summaryrefslogtreecommitdiff
path: root/mm/memory.c
AgeCommit message (Collapse)AuthorFilesLines
2024-09-21Merge tag 'mm-stable-2024-09-20-02-31' of ↵Linus Torvalds1-132/+430
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "Along with the usual shower of singleton patches, notable patch series in this pull request are: - "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds consistency to the APIs and behaviour of these two core allocation functions. This also simplifies/enables Rustification. - "Some cleanups for shmem" from Baolin Wang. No functional changes - mode code reuse, better function naming, logic simplifications. - "mm: some small page fault cleanups" from Josef Bacik. No functional changes - code cleanups only. - "Various memory tiering fixes" from Zi Yan. A small fix and a little cleanup. - "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and simplifications and .text shrinkage. - "Kernel stack usage histogram" from Pasha Tatashin and Shakeel Butt. This is a feature, it adds new feilds to /proc/vmstat such as $ grep kstack /proc/vmstat kstack_1k 3 kstack_2k 188 kstack_4k 11391 kstack_8k 243 kstack_16k 0 which tells us that 11391 processes used 4k of stack while none at all used 16k. Useful for some system tuning things, but partivularly useful for "the dynamic kernel stack project". - "kmemleak: support for percpu memory leak detect" from Pavel Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory. - "mm: memcg: page counters optimizations" from Roman Gushchin. "3 independent small optimizations of page counters". - "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from David Hildenbrand. Improves PTE/PMD splitlock detection, makes powerpc/8xx work correctly by design rather than by accident. - "mm: remove arch_make_page_accessible()" from David Hildenbrand. Some folio conversions which make arch_make_page_accessible() unneeded. - "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David Finkel. Cleans up and fixes our handling of the resetting of the cgroup/process peak-memory-use detector. - "Make core VMA operations internal and testable" from Lorenzo Stoakes. Rationalizaion and encapsulation of the VMA manipulation APIs. With a view to better enable testing of the VMA functions, even from a userspace-only harness. - "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix issues in the zswap global shrinker, resulting in improved performance. - "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill in some missing info in /proc/zoneinfo. - "mm: replace follow_page() by folio_walk" from David Hildenbrand. Code cleanups and rationalizations (conversion to folio_walk()) resulting in the removal of follow_page(). - "improving dynamic zswap shrinker protection scheme" from Nhat Pham. Some tuning to improve zswap's dynamic shrinker. Significant reductions in swapin and improvements in performance are shown. - "mm: Fix several issues with unaccepted memory" from Kirill Shutemov. Improvements to the new unaccepted memory feature, - "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on DAX PUDs. This was missing, although nobody seems to have notied yet. - "Introduce a store type enum for the Maple tree" from Sidhartha Kumar. Cleanups and modest performance improvements for the maple tree library code. - "memcg: further decouple v1 code from v2" from Shakeel Butt. Move more cgroup v1 remnants away from the v2 memcg code. - "memcg: initiate deprecation of v1 features" from Shakeel Butt. Adds various warnings telling users that memcg v1 features are deprecated. - "mm: swap: mTHP swap allocator base on swap cluster order" from Chris Li. Greatly improves the success rate of the mTHP swap allocation. - "mm: introduce numa_memblks" from Mike Rapoport. Moves various disparate per-arch implementations of numa_memblk code into generic code. - "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly improves the performance of munmap() of swap-filled ptes. - "support large folio swap-out and swap-in for shmem" from Baolin Wang. With this series we no longer split shmem large folios into simgle-page folios when swapping out shmem. - "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice performance improvements and code reductions for gigantic folios. - "support shmem mTHP collapse" from Baolin Wang. Adds support for khugepaged's collapsing of shmem mTHP folios. - "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect() performance regression due to the addition of mseal(). - "Increase the number of bits available in page_type" from Matthew Wilcox. Increases the number of bits available in page_type! - "Simplify the page flags a little" from Matthew Wilcox. Many legacy page flags are now folio flags, so the page-based flags and their accessors/mutators can be removed. - "mm: store zero pages to be swapped out in a bitmap" from Usama Arif. An optimization which permits us to avoid writing/reading zero-filled zswap pages to backing store. - "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race window which occurs when a MAP_FIXED operqtion is occurring during an unrelated vma tree walk. - "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of the vma_merge() functionality, making ot cleaner, more testable and better tested. - "misc fixups for DAMON {self,kunit} tests" from SeongJae Park. Minor fixups of DAMON selftests and kunit tests. - "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang. Code cleanups and folio conversions. - "Shmem mTHP controls and stats improvements" from Ryan Roberts. Cleanups for shmem controls and stats. - "mm: count the number of anonymous THPs per size" from Barry Song. Expose additional anon THP stats to userspace for improved tuning. - "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more folio conversions and removal of now-unused page-based APIs. - "replace per-quota region priorities histogram buffer with per-context one" from SeongJae Park. DAMON histogram rationalization. - "Docs/damon: update GitHub repo URLs and maintainer-profile" from SeongJae Park. DAMON documentation updates. - "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and improve related doc and warn" from Jason Wang: fixes usage of page allocator __GFP_NOFAIL and GFP_ATOMIC flags. - "mm: split underused THPs" from Yu Zhao. Improve THP=always policy. This was overprovisioning THPs in sparsely accessed memory areas. - "zram: introduce custom comp backends API" frm Sergey Senozhatsky. Add support for zram run-time compression algorithm tuning. - "mm: Care about shadow stack guard gap when getting an unmapped area" from Mark Brown. Fix up the various arch_get_unmapped_area() implementations to better respect guard areas. - "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability of mem_cgroup_iter() and various code cleanups. - "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge pfnmap support. - "resource: Fix region_intersects() vs add_memory_driver_managed()" from Huang Ying. Fix a bug in region_intersects() for systems with CXL memory. - "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches a couple more code paths to correctly recover from the encountering of poisoned memry. - "mm: enable large folios swap-in support" from Barry Song. Support the swapin of mTHP memory into appropriately-sized folios, rather than into single-page folios" * tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (416 commits) zram: free secondary algorithms names uprobes: turn xol_area->pages[2] into xol_area->page uprobes: introduce the global struct vm_special_mapping xol_mapping Revert "uprobes: use vm_special_mapping close() functionality" mm: support large folios swap-in for sync io devices mm: add nr argument in mem_cgroup_swapin_uncharge_swap() helper to support large folios mm: fix swap_read_folio_zeromap() for large folios with partial zeromap mm/debug_vm_pgtable: Use pxdp_get() for accessing page table entries set_memory: add __must_check to generic stubs mm/vma: return the exact errno in vms_gather_munmap_vmas() memcg: cleanup with !CONFIG_MEMCG_V1 mm/show_mem.c: report alloc tags in human readable units mm: support poison recovery from copy_present_page() mm: support poison recovery from do_cow_fault() resource, kunit: add test case for region_intersects() resource: make alloc_free_mem_region() works for iomem_resource mm: z3fold: deprecate CONFIG_Z3FOLD vfio/pci: implement huge_fault support mm/arm64: support large pfn mappings mm/x86: support large pfn mappings ...
2024-09-19Merge tag 'mm-hotfixes-stable-2024-09-19-00-31' of ↵Linus Torvalds1-5/+3
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull misc hotfixes from Andrew Morton: "12 hotfixes, 11 of which are cc:stable. Four fixes for longstanding ocfs2 issues and the remainder address random MM things" * tag 'mm-hotfixes-stable-2024-09-19-00-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: mm/madvise: process_madvise() drop capability check if same mm mm/huge_memory: ensure huge_zero_folio won't have large_rmappable flag set mm/hugetlb.c: fix UAF of vma in hugetlb fault pathway mm: change vmf_anon_prepare() to __vmf_anon_prepare() resource: fix region_intersects() vs add_memory_driver_managed() zsmalloc: use unique zsmalloc caches names mm/damon/vaddr: protect vma traversal in __damon_va_thre_regions() with rcu read lock mm: vmscan.c: fix OOM on swap stress test ocfs2: cancel dqi_sync_work before freeing oinfo ocfs2: fix possible null-ptr-deref in ocfs2_set_buffer_uptodate ocfs2: remove unreasonable unlock in ocfs2_read_blocks ocfs2: fix null-ptr-deref when journal load failed.
2024-09-17mm: support large folios swap-in for sync io devicesChuanhua Han1-27/+234
Currently, we have mTHP features, but unfortunately, without support for large folio swap-ins, once these large folios are swapped out, they are lost because mTHP swap is a one-way process. The lack of mTHP swap-in functionality prevents mTHP from being used on devices like Android that heavily rely on swap. This patch introduces mTHP swap-in support. It starts from sync devices such as zRAM. This is probably the simplest and most common use case, benefiting billions of Android phones and similar devices with minimal implementation cost. In this straightforward scenario, large folios are always exclusive, eliminating the need to handle complex rmap and swapcache issues. It offers several benefits: 1. Enables bidirectional mTHP swapping, allowing retrieval of mTHP after swap-out and swap-in. Large folios in the buddy system are also preserved as much as possible, rather than being fragmented due to swap-in. 2. Eliminates fragmentation in swap slots and supports successful THP_SWPOUT. w/o this patch (Refer to the data from Chris's and Kairui's latest swap allocator optimization while running ./thp_swap_allocator_test w/o "-a" option [1]): ./thp_swap_allocator_test Iteration 1: swpout inc: 233, swpout fallback inc: 0, Fallback percentage: 0.00% Iteration 2: swpout inc: 131, swpout fallback inc: 101, Fallback percentage: 43.53% Iteration 3: swpout inc: 71, swpout fallback inc: 155, Fallback percentage: 68.58% Iteration 4: swpout inc: 55, swpout fallback inc: 168, Fallback percentage: 75.34% Iteration 5: swpout inc: 35, swpout fallback inc: 191, Fallback percentage: 84.51% Iteration 6: swpout inc: 25, swpout fallback inc: 199, Fallback percentage: 88.84% Iteration 7: swpout inc: 23, swpout fallback inc: 205, Fallback percentage: 89.91% Iteration 8: swpout inc: 9, swpout fallback inc: 219, Fallback percentage: 96.05% Iteration 9: swpout inc: 13, swpout fallback inc: 213, Fallback percentage: 94.25% Iteration 10: swpout inc: 12, swpout fallback inc: 216, Fallback percentage: 94.74% Iteration 11: swpout inc: 16, swpout fallback inc: 213, Fallback percentage: 93.01% Iteration 12: swpout inc: 10, swpout fallback inc: 210, Fallback percentage: 95.45% Iteration 13: swpout inc: 16, swpout fallback inc: 212, Fallback percentage: 92.98% Iteration 14: swpout inc: 12, swpout fallback inc: 212, Fallback percentage: 94.64% Iteration 15: swpout inc: 15, swpout fallback inc: 211, Fallback percentage: 93.36% Iteration 16: swpout inc: 15, swpout fallback inc: 200, Fallback percentage: 93.02% Iteration 17: swpout inc: 9, swpout fallback inc: 220, Fallback percentage: 96.07% w/ this patch (always 0%): Iteration 1: swpout inc: 948, swpout fallback inc: 0, Fallback percentage: 0.00% Iteration 2: swpout inc: 953, swpout fallback inc: 0, Fallback percentage: 0.00% Iteration 3: swpout inc: 950, swpout fallback inc: 0, Fallback percentage: 0.00% Iteration 4: swpout inc: 952, swpout fallback inc: 0, Fallback percentage: 0.00% Iteration 5: swpout inc: 950, swpout fallback inc: 0, Fallback percentage: 0.00% Iteration 6: swpout inc: 950, swpout fallback inc: 0, Fallback percentage: 0.00% Iteration 7: swpout inc: 947, swpout fallback inc: 0, Fallback percentage: 0.00% Iteration 8: swpout inc: 950, swpout fallback inc: 0, Fallback percentage: 0.00% Iteration 9: swpout inc: 950, swpout fallback inc: 0, Fallback percentage: 0.00% Iteration 10: swpout inc: 945, swpout fallback inc: 0, Fallback percentage: 0.00% Iteration 11: swpout inc: 947, swpout fallback inc: 0, Fallback percentage: 0.00% ... 3. With both mTHP swap-out and swap-in supported, we offer the option to enable zsmalloc compression/decompression with larger granularity[2]. The upcoming optimization in zsmalloc will significantly increase swap speed and improve compression efficiency. Tested by running 100 iterations of swapping 100MiB of anon memory, the swap speed improved dramatically: time consumption of swapin(ms) time consumption of swapout(ms) lz4 4k 45274 90540 lz4 64k 22942 55667 zstdn 4k 85035 186585 zstdn 64k 46558 118533 The compression ratio also improved, as evaluated with 1 GiB of data: granularity orig_data_size compr_data_size 4KiB-zstd 1048576000 246876055 64KiB-zstd 1048576000 199763892 Without mTHP swap-in, the potential optimizations in zsmalloc cannot be realized. 4. Even mTHP swap-in itself can reduce swap-in page faults by a factor of nr_pages. Swapping in content filled with the same data 0x11, w/o and w/ the patch for five rounds (Since the content is the same, decompression will be very fast. This primarily assesses the impact of reduced page faults): swp in bandwidth(bytes/ms) w/o w/ round1 624152 1127501 round2 631672 1127501 round3 620459 1139756 round4 606113 1139756 round5 624152 1152281 avg 621310 1137359 +83% 5. With both mTHP swap-out and swap-in supported, we offer the option to enable hardware accelerators(Intel IAA) to do parallel decompression with which Kanchana reported 7X improvement on zRAM read latency[3]. [1] https://lore.kernel.org/all/20240730-swap-allocator-v5-0-cb9c148b9297@kernel.org/ [2] https://lore.kernel.org/all/20240327214816.31191-1-21cnbao@gmail.com/ [3] https://lore.kernel.org/all/cover.1714581792.git.andre.glover@linux.intel.com/ Link: https://lkml.kernel.org/r/20240908232119.2157-4-21cnbao@gmail.com Signed-off-by: Chuanhua Han <hanchuanhua@oppo.com> Co-developed-by: Barry Song <v-songbaohua@oppo.com> Signed-off-by: Barry Song <v-songbaohua@oppo.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Chris Li <chrisl@kernel.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: Gao Xiang <xiang@kernel.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kairui Song <kasong@tencent.com> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Nhat Pham <nphamcs@gmail.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yosry Ahmed <yosryahmed@google.com> Cc: Usama Arif <usamaarif642@gmail.com> Cc: Kanchana P Sridhar <kanchana.p.sridhar@intel.com> Cc: Kairui Song <ryncsn@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-17mm: add nr argument in mem_cgroup_swapin_uncharge_swap() helper to support ↵Barry Song1-1/+1
large folios With large folios swap-in, we might need to uncharge multiple entries all together, add nr argument in mem_cgroup_swapin_uncharge_swap(). For the existing two users, just pass nr=1. Link: https://lkml.kernel.org/r/20240908232119.2157-3-21cnbao@gmail.com Signed-off-by: Barry Song <v-songbaohua@oppo.com> Acked-by: Chris Li <chrisl@kernel.org> Reviewed-by: Yosry Ahmed <yosryahmed@google.com> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: Gao Xiang <xiang@kernel.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kairui Song <kasong@tencent.com> Cc: Kairui Song <ryncsn@gmail.com> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Nhat Pham <nphamcs@gmail.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Chuanhua Han <hanchuanhua@oppo.com> Cc: Kanchana P Sridhar <kanchana.p.sridhar@intel.com> Cc: Usama Arif <usamaarif642@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-17mm: support poison recovery from copy_present_page()Kefeng Wang1-3/+7
Similar to other poison recovery, use copy_mc_user_highpage() to avoid potentially kernel panic during copy page in copy_present_page() from fork, once copy failed due to hwpoison in source page, we need to break out of copy in copy_pte_range() and release prealloc folio, so copy_mc_user_highpage() is moved ahead before set *prealloc to NULL. Link: https://lkml.kernel.org/r/20240906024201.1214712-3-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Reviewed-by: Jane Chu <jane.chu@oracle.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-17mm: support poison recovery from do_cow_fault()Kefeng Wang1-1/+5
Patch series "mm: hwpoison: two more poison recovery". One more CoW path to support poison recorvery in do_cow_fault(), and the last copy_user_highpage() user is replaced to copy_mc_user_highpage() from copy_present_page() during fork to support poison recorvery too. This patch (of 2): Like commit a873dfe1032a ("mm, hwpoison: try to recover from copy-on write faults"), there is another path which could crash because it does not have recovery code where poison is consumed by the kernel in do_cow_fault(), a crash calltrace shown below on old kernel, but it could be happened in the lastest mainline code, CPU: 7 PID: 3248 Comm: mpi Kdump: loaded Tainted: G OE 5.10.0 #1 pc : copy_page+0xc/0xbc lr : copy_user_highpage+0x50/0x9c Call trace: copy_page+0xc/0xbc do_cow_fault+0x118/0x2bc do_fault+0x40/0x1a4 handle_pte_fault+0x154/0x230 __handle_mm_fault+0x1a8/0x38c handle_mm_fault+0xf0/0x250 do_page_fault+0x184/0x454 do_translation_fault+0xac/0xd4 do_mem_abort+0x44/0xbc Fix it by using copy_mc_user_highpage() to handle this case and return VM_FAULT_HWPOISON for cow fault. [wangkefeng.wang@huawei.com: unlock/put vmf->page, per Miaohe] Link: https://lkml.kernel.org/r/20240910021541.234300-1-wangkefeng.wang@huawei.com Link: https://lkml.kernel.org/r/20240906024201.1214712-1-wangkefeng.wang@huawei.com Link: https://lkml.kernel.org/r/20240906024201.1214712-2-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Reviewed-by: Jane Chu <jane.chu@oracle.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jiaqi Yan <jiaqiyan@google.com> Cc: Naoya Horiguchi <nao.horiguchi@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-17mm: remove follow_pte()Peter Xu1-73/+0
follow_pte() users have been converted to follow_pfnmap*(). Remove the API. Link: https://lkml.kernel.org/r/20240826204353.2228736-17-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Gavin Shan <gshan@redhat.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Niklas Schnelle <schnelle@linux.ibm.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Sean Christopherson <seanjc@google.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-17mm/access_process_vm: use the new follow_pfnmap APIPeter Xu1-14/+14
Use the new API that can understand huge pfn mappings. Link: https://lkml.kernel.org/r/20240826204353.2228736-16-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Gavin Shan <gshan@redhat.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Niklas Schnelle <schnelle@linux.ibm.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Sean Christopherson <seanjc@google.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-17mm: new follow_pfnmap APIPeter Xu1-0/+150
Introduce a pair of APIs to follow pfn mappings to get entry information. It's very similar to what follow_pte() does before, but different in that it recognizes huge pfn mappings. Link: https://lkml.kernel.org/r/20240826204353.2228736-10-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Gavin Shan <gshan@redhat.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Niklas Schnelle <schnelle@linux.ibm.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Sean Christopherson <seanjc@google.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-17mm/pagewalk: check pfnmap for folio_walk_start()Peter Xu1-5/+4
Teach folio_walk_start() to recognize special pmd/pud mappings, and fail them properly as it means there's no folio backing them. [peterx@redhat.com: remove some stale comments, per David] Link: https://lkml.kernel.org/r/20240829202237.2640288-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20240826204353.2228736-7-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Gavin Shan <gshan@redhat.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Niklas Schnelle <schnelle@linux.ibm.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Sean Christopherson <seanjc@google.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-17mm: change vmf_anon_prepare() to __vmf_anon_prepare()Vishal Moola (Oracle)1-5/+3
Some callers of vmf_anon_prepare() may not want us to release the per-VMA lock ourselves. Rename vmf_anon_prepare() to __vmf_anon_prepare() and let the callers drop the lock when desired. Also, make vmf_anon_prepare() a wrapper that releases the per-VMA lock itself for any callers that don't care. This is in preparation to fix this bug reported by syzbot: https://lore.kernel.org/linux-mm/00000000000067c20b06219fbc26@google.com/ Link: https://lkml.kernel.org/r/20240914194243.245-1-vishal.moola@gmail.com Fixes: 9acad7ba3e25 ("hugetlb: use vmf_anon_prepare() instead of anon_vma_prepare()") Reported-by: syzbot+2dab93857ee95f2eeb08@syzkaller.appspotmail.com Closes: https://lore.kernel.org/linux-mm/00000000000067c20b06219fbc26@google.com/ Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-12mm: avoid leaving partial pfn mappings around in error caseLinus Torvalds1-5/+22
As Jann points out, PFN mappings are special, because unlike normal memory mappings, there is no lifetime information associated with the mapping - it is just a raw mapping of PFNs with no reference counting of a 'struct page'. That's all very much intentional, but it does mean that it's easy to mess up the cleanup in case of errors. Yes, a failed mmap() will always eventually clean up any partial mappings, but without any explicit lifetime in the page table mapping itself, it's very easy to do the error handling in the wrong order. In particular, it's easy to mistakenly free the physical backing store before the page tables are actually cleaned up and (temporarily) have stale dangling PTE entries. To make this situation less error-prone, just make sure that any partial pfn mapping is torn down early, before any other error handling. Reported-and-tested-by: Jann Horn <jannh@google.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Simona Vetter <simona.vetter@ffwll.ch> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-09-09mm: cleanup count_mthp_stat() definitionRyan Roberts1-2/+0
Patch series "Shmem mTHP controls and stats improvements", v3. This is a small series to tidy up the way the shmem controls and stats are exposed. These patches were previously part of the series at [2], but I decided to split them out since they can go in independently. This patch (of 2): Let's move count_mthp_stat() so that it's always defined, even when THP is disabled. Previously uses of the function in files such as shmem.c, which are compiled even when THP is disabled, required ugly THP ifdeferry. With this cleanup, we can remove those ifdefs and the function resolves to a nop when THP is disabled. I shortly plan to call count_mthp_stat() from more THP-invariant source files. Link: https://lkml.kernel.org/r/20240808111849.651867-1-ryan.roberts@arm.com Link: https://lkml.kernel.org/r/20240808111849.651867-2-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Acked-by: Barry Song <baohua@kernel.org> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Lance Yang <ioworker0@gmail.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Gavin Shan <gshan@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-03mm,memcg: provide per-cgroup counters for NUMA balancing operationsKaiyang Zhao1-0/+3
The ability to observe the demotion and promotion decisions made by the kernel on a per-cgroup basis is important for monitoring and tuning containerized workloads on machines equipped with tiered memory. Different containers in the system may experience drastically different memory tiering actions that cannot be distinguished from the global counters alone. For example, a container running a workload that has a much hotter memory accesses will likely see more promotions and fewer demotions, potentially depriving a colocated container of top tier memory to such an extent that its performance degrades unacceptably. For another example, some containers may exhibit longer periods between data reuse, causing much more numa_hint_faults than numa_pages_migrated. In this case, tuning hot_threshold_ms may be appropriate, but the signal can easily be lost if only global counters are available. In the long term, we hope to introduce per-cgroup control of promotion and demotion actions to implement memory placement policies in tiering. This patch set adds seven counters to memory.stat in a cgroup: numa_pages_migrated, numa_pte_updates, numa_hint_faults, pgdemote_kswapd, pgdemote_khugepaged, pgdemote_direct and pgpromote_success. pgdemote_* and pgpromote_success are also available in memory.numa_stat. count_memcg_events_mm() is added to count multiple event occurrences at once, and get_mem_cgroup_from_folio() is added because we need to get a reference to the memcg of a folio before it's migrated to track numa_pages_migrated. The accounting of PGDEMOTE_* is moved to shrink_inactive_list() before being changed to per-cgroup. [kaiyang2@cs.cmu.edu: add documentation of the memcg counters in cgroup-v2.rst] Link: https://lkml.kernel.org/r/20240814235122.252309-1-kaiyang2@cs.cmu.edu Link: https://lkml.kernel.org/r/20240814174227.30639-1-kaiyang2@cs.cmu.edu Signed-off-by: Kaiyang Zhao <kaiyang2@cs.cmu.edu> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Wei Xu <weixugc@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-01mm/migrate: move common code to numa_migrate_check (was numa_migrate_prep)Zi Yan1-30/+33
do_numa_page() and do_huge_pmd_numa_page() share a lot of common code. To reduce redundancy, move common code to numa_migrate_prep() and rename the function to numa_migrate_check() to reflect its functionality. Now do_huge_pmd_numa_page() also checks shared folios to set TNF_SHARED flag. Link: https://lkml.kernel.org/r/20240809145906.1513458-4-ziy@nvidia.com Signed-off-by: Zi Yan <ziy@nvidia.com> Suggested-by: David Hildenbrand <david@redhat.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-01mm: return the folio from swapin_readaheadMatthew Wilcox (Oracle)1-4/+2
The unuse_pte_range() caller only wants the folio while do_swap_page() wants both the page and the folio. Since do_swap_page() already has logic for handling both the folio and the page, move the folio-to-page logic there. This also lets us allocate larger folios in the SWP_SYNCHRONOUS_IO path in future. Link: https://lkml.kernel.org/r/20240807193734.1865400-1-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-01mm: fix (harmless) type confusion in lock_vma_under_rcu()Jann Horn1-4/+10
There is a (harmless) type confusion in lock_vma_under_rcu(): After vma_start_read(), we have taken the VMA lock but don't know yet whether the VMA has already been detached and scheduled for RCU freeing. At this point, ->vm_start and ->vm_end are accessed. vm_area_struct contains a union such that ->vm_rcu uses the same memory as ->vm_start and ->vm_end; so accessing ->vm_start and ->vm_end of a detached VMA is illegal and leads to type confusion between union members. Fix it by reordering the vma->detached check above the address checks, and document the rules for RCU readers accessing VMAs. This will probably change the number of observed VMA_LOCK_MISS events (since previously, trying to access a detached VMA whose ->vm_rcu has been scheduled would bail out when checking the fault address against the rcu_head members reinterpreted as VMA bounds). Link: https://lkml.kernel.org/r/20240805-fix-vma-lock-type-confusion-v1-1-9f25443a9a71@google.com Fixes: 50ee32537206 ("mm: introduce lock_vma_under_rcu to be used from arch-specific code") Signed-off-by: Jann Horn <jannh@google.com> Acked-by: Suren Baghdasaryan <surenb@google.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-01mm: provide vm_normal_(page|folio)_pmd() with CONFIG_PGTABLE_HAS_HUGE_LEAVESDavid Hildenbrand1-1/+1
Patch series "mm: replace follow_page() by folio_walk". Looking into a way of moving the last folio_likely_mapped_shared() call in add_folio_for_migration() under the PTL, I found myself removing follow_page(). This paves the way for cleaning up all the FOLL_, follow_* terminology to just be called "GUP" nowadays. The new page table walker will lookup a mapped folio and return to the caller with the PTL held, such that the folio cannot get unmapped concurrently. Callers can then conditionally decide whether they really want to take a short-term folio reference or whether the can simply unlock the PTL and be done with it. folio_walk is similar to page_vma_mapped_walk(), except that we don't know the folio we want to walk to and that we are only walking to exactly one PTE/PMD/PUD. folio_walk provides access to the pte/pmd/pud (and the referenced folio page because things like KSM need that), however, as part of this series no page table modifications are performed by users. We might be able to convert some other walk_page_range() users that really only walk to one address, such as DAMON with damon_mkold_ops/damon_young_ops. It might make sense to extend folio_walk in the future to optionally fault in a folio (if applicable), such that we can replace some get_user_pages() users that really only want to lookup a single page/folio under PTL without unconditionally grabbing a folio reference. I have plans to extend the approach to a range walker that will try batching various page table entries (not just folio pages) to be a better replace for walk_page_range() -- and users will be able to opt in which type of page table entries they want to process -- but that will require more work and more thoughts. KSM seems to work just fine (ksm_functional_tests selftests) and move_pages seems to work (migration selftest). I tested the leaf implementation excessively using various hugetlb sizes (64K, 2M, 32M, 1G) on arm64 using move_pages and did some more testing on x86-64. Cross compiled on a bunch of architectures. This patch (of 11): We want to make use of vm_normal_page_pmd() in generic page table walking code where we might walk hugetlb folios that are mapped by PMDs even without CONFIG_TRANSPARENT_HUGEPAGE. So let's expose vm_normal_page_pmd() + vm_normal_folio_pmd() with CONFIG_PGTABLE_HAS_HUGE_LEAVES. Link: https://lkml.kernel.org/r/20240802155524.517137-1-david@redhat.com Link: https://lkml.kernel.org/r/20240802155524.517137-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Claudio Imbrenda <imbrenda@linux.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Janosch Frank <frankja@linux.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-01mm: swap: add nr argument in swapcache_prepare and swapcache_clear to ↵Barry Song1-3/+3
support large folios Right now, swapcache_prepare() and swapcache_clear() supports one entry only, to support large folios, we need to handle multiple swap entries. To optimize stack usage, we iterate twice in __swap_duplicate(): the first time to verify that all entries are valid, and the second time to apply the modifications to the entries. Currently, we're using nr=1 for the existing users. [v-songbaohua@oppo.com: clarify swap_count_continued and improve readability for __swap_duplicate] Link: https://lkml.kernel.org/r/20240802071817.47081-1-21cnbao@gmail.com Link: https://lkml.kernel.org/r/20240730071339.107447-2-21cnbao@gmail.com Signed-off-by: Barry Song <v-songbaohua@oppo.com> Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com> Acked-by: David Hildenbrand <david@redhat.com> Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Chris Li <chrisl@kernel.org> Cc: Gao Xiang <xiang@kernel.org> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kairui Song <kasong@tencent.com> Cc: Kalesh Singh <kaleshsingh@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Nhat Pham <nphamcs@gmail.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Shakeel Butt <shakeel.butt@linux.dev> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yosry Ahmed <yosryahmed@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-01mm: turn USE_SPLIT_PTE_PTLOCKS / USE_SPLIT_PTE_PTLOCKS into Kconfig optionsDavid Hildenbrand1-1/+1
Patch series "mm: split PTE/PMD PT table Kconfig cleanups+clarifications". This series is a follow up to the fixes: "[PATCH v1 0/2] mm/hugetlb: fix hugetlb vs. core-mm PT locking" When working on the fixes, I wondered why 8xx is fine (-> never uses split PT locks) and how PT locking even works properly with PMD page table sharing (-> always requires split PMD PT locks). Let's improve the split PT lock detection, make hugetlb properly depend on it and make 8xx bail out if it would ever get enabled by accident. As an alternative to patch #3 we could extend the Kconfig SPLIT_PTE_PTLOCKS option from patch #2 -- but enforcing it closer to the code that actually implements it feels a bit nicer for documentation purposes, and there is no need to actually disable it because it should always be disabled (!SMP). Did a bunch of cross-compilations to make sure that split PTE/PMD PT locks are still getting used where we would expect them. [1] https://lkml.kernel.org/r/20240725183955.2268884-1-david@redhat.com This patch (of 3): Let's clean that up a bit and prepare for depending on CONFIG_SPLIT_PMD_PTLOCKS in other Kconfig options. More cleanups would be reasonable (like the arch-specific "depends on" for CONFIG_SPLIT_PTE_PTLOCKS), but we'll leave that for another day. Link: https://lkml.kernel.org/r/20240726150728.3159964-1-david@redhat.com Link: https://lkml.kernel.org/r/20240726150728.3159964-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Mike Rapoport (Microsoft) <rppt@kernel.org> Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Borislav Petkov <bp@alien8.de> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Muchun Song <muchun.song@linux.dev> Cc: "Naveen N. Rao" <naveen.n.rao@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Xu <peterx@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-01memory tiering: introduce folio_use_access_time() checkZi Yan1-2/+1
If memory tiering mode is on and a folio is not in the top tier memory, folio's cpupid field is repurposed to store page access time. Instead of an open coded check, use a function to encapsulate the check. Link: https://lkml.kernel.org/r/20240724130115.793641-3-ziy@nvidia.com Signed-off-by: Zi Yan <ziy@nvidia.com> Reviewed-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: David Hildenbrand <david@redhat.com> Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-08-15mm/numa: no task_numa_fault() call if PTE is changedZi Yan1-17/+16
When handling a numa page fault, task_numa_fault() should be called by a process that restores the page table of the faulted folio to avoid duplicated stats counting. Commit b99a342d4f11 ("NUMA balancing: reduce TLB flush via delaying mapping on hint page fault") restructured do_numa_page() and did not avoid task_numa_fault() call in the second page table check after a numa migration failure. Fix it by making all !pte_same() return immediately. This issue can cause task_numa_fault() being called more than necessary and lead to unexpected numa balancing results (It is hard to tell whether the issue will cause positive or negative performance impact due to duplicated numa fault counting). Link: https://lkml.kernel.org/r/20240809145906.1513458-2-ziy@nvidia.com Fixes: b99a342d4f11 ("NUMA balancing: reduce TLB flush via delaying mapping on hint page fault") Signed-off-by: Zi Yan <ziy@nvidia.com> Reported-by: "Huang, Ying" <ying.huang@intel.com> Closes: https://lore.kernel.org/linux-mm/87zfqfw0yw.fsf@yhuang6-desk2.ccr.corp.intel.com/ Acked-by: David Hildenbrand <david@redhat.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Yang Shi <shy828301@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-26mm: fix old/young bit handling in the faulting pathRam Tummala1-1/+1
Commit 3bd786f76de2 ("mm: convert do_set_pte() to set_pte_range()") replaced do_set_pte() with set_pte_range() and that introduced a regression in the following faulting path of non-anonymous vmas which caused the PTE for the faulting address to be marked as old instead of young. handle_pte_fault() do_pte_missing() do_fault() do_read_fault() || do_cow_fault() || do_shared_fault() finish_fault() set_pte_range() The polarity of prefault calculation is incorrect. This leads to prefault being incorrectly set for the faulting address. The following check will incorrectly mark the PTE old rather than young. On some architectures this will cause a double fault to mark it young when the access is retried. if (prefault && arch_wants_old_prefaulted_pte()) entry = pte_mkold(entry); On a subsequent fault on the same address, the faulting path will see a non NULL vmf->pte and instead of reaching the do_pte_missing() path, PTE will then be correctly marked young in handle_pte_fault() itself. Due to this bug, performance degradation in the fault handling path will be observed due to unnecessary double faulting. Link: https://lkml.kernel.org/r/20240710014539.746200-1-rtummala@nvidia.com Fixes: 3bd786f76de2 ("mm: convert do_set_pte() to set_pte_range()") Signed-off-by: Ram Tummala <rtummala@nvidia.com> Reviewed-by: Yin Fengwei <fengwei.yin@intel.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Yin Fengwei <fengwei.yin@intel.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-24Merge tag 'random-6.11-rc1-for-linus' of ↵Linus Torvalds1-0/+13
git://git.kernel.org/pub/scm/linux/kernel/git/crng/random Pull random number generator updates from Jason Donenfeld: "This adds getrandom() support to the vDSO. First, it adds a new kind of mapping to mmap(2), MAP_DROPPABLE, which lets the kernel zero out pages anytime under memory pressure, which enables allocating memory that never gets swapped to disk but also doesn't count as being mlocked. Then, the vDSO implementation of getrandom() is introduced in a generic manner and hooked into random.c. Next, this is implemented on x86. (Also, though it's not ready for this pull, somebody has begun an arm64 implementation already) Finally, two vDSO selftests are added. There are also two housekeeping cleanup commits" * tag 'random-6.11-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: MAINTAINERS: add random.h headers to RNG subsection random: note that RNDGETPOOL was removed in 2.6.9-rc2 selftests/vDSO: add tests for vgetrandom x86: vdso: Wire up getrandom() vDSO implementation random: introduce generic vDSO getrandom() implementation mm: add MAP_DROPPABLE for designating always lazily freeable mappings
2024-07-19mm: add MAP_DROPPABLE for designating always lazily freeable mappingsJason A. Donenfeld1-0/+13
The vDSO getrandom() implementation works with a buffer allocated with a new system call that has certain requirements: - It shouldn't be written to core dumps. * Easy: VM_DONTDUMP. - It should be zeroed on fork. * Easy: VM_WIPEONFORK. - It shouldn't be written to swap. * Uh-oh: mlock is rlimited. * Uh-oh: mlock isn't inherited by forks. - It shouldn't reserve actual memory, but it also shouldn't crash when page faulting in memory if none is available * Uh-oh: VM_NORESERVE means segfaults. It turns out that the vDSO getrandom() function has three really nice characteristics that we can exploit to solve this problem: 1) Due to being wiped during fork(), the vDSO code is already robust to having the contents of the pages it reads zeroed out midway through the function's execution. 2) In the absolute worst case of whatever contingency we're coding for, we have the option to fallback to the getrandom() syscall, and everything is fine. 3) The buffers the function uses are only ever useful for a maximum of 60 seconds -- a sort of cache, rather than a long term allocation. These characteristics mean that we can introduce VM_DROPPABLE, which has the following semantics: a) It never is written out to