lkml.kernel.org/r/1603722395-72443-1-git-send-email-zhongjiang-ali@linux.alibaba.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-18mm: kmem: enable kernel memcg accounting from interrupt contextsRoman Gushchin1-0/+13
If a memcg to charge can be determined (using remote charging API), there are no reasons to exclude allocations made from an interrupt context from the accounting. Such allocations will pass even if the resulting memcg size will exceed the hard limit, but it will affect the application of the memory pressure and an inability to put the workload under the limit will eventually trigger the OOM. To use active_memcg() helper, memcg_kmem_bypass() is moved back to memcontrol.c. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Link: http://lkml.kernel.org/r/20200827225843.1270629-5-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-18mm: kmem: prepare remote memcg charging infra for interrupt contextsRoman Gushchin1-14/+34
Remote memcg charging API uses current->active_memcg to store the currently active memory cgroup, which overwrites the memory cgroup of the current process. It works well for normal contexts, but doesn't work for interrupt contexts: indeed, if an interrupt occurs during the execution of a section with an active memcg set, all allocations inside the interrupt will be charged to the active memcg set (given that we'll enable accounting for allocations from an interrupt context). But because the interrupt might have no relation to the active memcg set outside, it's obviously wrong from the accounting prospective. To resolve this problem, let's add a global percpu int_active_memcg variable, which will be used to store an active memory cgroup which will be used from interrupt contexts. set_active_memcg() will transparently use current->active_memcg or int_active_memcg depending on the context. To make the read part simple and transparent for the caller, let's introduce two new functions: - struct mem_cgroup *active_memcg(void), - struct mem_cgroup *get_active_memcg(void). They are returning the active memcg if it's set, hiding all implementation details: where to get it depending on the current context. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Link: http://lkml.kernel.org/r/20200827225843.1270629-4-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-18mm: kmem: remove redundant checks from get_obj_cgroup_from_current()Roman Gushchin1-3/+0
There are checks for current->mm and current->active_memcg in get_obj_cgroup_from_current(), but these checks are redundant: memcg_kmem_bypass() called just above performs same checks. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Link: http://lkml.kernel.org/r/20200827225843.1270629-3-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-18mm: kmem: move memcg_kmem_bypass() calls to get_mem/obj_cgroup_from_current()Roman Gushchin1-5/+8
Patch series "mm: kmem: kernel memory accounting in an interrupt context". This patchset implements memcg-based memory accounting of allocations made from an interrupt context. Historically, such allocations were passed unaccounted mostly because charging the memory cgroup of the current process wasn't an option. Also performance reasons were likely a reason too. The remote charging API allows to temporarily overwrite the currently active memory cgroup, so that all memory allocations are accounted towards some specified memory cgroup instead of the memory cgroup of the current process. This patchset extends the remote charging API so that it can be used from an interrupt context. Then it removes the fence that prevented the accounting of allocations made from an interrupt context. It also contains a couple of optimizations/code refactorings. This patchset doesn't directly enable accounting for any specific allocations, but prepares the code base for it. The bpf memory accounting will likely be the first user of it: a typical example is a bpf program parsing an incoming network packet, which allocates an entry in hashmap map to store some information. This patch (of 4): Currently memcg_kmem_bypass() is called before obtaining the current memory/obj cgroup using get_mem/obj_cgroup_from_current(). Moving memcg_kmem_bypass() into get_mem/obj_cgroup_from_current() reduces the number of call sites and allows further code simplifications. Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Link: http://lkml.kernel.org/r/20200827225843.1270629-1-guro@fb.com Link: http://lkml.kernel.org/r/20200827225843.1270629-2-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-18mm, memcg: rework remote charging API to support nestingRoman Gushchin1-3/+3
Currently the remote memcg charging API consists of two functions: memalloc_use_memcg() and memalloc_unuse_memcg(), which set and clear the memcg value, which overwrites the memcg of the current task. memalloc_use_memcg(target_memcg); <...> memalloc_unuse_memcg(); It works perfectly for allocations performed from a normal context, however an attempt to call it from an interrupt context or just nest two remote charging blocks will lead to an incorrect accounting. On exit from the inner block the active memcg will be cleared instead of being restored. memalloc_use_memcg(target_memcg); memalloc_use_memcg(target_memcg_2); <...> memalloc_unuse_memcg(); Error: allocation here are charged to the memcg of the current process instead of target_memcg. memalloc_unuse_memcg(); This patch extends the remote charging API by switching to a single function: struct mem_cgroup *set_active_memcg(struct mem_cgroup *memcg), which sets the new value and returns the old one. So a remote charging block will look like: old_memcg = set_active_memcg(target_memcg); <...> set_active_memcg(old_memcg); This patch is heavily based on the patch by Johannes Weiner, which can be found here: https://lkml.org/lkml/2020/5/28/806 . Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Dan Schatzberg <dschatzberg@fb.com> Link: https://lkml.kernel.org/r/20200821212056.3769116-1-guro@fb.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13mm/memcg: fix device private memcg accountingRalph Campbell1-1/+4
The code in mc_handle_swap_pte() checks for non_swap_entry() and returns NULL before checking is_device_private_entry() so device private pages are never handled. Fix this by checking for non_swap_entry() after handling device private swap PTEs. I assume the memory cgroup accounting would be off somehow when moving a process to another memory cgroup. Currently, the device private page is charged like a normal anonymous page when allocated and is uncharged when the page is freed so I think that path is OK. Signed-off-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Ira Weiny <ira.weiny@intel.com> Link: https://lkml.kernel.org/r/20201009215952.2726-1-rcampbell@nvidia.com xFixes: c733a82874a7 ("mm/memcontrol: support MEMORY_DEVICE_PRIVATE") Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13mm: memcontrol: reword obsolete comment of mem_cgroup_unmark_under_oom()Miaohe Lin1-2/+2
Since commit 79dfdaccd1d5 ("memcg: make oom_lock 0 and 1 based rather than counter"), the mem_cgroup_unmark_under_oom() is added and the comment of the mem_cgroup_oom_unlock() is moved here. But this comment make no sense here because mem_cgroup_oom_lock() does not operate on under_oom field. So we reword the comment as this would be helpful. [Thanks Michal Hocko for rewording this comment.] Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Link: https://lkml.kernel.org/r/20200930095336.21323-1-linmiaohe@huawei.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13mm: memcontrol: add the missing numa_stat interface for cgroup v2Muchun Song1-60/+110
In the cgroup v1, we have a numa_stat interface. This is useful for providing visibility into the numa locality information within an memcg since the pages are allowed to be allocated from any physical node. One of the use cases i