summaryrefslogtreecommitdiff
path: root/mm/page_alloc.c
AgeCommit message (Collapse)AuthorFilesLines
2014-12-13mm/debug-pagealloc: prepare boottime configurable on/offJoonsoo Kim1-3/+35
Until now, debug-pagealloc needs extra flags in struct page, so we need to recompile whole source code when we decide to use it. This is really painful, because it takes some time to recompile and sometimes rebuild is not possible due to third party module depending on struct page. So, we can't use this good feature in many cases. Now, we have the page extension feature that allows us to insert extra flags to outside of struct page. This gets rid of third party module issue mentioned above. And, this allows us to determine if we need extra memory for this page extension in boottime. With these property, we can avoid using debug-pagealloc in boottime with low computational overhead in the kernel built with CONFIG_DEBUG_PAGEALLOC. This will help our development process greatly. This patch is the preparation step to achive above goal. debug-pagealloc originally uses extra field of struct page, but, after this patch, it will use field of struct page_ext. Because memory for page_ext is allocated later than initialization of page allocator in CONFIG_SPARSEMEM, we should disable debug-pagealloc feature temporarily until initialization of page_ext. This patch implements this. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13mm/page_ext: resurrect struct page extending code for debuggingJoonsoo Kim1-0/+2
When we debug something, we'd like to insert some information to every page. For this purpose, we sometimes modify struct page itself. But, this has drawbacks. First, it requires re-compile. This makes us hesitate to use the powerful debug feature so development process is slowed down. And, second, sometimes it is impossible to rebuild the kernel due to third party module dependency. At third, system behaviour would be largely different after re-compile, because it changes size of struct page greatly and this structure is accessed by every part of kernel. Keeping this as it is would be better to reproduce errornous situation. This feature is intended to overcome above mentioned problems. This feature allocates memory for extended data per page in certain place rather than the struct page itself. This memory can be accessed by the accessor functions provided by this code. During the boot process, it checks whether allocation of huge chunk of memory is needed or not. If not, it avoids allocating memory at all. With this advantage, we can include this feature into the kernel in default and can avoid rebuild and solve related problems. Until now, memcg uses this technique. But, now, memcg decides to embed their variable to struct page itself and it's code to extend struct page has been removed. I'd like to use this code to develop debug feature, so this patch resurrect it. To help these things to work well, this patch introduces two callbacks for clients. One is the need callback which is mandatory if user wants to avoid useless memory allocation at boot-time. The other is optional, init callback, which is used to do proper initialization after memory is allocated. Detailed explanation about purpose of these functions is in code comment. Please refer it. Others are completely same with previous extension code in memcg. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Dave Hansen <dave@sr71.net> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Jungsoo Son <jungsoo.son@lge.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13mm/debug-pagealloc: cleanup page guard codeJoonsoo Kim1-19/+19
Page guard is used by debug-pagealloc feature. Currently, it is open-coded, but, I think that more abstraction of it makes core page allocator code more readable. There is no functional difference. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Gioh Kim <gioh.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-11Merge branch 'for-3.19' of ↵Linus Torvalds1-3/+3
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup Pull cgroup update from Tejun Heo: "cpuset got simplified a bit. cgroup core got a fix on unified hierarchy and grew some effective css related interfaces which will be used for blkio support for writeback IO traffic which is currently being worked on" * 'for-3.19' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: cgroup: implement cgroup_get_e_css() cgroup: add cgroup_subsys->css_e_css_changed() cgroup: add cgroup_subsys->css_released() cgroup: fix the async css offline wait logic in cgroup_subtree_control_write() cgroup: restructure child_subsys_mask handling in cgroup_subtree_control_write() cgroup: separate out cgroup_calc_child_subsys_mask() from cgroup_refresh_child_subsys_mask() cpuset: lock vs unlock typo cpuset: simplify cpuset_node_allowed API cpuset: convert callback_mutex to a spinlock
2014-12-10mm: move page->mem_cgroup bad page handling into generic codeJohannes Weiner1-4/+8
Now that the external page_cgroup data structure and its lookup is gone, let the generic bad_page() check for page->mem_cgroup sanity. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: David S. Miller <davem@davemloft.net> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Tejun Heo <tj@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10mm: embed the memcg pointer directly into struct pageJohannes Weiner1-2/+0
Memory cgroups used to have 5 per-page pointers. To allow users to disable that amount of overhead during runtime, those pointers were allocated in a separate array, with a translation layer between them and struct page. There is now only one page pointer remaining: the memcg pointer, that indicates which cgroup the page is associated with when charged. The complexity of runtime allocation and the runtime translation overhead is no longer justified to save that *potential* 0.19% of memory. With CONFIG_SLUB, page->mem_cgroup actually sits in the doubleword padding after the page->private member and doesn't even increase struct page, and then this patch actually saves space. Remaining users that care can still compile their kernels without CONFIG_MEMCG. text data bss dec hex filename 8828345 1725264 983040 11536649 b00909 vmlinux.old 8827425 1725264 966656 11519345 afc571 vmlinux.new [mhocko@suse.cz: update Documentation/cgroups/memory.txt] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Tejun Heo <tj@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Konstantin Khlebnikov <koct9i@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10mm: fix a spelling mistakeWei Yuan1-1/+1
Signed-off-by Wei Yuan <weiyuan.wei@huawei.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10mm, compaction: more focused lru and pcplists drainingVlastimil Babka1-4/+0
The goal of memory compaction is to create high-order freepages through page migration. Page migration however puts pages on the per-cpu lru_add cache, which is later flushed to per-cpu pcplists, and only after pcplists are drained the pages can actually merge. This can happen due to the per-cpu caches becoming full through further freeing, or explicitly. During direct compaction, it is useful to do the draining explicitly so that pages merge as soon as possible and compaction can detect success immediately and keep the latency impact at minimum. However the current implementation is far from ideal. Draining is done only in __alloc_pages_direct_compact(), after all zones were already compacted, and the decisions to continue or stop compaction in individual zones was done without the last batch of migrations being merged. It is also missing the draining of lru_add cache before the pcplists. This patch moves the draining for direct compaction into compact_zone(). It adds the missing lru_cache draining and uses the newly introduced single zone pcplists draining to reduce overhead and avoid impact on unrelated zones. Draining is only performed when it can actually lead to merging of a page of desired order (passed by cc->order). This means it is only done when migration occurred in the previously scanned cc->order aligned block(s) and the migration scanner is now pointing to the next cc->order aligned block. The patch has been tested with stress-highalloc benchmark from mmtests. Although overal allocation success rates of the benchmark were not affected, the number of detected compaction successes has doubled. This suggests that allocations were previously successful due to implicit merging caused by background activity, making a later allocation attempt succeed immediately, but not attributing the success to compaction. Since stress-highalloc always tries to allocate almost the whole memory, it cannot show the improvement in its reported success rate metric. However after this patch, compaction should detect success and terminate earlier, reducing the direct compaction latencies in a real scenario. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10mm, compaction: simplify deferred compactionVlastimil Babka1-11/+1
Since commit 53853e2d2bfb ("mm, compaction: defer each zone individually instead of preferred zone"), compaction is deferred for each zone where sync direct compaction fails, and reset where it succeeds. However, it was observed that for DMA zone compaction often appeared to succeed while subsequent allocation attempt would not, due to different outcome of watermark check. In order to properly defer compaction in this zone, the candidate zone has to be passed back to __alloc_pages_direct_compact() and compaction deferred in the zone after the allocation attempt fails. The large source of mismatch between watermark check in compaction and allocation was the lack of alloc_flags and classzone_idx values in compaction, which has been fixed in the previous patch. So with this problem fixed, we can simplify the code by removing the candidate_zone parameter and deferring in __alloc_pages_direct_compact(). After this patch, the compaction activity during stress-highalloc benchmark is still somewhat increased, but it's negligible compared to the increase that occurred without the better watermark checking. This suggests that it is still possible to apparently succeed in compaction but fail to allocate, possibly due to parallel allocation activity. [akpm@linux-foundation.org: fix build] Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10mm, compaction: pass classzone_idx and alloc_flags to watermark checkingVlastimil Babka1-0/+1
Compaction relies on zone watermark checks for decisions such as if it's worth to start compacting in compaction_suitable() or whether compaction should stop in compact_finished(). The watermark checks take classzone_idx and alloc_flags parameters, which are related to the memory allocation request. But from the context of compaction they are currently passed as 0, including the direct compaction which is invoked to satisfy the allocation request, and could therefore know the proper values. The lack of proper values can lead to mismatch between decisions taken during compaction and decisions related to the allocation request. Lack of proper classzone_idx value means that lowmem_reserve is not taken into account. This has manifested (during recent changes to deferred compaction) when DMA zone was used as fallback for preferred Normal zone. compaction_suitable() without proper classzone_idx would think that the watermarks are already satisfied, but watermark check in get_page_from_freelist() would fail. Because of this problem, deferring compaction has extra complexity that can be removed in the following patch. The issue (not confirmed in practice) with missing alloc_flags is opposite in nature. For allocations that include ALLOC_HIGH, ALLOC_HIGHER or ALLOC_CMA in alloc_flags (the last includes all MOVABLE allocations on CMA-enabled systems) the watermark checking in compaction with 0 passed will be stricter than in get_page_from_freelist(). In these cases compaction might be running for a longer time than is really needed. Another issue compaction_suitable() is that the check for "does the zone need compaction at all?" comes only after the check "does the zone have enough free free pages to succeed compaction". The latter considers extra pages for migration and can therefore in some situations fail and return COMPACT_SKIPPED, although the high-order allocation would succeed and we should return COMPACT_PARTIAL. This patch fixes these problems by adding alloc_flags and classzone_idx to struct compact_control and related functions involved in direct compaction and watermark checking. Where possible, all other callers of compaction_suitable() pass proper values where those are known. This is currently limited to classzone_idx, which is sometimes known in kswapd context. However, the direct reclaim callers should_continue_reclaim() and compaction_ready() do not currently know the proper values, so the coordination between reclaim and compaction may still not be as accurate as it could. This can be fixed later, if it's shown to be an issue. Additionaly the checks in compact_suitable() are reordered to address the second issue described above. The effect of this patch should be slightly better high-order allocation success rates and/or less compaction overhead, depending on the type of allocations and presence of CMA. It allows simplifying deferred compaction code in a followup patch. When testing with stress-highalloc, there was some slight improvement (which might be just due to variance) in success rates of non-THP-like allocations. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10mm: verify compound order when freeing a pageYu Zhao1-0/+3
This allows us to catch the bug fixed in the previous patch (mm: free compound page with correct order). Here we also verify whether a page is tail page or not -- tail pages are supposed to be freed along with their head, not by themselves. Signed-off-by: Yu Zhao <yuzhao@google.com> Reviewed-by: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: David Rientjes <rientjes@google.com> Cc: Bob Liu <lliubbo@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10mm, cma: drain single zone pcplistsVlastimil Babka1-1/+1
CMA allocation drains pcplists so that pages can merge back to buddy allocator. Since it operates on a single zone, we can reduce the pcplists drain to the single zone, which is now possible. The change should make CMA allocations faster and not disturbing unrelated pcplists anymore. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10mm: introduce single zone pcplists drainVlastimil Babka1-25/+56
The functions for draining per-cpu pages back to buddy allocators currently always operate on all zones. There are however several cases where the drain is only needed in the context of a single zone, and spilling other pcplists is a waste of time both due to the extra spilling and later refilling. This patch introduces new zone pointer parameter to drain_all_pages() and changes the dummy parameter of drain_local_pages() to be also a zone pointer. When NULL is passed, the functions operate on all zones as usual. Passing a specific zone pointer reduces the work to the single zone. All callers are updated to pass the NULL pointer in this patch. Conversion to single zone (where appropriate) is done in further patches. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Xishi Qiu <qiuxishi@huawei.com> Cc: Vladimir Davydov <vdavydov@parallels.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10mm/page_alloc.c: convert boot printks without log level to pr_infoAnton Blanchard1-11/+11
Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-13mm/debug-pagealloc: correct freepage accounting and order resettingJoonsoo Kim1-3/+5
One thing I did in this patch is fixing freepage accounting. If we clear guard page and link it onto isolate buddy list, we should not increase freepage count. This patch adds conditional branch to skip counting in this case. Without this patch, this overcounting happens frequently if guard order is set and CMA is used. Another thing fixed in this patch is the target to reset order. In __free_one_page(), we check the buddy page whether it is a guard page or not. And, if so, we should clear guard attribute on the buddy page and reset order of it to 0. But, current code resets original page's order rather than buddy one's. Maybe, this doesn't have any problem, because whole merged page's order will be re-assigned soon. But, it is better to correct code. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Gioh Kim <gioh.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-13mm: alloc_contig_range: demote pages busy message from warn to infoMichal Nazarewicz1-3/+2
Having test_pages_isolated failure message as a warning confuses users into thinking that it is more serious than it really is. In reality, if called via CMA, allocation will be retried so a single test_pages_isolated failure does not prevent allocation from succeeding. Demote the warning message to an info message and reformat it such that the text "failed" does not appear and instead a less worrying "PFNS busy" is used. This message is trivially reproducible on a 10GB x86 machine on 3.16.y kernels configured with CONFIG_DMA_CMA. Signed-off-by: Michal Nazarewicz <mina86@mina86.com> Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Cc: Peter Hurley <peter@hurleysoftware.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-13mm/page_alloc: restrict max order of merging on isolated pageblockJoonsoo Kim1-27/+14
Current pageblock isolation logic could isolate each pageblock individually. This causes freepage accounting problem if freepage with pageblock order on isolate pageblock is merged with other freepage on normal pageblock. We can prevent merging by restricting max order of merging to pageblock order if freepage is on isolate pageblock. A side-effect of this change is that there could be non-merged buddy freepage even if finishing pageblock isolation, because undoing pageblock isolation is just to move freepage from isolate buddy list to normal buddy list rather than to consider merging. So, the patch also makes undoing pageblock isolation consider freepage merge. When un-isolation, freepage with more than pageblock order and it's buddy are checked. If they are on normal pageblock, instead of just moving, we isolate the freepage and free it in order to get merged. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Heesub Shin <heesub.shin@samsung.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Ritesh Harjani <ritesh.list@gmail.com> Cc: Gioh Kim <gioh.kim@lge.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-13mm/page_alloc: move freepage counting logic to __free_one_page()Joonsoo Kim1-11/+3
All the caller of __free_one_page() has similar freepage counting logic, so we can move it to __free_one_page(). This reduce line of code and help future maintenance. This is also preparation step for "mm/page_alloc: restrict max order of merging on isolated pageblock" which fix the freepage counting problem on freepage with more than pageblock order. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Michal Nazarewicz <mina86@mina86.com> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Heesub Shin <heesub.shin@samsung.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Ritesh Harjani <ritesh.list@gmail.com> Cc: Gioh Kim <gioh.kim@lge.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-13mm/page_alloc: add freepage on isolate pageblock to correct buddy listJoonsoo Kim1-5/+8
In free_pcppages_bulk(), we use cached migratetype of freepage to determine type of buddy list where freepage will be added. This information is stored when freepage is added to pcp list, so if isolation of pageblock of this freepage begins after storing, this cached information could be stale. In other words, it has original migratetype rather than MIGRATE_ISOLATE. There are two problems caused by this stale information. One is that we can't keep these freepages from being allocated. Although this pageblock is isolated, freepage will be added to normal buddy list so that it could be allocated without any restriction. And the other problem is incorrect freepage accounting. Freepages on isolate pageblock should not be counted for number of freepage. Following is the code snippet in free_pcppages_bulk(). /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ __free_one_page(page, page_to_pfn(page), zone, 0, mt); trace_mm_page_pcpu_drain(page, 0, mt); if (likely(!is_migrate_isolate_page(page))) { __mod_zone_page_state(zone, NR_FREE_PAGES, 1); if (is_migrate_cma(mt)) __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); } As you can see above snippet, current code already handle second problem, incorrect freepage accounting, by re-fetching pageblock migratetype through is_migrate_isolate_page(page). But, because this re-fetched information isn't used for __free_one_page(), first problem would not be solved. This patch try to solve this situation to re-fetch pageblock migratetype before __free_one_page() and to use it for __free_one_page(). In addition to move up position of this re-fetch, this patch use optimization technique, re-fetching migratetype only if there is isolate pageblock. Pageblock isolation is rare event, so we can avoid re-fetching in common case with this optimization. This patch also correct migratetype of the tracepoint output. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Nazarewicz <mina86@mina86.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Heesub Shin <heesub.shin@samsung.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Ritesh Harjani <ritesh.list@gmail.com> Cc: Gioh Kim <gioh.kim@lge.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-13mm/page_alloc: fix incorrect isolation behavior by rechecking migratetypeJoonsoo Kim1-2/+9
Before describing bugs itself, I first explain definition of freepage. 1. pages on buddy list are counted as freepage. 2. pages on isolate migratetype buddy list are *not* counted as freepage. 3. pages on cma buddy list are counted as CMA freepage, too. Now, I describe problems and related patch. Patch 1: There is race conditions on getting pageblock migratetype that it results in misplacement of freepages on buddy list, incorrect freepage count and un-availability of freepage. Patch 2: Freepages on pcp list could have stale cached information to determine migratetype of buddy list to go. This causes misplacement of freepages on buddy list and incorrect freepage count. Patch 4: Merging between freepages on different migratetype of pageblocks will cause freepages accouting problem. This patch fixes it. Without patchset [3], above problem doesn't happens on my CMA allocation test, because CMA reserved pages aren't used at all. So there is no chance for above race. With patchset [3], I did simple CMA allocation test and get below result: - Virtual machine, 4 cpus, 1024 MB memory, 256 MB CMA reservation - run kernel build (make -j16) on background - 30 times CMA allocation(8MB * 30 = 240MB) attempts in 5 sec interval - Result: more than 5000 freepage count are missed With patchset [3] and this patchset, I found that no freepage count are missed so that I conclude that problems are solved. On my simple memory offlining test, these problems also occur on that environment, too. This patch (of 4): There are two paths to reach core free function of buddy allocator, __free_one_page(), one is free_one_page()->__free_one_page() and the other is free_hot_cold_page()->free_pcppages_bulk()->__free_one_page(). Each paths has race condition causing serious problems. At first, this patch is focused on first type of freepath. And then, following patch will solve the problem in second type of freepath. In the first type of freepath, we got migratetype of freeing page without holding the zone lock, so it could be racy. There are two cases of this race. 1. pages are added to isolate buddy list after restoring orignal migratetype CPU1 CPU2 get migratetype => return MIGRATE_ISOLATE call free_one_page() with MIGRATE_ISOLATE grab the zone lock unisolate pageblock release the zone lock grab the zone lock call __free_one_page() with MIGRATE_ISOLATE freepage go into isolate buddy list, although pageblock is already unisolated This may cause two problems. One is that we can't use this page anymore until next isolation attempt of this pageblock, because freepage is on isolate buddy list. The other is that freepage accouting could be wrong due to merging between different buddy list. Freepages on isolate buddy list aren't counted as freepage, but ones on normal buddy list are counted as freepage. If merge happens, buddy freepage on normal buddy list is inevitably moved to isolate buddy list without any consideration of freepage accouting so it could be incorrect. 2. pages are added to normal buddy list while pageblock is isolated. It is similar with above case. This also may cause two problems. One is that we can't keep these freepages from being allocated. Although this pageblock is isolated, freepage would be added to normal buddy list so that it could be allocated without any restriction. And the other problem is same as case 1, that it, incorrect freepage accouting. This race condition would be prevented by checking migratetype again with holding the zone lock. Because it is somewhat heavy operation and it isn't needed in common case, we want to avoid rechecking as much as possible. So this patch introduce new variable, nr_isolate_pageblock in struct zone to check if there is isolated pageblock. With this, we can avoid to re-check migratetype in common case and do it only if there is isolated pageblock or migratetype is MIGRATE_ISOLATE. This solve above mentioned problems. Changes from v3: Add one more check in free_one_page() that checks whether migratetype is MIGRATE_ISOLATE or not. Without this, abovementioned case 1 could happens. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Nazarewicz <mina86@mina86.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Mel Gorman <mgorman@suse.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Heesub Shin <heesub.shin@samsung.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Ritesh Harjani <ritesh.list@gmail.com> Cc: Gioh Kim <gioh.kim@lge.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-27cpuset: simplify cpuset_node_allowed APIVladimir Davydov1-3/+3
Current cpuset API for checking if a zone/node is allowed to allocate from looks rather awkward. We have hardwall and softwall versions of cpuset_node_allowed with the softwall version doing literally the same as the hardwall version if __GFP_HARDWALL is passed to it in gfp flags. If it isn't, the softwall version may check the given node against the enclosing hardwall cpuset, which it needs to take the callback lock to do. Such a distinction was introduced by commit 02a0e53d8227 ("cpuset: rework cpuset_zone_allowed api"). Before, we had the only version with the __GFP_HARDWALL flag determining its behavior. The purpose of the commit was to avoid sleep-in-atomic bugs when someone would mistakenly call the function without the __GFP_HARDWALL flag for an atomic allocation. The suffixes introduced were intended to make the callers think before using the function. However, since the callback lock was converted from mutex to spinlock by the previous patch, the softwall check function cannot sleep, and these precautions are no longer necessary. So let's simplify the API back to the single check. Suggested-by: David Rientjes <rientjes@google.com> Signed-off-by: Vladimir Davydov <vdavydov@parallels.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Zefan Li <lizefan@huawei.com> Signed-off-by: Tejun Heo <tj@kernel.org>
2014-10-21OOM, PM: OOM killed task shouldn't escape PM suspendMichal Hocko1-0/+8
PM freezer relies on having all tasks frozen by the time devices are getting frozen so that no task will touch them while they are getting frozen. But OOM killer is allowed to kill an already frozen task in order to handle OOM situtation. In order to protect from late wake ups OOM killer is disabled after all tasks are frozen. This, however, still keeps a window open when a killed task didn't manage to die by the time freeze_processes finishes. Reduce the race window by checking all tasks after OOM killer has been disabled. This is still not race free completely unfortunately because oom_killer_disable cannot stop an already ongoing OOM killer so a task might still wake up from the fridge and get killed without freeze_processes noticing. Full synchronization of OOM and freezer is, however, too heavy weight for this highly unlikely case. Introduce and check oom_kills counter which gets incremented early when the allocator enters __alloc_pages_may_oom path and only check all the tasks if the counter changes during the freezing attempt. The counter is updated so early to reduce the race window since allocator checked oom_killer_disabled which is set by PM-freezing code. A false positive will push the PM-freezer into a slow path but that is not a big deal. Changes since v1 - push the re-check loop out of freeze_processes into check_frozen_processes and invert the condition to make the code more readable as per Rafael Fixes: f660daac474c6f (oom: thaw threads if oom killed thread is frozen before deferring) Cc: 3.2+ <stable@vger.kernel.org> # 3.2+ Signed-off-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2014-10-14Merge branch 'x86-mm-for-linus' of ↵Linus Torvalds1-0/+2
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 mm updates from Ingo Molnar: "This tree includes the following changes: - fix memory hotplug - fix hibernation bootup memory layout assumptions - fix hyperv numa guest kernel messages - remove dead code - update documentation" * 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/mm: Update memory map description to list hypervisor-reserved area x86/mm, hibernate: Do not assume the first e820 area to be RAM x86/mm/numa: Drop dead code and rename setup_node_data() to setup_alloc_data() x86/mm/hotplug: Modify PGD entry when removing memory x86/mm/hotplug: Pass sync_global_pgds() a correct argument in remove_pagetable() x86: Remove set_pmd_pfn
2014-10-09mm: move debug code out of page_alloc.cSasha Levin1-160/+0
dump_page() and dump_vma() are not specific to page_alloc.c, move them out so page_alloc.c won't turn into the unofficial debug repository. Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09mm: page_alloc: default node-ordering on 64-bit NUMA, zone-ordering on 32-bitMel Gorman1-58/+20
Zones are allocated by the page allocator in either node or zone order. Node ordering is preferred in terms of locality and is applied automatically in one of three cases: 1. If a node has only low memory 2. If DMA/DMA32 is a high percentage of memory 3. If low memory on a single node is greater than 70% of the node size Otherwise zone ordering is used to preserve low memory for devices that require it. Unfortunately a consequence of this is that applications running on a machine with balanced NUMA nodes will experience different performance characteristics depending on which node they happen to start from. The point of zone ordering is to protect lower zones for devices that require DMA/DMA32 memory. When NUMA was first introduced, this was critical as 32-bit NUMA machines existed and exhausting low memory triggered OOMs easily as so many allocations required low memory. On 64-bit machines the primary concern is devices that are 32-bit only which is less severe than the low memory exhaustion problem on 32-bit NUMA. It seems there are really few devices that depends on it. AGP -- I assume this is getting more rare but even then I think the allocations happen early in boot time where lowmem pressure is less of a problem DRM -- If the device is 32-bit only then there may be low pressure. I didn't evaluate these in detail but it looks like some of these are mobile graphics card. Not many NUMA laptops out there. DRM folk should know better though. Some TV cards -- Much demand for 32-bit capable TV cards on NUMA machines? B43 wireless card -- again not really a NUMA thing. I cannot find a good reason to incur a performance penalty on all 64-bit NUMA machines in case someone throws a brain damanged TV or graphics card in there. This patch defaults to node-ordering on 64-bit NUMA machines. I was tempted to make it default everywhere but I understand that some embedded arches may be using 32-bit NUMA where I cannot predict the consequences. The performance impact depends on the workload and the characteristics of the machine and the machine I tested on had a large Normal zone on node 0 so the impact is within the noise for the majority of tests. The allocation stats show more allocation requests were from DMA32 and local node. Running SpecJBB with multiple JVMs and automatic NUMA balancing disabled the results were specjbb 3.17.0-rc2 3.17.0-rc2 vanilla nodeorder-v1r1 Min 1 29534.00 ( 0.00%) 30020.00 ( 1.65%) Min 10 115717.00 ( 0.00%) 134038.00 ( 15.83%) Min 19 109718.00 ( 0.00%) 114186.00 ( 4.07%) Min 28 104459.00 ( 0.00%) 103639.00 ( -0.78%) Min 37 98245.00 ( 0.00%) 103756.00 ( 5.61%) Min 46 97198.00 ( 0.00%) 96197.00 ( -1.03%) Mean 1 30953.25 ( 0.00%) 31917.75 ( 3.12%) Mean 10 124432.50 ( 0.00%) 140904.00 ( 13.24%) Mean 19 116033.50 ( 0.00%) 119294.75 ( 2.81%) Mean 28 108365.25 ( 0.00%) 106879.50 ( -1.37%) Mean 37 102984.75 ( 0.00%) 106924.25 ( 3.83%) Mean 46 100783.25 ( 0.00%) 105368.50 ( 4.55%) Stddev 1 1260.38 ( 0.00%) 1109.66 ( 11.96%) Stddev 10 7434.03 ( 0.00%) 5171.91 ( 30.43%) Stddev 19 8453.84 ( 0.00%) 5309.59 ( 37.19%) Stddev 28 4184.55 ( 0.00%) 2906.63 ( 30.54%) Stddev 37 5409.49 ( 0.00%) 3192.12 ( 40.99%) Stddev 46 4521.95 ( 0.00%) 7392.52 (-63.48%) Max 1 32738.00 ( 0.00%) 32719.00 ( -0.06%) Max 10 136039.00 ( 0.00%) 148614.00 ( 9.24%) Max 19 130566.00 ( 0.00%) 127418.00 ( -2.41%) Max 28 115404.00 ( 0.00%) 111254.00 ( -3.60%) Max 37 112118.00 ( 0.00%) 111732.00 ( -0.34%) Max 46 108541.00 ( 0.00%) 116849.00 ( 7.65%) TPut 1 123813.00 ( 0.00%) 127671.00 ( 3.12%) TPut 10 497730.00 ( 0.00%) 563616.00 ( 13.24%) TPut 19 464134.00 ( 0.00%) 477179.00 ( 2.81%) TPut 28 433461.00 ( 0.00%) 427518.00 ( -1.37%) TPut 37 411939.00 ( 0.00%) 427697.00 ( 3.83%) TPut 46 403133.00 ( 0.00%) 421474.00 ( 4.55%) 3.17.0-rc2 3.17.0-rc2 vanillanodeorder-v1r1 DMA allocs 0 0 DMA32 allocs 57 1491992 Normal allocs 32543566 30026383 Movable allocs 0 0 Direct pages scanned 0 0 Kswapd pages scanned 0 0 Kswapd pages reclaimed 0 0 Direct pages reclaimed 0 0 Kswapd efficiency 100% 100% Kswapd velocity 0.000 0.000 Direct efficiency 100% 100% Direct velocity 0.000 0.000 Percentage direct scans 0% 0% Zone normal velocity 0.000 0.000 Zone dma32 velocity 0.000 0.000 Zone dma velocity 0.000 0.000 THP fault alloc 55164 52987 THP collapse alloc 139 147 THP splits 26 21 NUMA alloc hit 4169066 4250692 NUMA alloc miss 0 0 Note that there were more DMA32 allocations with the patch applied. In this particular case there was no difference in numa_hit and numa_miss. The expectation is that DMA32 was being used at the low watermark instead of falling into the slow path. kswapd was not woken but it's not worken for THP allocations. On 32-bit, this patch defaults to zone-ordering as low memory depletion can be a serious problem on 32-bit large memory machines. If the default ordering was node then processes on node 0 will deplete the Normal zone due to normal activity. The problem is worse if CONFIG_HIGHPTE is not set. If combined with large amounts of dirty/writeback pages in Normal zone then there is also a high risk of OOM. The heuristics are removed as it's not clear they were ever important on 32-bit. They were only relevant for setting node-ordering on 64-bit. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09mm: page_alloc: Make paranoid check in move_freepages a VM_BUG_ONMel Gorman1-1/+1
Since 2.6.24 there has been a paranoid check in move_freepages that looks up the zone of two pages. This is a very slow path and the only time I've seen this bug trigger recently is when memory initialisation was broken during patch development. Despite the fact it's a slow path, this patch converts the check to a VM_BUG_ON anyway as it has served its purpose by now. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09mm: clean up zone flagsJohannes Weiner1-4/+4
Page reclaim tests zone_is_reclaim_dirty(), but the site that actually sets this state does zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY), sending the reader through layers indirection just to track down a simple bit. Remove all zone flag wrappers and just use bitops against zone->flags directly. It's just as readable and the lines are barely any longer. Also rename ZONE_TAIL_LRU_DIRTY to ZONE_DIRTY to match ZONE_WRITEBACK, and remove the zone_flags_t typedef. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09mm: page_alloc: avoid wakeup kswapd on the unintended nodeWeijie Yang1-3/+6
When entering the page_alloc slowpath, we wakeup kswapd on every pgdat according to the zonelist and high_zoneidx. However, this doesn't take nodemask into account, and could prematurely wakeup kswapd on some unintended nodes. This patch uses for_each_zone_zonelist_nodemask() instead of for_each_zone_zonelist() in wake_all_kswapds() to avoid the above situation. Signed-off-by: Weijie Yang <weijie.yang@samsung.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09mm: introduce dump_vmaSasha Levin1-9/+73
Introduce a helper to dump information about a VMA, this also makes dump_page_flags more generic and re-uses that so the output looks very similar to dump_page: [ 61.903437] vma ffff88070f88be00 start 00007fff25970000 end 00007fff25992000 [ 61.903437] next ffff88070facd600 prev ffff88070face400 mm ffff88070fade000 [ 61.903437] prot 8000000000000025 anon_vma ffff88070fa1e200 vm_ops (null) [ 61.903437] pgoff 7ffffffdd file (null) private_data (null) [ 61.909129] flags: 0x100173(read|write|mayread|maywrite|mayexec|growsdown|account) [akpm@linux-foundation.org: make dump_vma() require CONFIG_DEBUG_VM] [swarren@nvidia.com: fix dump_vma() compilation] Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michel Lespinasse <walken@google.com> Cc: Minchan