| Age | Commit message (Collapse) | Author | Files | Lines |
|
This commit fixes two kinds of races, they may have different results:
Barry reported a BUG_ON in commit c50f8e6053b0, we may see the same
BUG_ON if the filemap lookup returned NULL and folio is added to swap
cache after that.
If another kind of race is triggered (folio changed after lookup) we
may see RSS counter is corrupted:
[ 406.893936] BUG: Bad rss-counter state mm:ffff0000c5a9ddc0
type:MM_ANONPAGES val:-1
[ 406.894071] BUG: Bad rss-counter state mm:ffff0000c5a9ddc0
type:MM_SHMEMPAGES val:1
Because the folio is being accounted to the wrong VMA.
I'm not sure if there will be any data corruption though, seems no.
The issues above are critical already.
On seeing a swap entry PTE, userfaultfd_move does a lockless swap cache
lookup, and tries to move the found folio to the faulting vma. Currently,
it relies on checking the PTE value to ensure that the moved folio still
belongs to the src swap entry and that no new folio has been added to the
swap cache, which turns out to be unreliable.
While working and reviewing the swap table series with Barry, following
existing races are observed and reproduced [1]:
In the example below, move_pages_pte is moving src_pte to dst_pte, where
src_pte is a swap entry PTE holding swap entry S1, and S1 is not in the
swap cache:
CPU1 CPU2
userfaultfd_move
move_pages_pte()
entry = pte_to_swp_entry(orig_src_pte);
// Here it got entry = S1
... < interrupted> ...
<swapin src_pte, alloc and use folio A>
// folio A is a new allocated folio
// and get installed into src_pte
<frees swap entry S1>
// src_pte now points to folio A, S1
// has swap count == 0, it can be freed
// by folio_swap_swap or swap
// allocator's reclaim.
<try to swap out another folio B>
// folio B is a folio in another VMA.
<put folio B to swap cache using S1 >
// S1 is freed, folio B can use it
// for swap out with no problem.
...
folio = filemap_get_folio(S1)
// Got folio B here !!!
... < interrupted again> ...
<swapin folio B and free S1>
// Now S1 is free to be used again.
<swapout src_pte & folio A using S1>
// Now src_pte is a swap entry PTE
// holding S1 again.
folio_trylock(folio)
move_swap_pte
double_pt_lock
is_pte_pages_stable
// Check passed because src_pte == S1
folio_move_anon_rmap(...)
// Moved invalid folio B here !!!
The race window is very short and requires multiple collisions of multiple
rare events, so it's very unlikely to happen, but with a deliberately
constructed reproducer and increased time window, it can be reproduced
easily.
This can be fixed by checking if the folio returned by filemap is the
valid swap cache folio after acquiring the folio lock.
Another similar race is possible: filemap_get_folio may return NULL, but
folio (A) could be swapped in and then swapped out again using the same
swap entry after the lookup. In such a case, folio (A) may remain in the
swap cache, so it must be moved too:
CPU1 CPU2
userfaultfd_move
move_pages_pte()
entry = pte_to_swp_entry(orig_src_pte);
// Here it got entry = S1, and S1 is not in swap cache
folio = filemap_get_folio(S1)
// Got NULL
... < interrupted again> ...
<swapin folio A and free S1>
<swapout folio A re-using S1>
move_swap_pte
double_pt_lock
is_pte_pages_stable
// Check passed because src_pte == S1
folio_move_anon_rmap(...)
// folio A is ignored !!!
Fix this by checking the swap cache again after acquiring the src_pte
lock. And to avoid the filemap overhead, we check swap_map directly [2].
The SWP_SYNCHRONOUS_IO path does make the problem more complex, but so far
we don't need to worry about that, since folios can only be exposed to the
swap cache in the swap out path, and this is covered in this patch by
checking the swap cache again after acquiring the src_pte lock.
Testing with a simple C program that allocates and moves several GB of
memory did not show any observable performance change.
Link: https://lkml.kernel.org/r/20250604151038.21968-1-ryncsn@gmail.com
Fixes: adef440691ba ("userfaultfd: UFFDIO_MOVE uABI")
Signed-off-by: Kairui Song <kasong@tencent.com>
Closes: https://lore.kernel.org/linux-mm/CAMgjq7B1K=6OOrK2OUZ0-tqCzi+EJt+2_K97TPGoSt=9+JwP7Q@mail.gmail.com/ [1]
Link: https://lore.kernel.org/all/CAGsJ_4yJhJBo16XhiC-nUzSheyX-V3-nFE+tAi=8Y560K8eT=A@mail.gmail.com/ [2]
Reviewed-by: Lokesh Gidra <lokeshgidra@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Barry Song <baohua@kernel.org>
Reviewed-by: Chris Li <chrisl@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Kairui Song <kasong@tencent.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Remove a cast from folio to page in four callers of mk_pte().
Link: https://lkml.kernel.org/r/20250402181709.2386022-8-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Andreas Larsson <andreas@gaisler.com>
Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Richard Weinberger <richard@nod.at>
Cc: <x86@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
As David pointed out, what truly matters for mremap and userfaultfd move
operations is the soft dirty bit. The current comment and
implementation—which always sets the dirty bit for present PTEs and
fails to set the soft dirty bit for swap PTEs—are incorrect. This could
break features like Checkpoint-Restore in Userspace (CRIU).
This patch updates the behavior to correctly set the soft dirty bit for
both present and swap PTEs in accordance with mremap.
Link: https://lkml.kernel.org/r/20250508220912.7275-1-21cnbao@gmail.com
Fixes: adef440691ba ("userfaultfd: UFFDIO_MOVE uABI")
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Reported-by: David Hildenbrand <david@redhat.com>
Closes: https://lore.kernel.org/linux-mm/02f14ee1-923f-47e3-a994-4950afb9afcc@redhat.com/
Acked-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Currently, if a VMA merge fails due to an OOM condition arising on commit
merge or a failure to duplicate anon_vma's, we report this so the caller
can handle it.
However there are cases where the caller is only ostensibly trying a
merge, and doesn't mind if it fails due to this condition.
Since we do not want to introduce an implicit assumption that we only
actually modify VMAs after OOM conditions might arise, add a 'give up on
oom' option and make an explicit contract that, should this flag be set, we
absolutely will not modify any VMAs should OOM arise and just bail out.
Since it'd be very unusual for a user to try to vma_modify() with this flag
set but be specifying a range within a VMA which ends up being split (which
can fail due to rlimit issues, not only OOM), we add a debug warning for
this condition.
The motivating reason for this is uffd release - syzkaller (and Pedro
Falcato's VERY astute analysis) found a way in which an injected fault on
allocation, triggering an OOM condition on commit merge, would result in
uffd code becoming confused and treating an error value as if it were a VMA
pointer.
To avoid this, we make use of this new VMG flag to ensure that this never
occurs, utilising the fact that, should we be clearing entire VMAs, we do
not wish an OOM event to be reported to us.
Many thanks to Pedro Falcato for his excellent analysis and Jann Horn for
his insightful and intelligent analysis of the situation, both of whom were
instrumental in this fix.
Link: https://lkml.kernel.org/r/20250321100937.46634-1-lorenzo.stoakes@oracle.com
Reported-by: syzbot+20ed41006cf9d842c2b5@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/all/67dc67f0.050a0220.25ae54.001e.GAE@google.com/
Fixes: 47b16d0462a4 ("mm: abort vma_modify() on merge out of memory failure")
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Suggested-by: Pedro Falcato <pfalcato@suse.de>
Suggested-by: Jann Horn <jannh@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
With upcoming replacement of vm_lock with vm_refcnt, we need to handle a
possibility of vma_start_read_locked/vma_start_read_locked_nested failing
due to refcount overflow. Prepare for such possibility by changing these
APIs and adjusting their users.
Link: https://lkml.kernel.org/r/20250213224655.1680278-8-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Tested-by: Shivank Garg <shivankg@amd.com>
Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Sourav Panda <souravpanda@google.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "reimplement per-vma lock as a refcount", v10.
Back when per-vma locks were introduces, vm_lock was moved out of
vm_area_struct in [1] because of the performance regression caused by
false cacheline sharing. Recent investigation [2] revealed that the
regressions is limited to a rather old Broadwell microarchitecture and
even there it can be mitigated by disabling adjacent cacheline
prefetching, see [3].
Splitting single logical structure into multiple ones leads to more
complicated management, extra pointer dereferences and overall less
maintainable code. When that split-away part is a lock, it complicates
things even further. With no performance benefits, there are no reasons
for this split. Merging the vm_lock back into vm_area_struct also allows
vm_area_struct to use SLAB_TYPESAFE_BY_RCU later in this patchset.
This patchset:
1. moves vm_lock back into vm_area_struct, aligning it at the
cacheline boundary and changing the cache to be cacheline-aligned to
minimize cacheline sharing;
2. changes vm_area_struct initialization to mark new vma as detached
until it is inserted into vma tree;
3. replaces vm_lock and vma->detached flag with a reference counter;
4. regroups vm_area_struct members to fit them into 3 cachelines;
5. changes vm_area_struct cache to SLAB_TYPESAFE_BY_RCU to allow for
their reuse and to minimize call_rcu() calls.
Pagefault microbenchmarks show performance improvement:
Hmean faults/cpu-1 507926.5547 ( 0.00%) 506519.3692 * -0.28%*
Hmean faults/cpu-4 479119.7051 ( 0.00%) 481333.6802 * 0.46%*
Hmean faults/cpu-7 452880.2961 ( 0.00%) 455845.6211 * 0.65%*
Hmean faults/cpu-12 347639.1021 ( 0.00%) 352004.2254 * 1.26%*
Hmean faults/cpu-21 200061.2238 ( 0.00%) 229597.0317 * 14.76%*
Hmean faults/cpu-30 145251.2001 ( 0.00%) 164202.5067 * 13.05%*
Hmean faults/cpu-48 106848.4434 ( 0.00%) 120641.5504 * 12.91%*
Hmean faults/cpu-56 92472.3835 ( 0.00%) 103464.7916 * 11.89%*
Hmean faults/sec-1 507566.1468 ( 0.00%) 506139.0811 * -0.28%*
Hmean faults/sec-4 1880478.2402 ( 0.00%) 1886795.6329 * 0.34%*
Hmean faults/sec-7 3106394.3438 ( 0.00%) 3140550.7485 * 1.10%*
Hmean faults/sec-12 4061358.4795 ( 0.00%) 4112477.0206 * 1.26%*
Hmean faults/sec-21 3988619.1169 ( 0.00%) 4577747.1436 * 14.77%*
Hmean faults/sec-30 3909839.5449 ( 0.00%) 4311052.2787 * 10.26%*
Hmean faults/sec-48 4761108.4691 ( 0.00%) 5283790.5026 * 10.98%*
Hmean faults/sec-56 4885561.4590 ( 0.00%) 5415839.4045 * 10.85%*
This patch (of 18):
Introduce helper functions which can be used to read-lock a VMA when
holding mmap_lock for read. Replace direct accesses to vma->vm_lock with
these new helpers.
Link: https://lkml.kernel.org/r/20250213224655.1680278-1-surenb@google.com
Link: https://lkml.kernel.org/r/20250213224655.1680278-2-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Tested-by: Shivank Garg <shivankg@amd.com>
Link: https://lkml.kernel.org/r/5e19ec93-8307-47c2-bb13-3ddf7150624e@amd.com
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Klara Modin <klarasmodin@gmail.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: "Paul E . McKenney" <paulmck@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Sourav Panda <souravpanda@google.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Current implementation of move_pages_pte() copies source and destination
PTEs in order to detect concurrent changes to PTEs involved in the move.
However these copies are also used to unmap the PTEs, which will fail if
CONFIG_HIGHPTE is enabled because the copies are allocated on the stack.
Fix this by using the actual PTEs which were kmap()ed.
Link: https://lkml.kernel.org/r/20250226185510.2732648-3-surenb@google.com
Fixes: adef440691ba ("userfaultfd: UFFDIO_MOVE uABI")
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reported-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Lokesh recently raised an issue about UFFDIO_MOVE getting into a deadlock
state when it goes into split_folio() with raised folio refcount.
split_folio() expects the reference count to be exactly mapcount +
num_pages_in_folio + 1 (see can_split_folio()) and fails with EAGAIN
otherwise.
If multiple processes are trying to move the same large folio, they raise
the refcount (all tasks succeed in that) then one of them succeeds in
locking the folio, while others will block in folio_lock() while keeping
the refcount raised. The winner of this race will proceed with calling
split_folio() and will fail returning EAGAIN to the caller and unlocking
the folio. The next competing process will get the folio locked and will
go through the same flow. In the meantime the original winner will be
retried and will block in folio_lock(), getting into the queue of waiting
processes only to repeat the same path. All this results in a livelock.
An easy fix would be to avoid waiting for the folio lock while holding
folio refcount, similar to madvise_free_huge_pmd() where folio lock is
acquired before raising the folio refcount. Since we lock and take a
refcount of the folio while holding the PTE lock, changing the order of
these operations should not break anything.
Modify move_pages_pte() to try locking the folio first and if that fails
and the folio is large then return EAGAIN without touching the folio
refcount. If the folio is single-page then split_folio() is not called,
so we don't have this issue. Lokesh has a reproducer [1] and I verified
that this change fixes the issue.
[1] https://github.com/lokeshgidra/uffd_move_ioctl_deadlock
[akpm@linux-foundation.org: reflow comment to 80 cols, s/end/end up/]
Link: https://lkml.kernel.org/r/20250226185510.2732648-2-surenb@google.com
Fixes: adef440691ba ("userfaultfd: UFFDIO_MOVE uABI")
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reported-by: Lokesh Gidra <lokeshgidra@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Acked-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcow (Oracle) <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
userfaultfd_move() checks whether the PTE entry is present or a
swap entry.
- If the PTE entry is present, move_present_pte() handles folio
migration by setting:
src_folio->index = linear_page_index(dst_vma, dst_addr);
- If the PTE entry is a swap entry, move_swap_pte() simply copies
the PTE to the new dst_addr.
This approach is incorrect because, even if the PTE is a swap entry,
it can still reference a folio that remains in the swap cache.
This creates a race window between steps 2 and 4.
1. add_to_swap: The folio is added to the swapcache.
2. try_to_unmap: PTEs are converted to swap entries.
3. pageout: The folio is written back.
4. Swapcache is cleared.
If userfaultfd_move() occurs in the window between steps 2 and 4,
after the swap PTE has been moved to the destination, accessing the
destination triggers do_swap_page(), which may locate the folio in
the swapcache. However, since the folio's index has not been updated
to match the destination VMA, do_swap_page() will detect a mismatch.
This can result in two critical issues depending on the system
configuration.
If KSM is disabled, both small and large folios can trigger a BUG
during the add_rmap operation due to:
page_pgoff(folio, page) != linear_page_index(vma, address)
[ 13.336953] page: refcount:6 mapcount:1 mapping:00000000f43db19c index:0xffffaf150 pfn:0x4667c
[ 13.337520] head: order:2 mapcount:1 entire_mapcount:0 nr_pages_mapped:1 pincount:0
[ 13.337716] memcg:ffff00000405f000
[ 13.337849] anon flags: 0x3fffc0000020459(locked|uptodate|dirty|owner_priv_1|head|swapbacked|node=0|zone=0|lastcpupid=0xffff)
[ 13.338630] raw: 03fffc0000020459 ffff80008507b538 ffff80008507b538 ffff000006260361
[ 13.338831] raw: 0000000ffffaf150 0000000000004000 0000000600000000 ffff00000405f000
[ 13.339031] head: 03fffc0000020459 ffff80008507b538 ffff80008507b538 ffff000006260361
[ 13.339204] head: 0000000ffffaf150 0000000000004000 0000000600000000 ffff00000405f000
[ 13.339375] head: 03fffc0000000202 fffffdffc0199f01 ffffffff00000000 0000000000000001
[ 13.339546] head: 0000000000000004 0000000000000000 00000000ffffffff 0000000000000000
[ 13.339736] page dumped because: VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address))
[ 13.340190] ------------[ cut here ]------------
[ 13.340316] kernel BUG at mm/rmap.c:1380!
[ 13.340683] Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
[ 13.340969] Modules linked in:
[ 13.341257] CPU: 1 UID: 0 PID: 107 Comm: a.out Not tainted 6.14.0-rc3-gcf42737e247a-dirty #299
[ 13.341470] Hardware name: linux,dummy-virt (DT)
[ 13.341671] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 13.341815] pc : __page_check_anon_rmap+0xa0/0xb0
[ 13.341920] lr : __page_check_anon_rmap+0xa0/0xb0
[ 13.342018] sp : ffff80008752bb20
[ 13.342093] x29: ffff80008752bb20 x28: fffffdffc0199f00 x27: 0000000000000001
[ 13.342404] x26: 0000000000000000 x25: 0000000000000001 x24: 0000000000000001
[ 13.342575] x23: 0000ffffaf0d0000 x22: 0000ffffaf0d0000 x21: fffffdffc0199f00
[ 13.342731] x20: fffffdffc0199f00 x19: ffff000006210700 x18: 00000000ffffffff
[ 13.342881] x17: 6c203d2120296567 x16: 6170202c6f696c6f x15: 662866666f67705f
[ 13.343033] x14: 6567617028454741 x13: 2929737365726464 x12: ffff800083728ab0
[ 13.343183] x11: ffff800082996bf8 x10: 0000000000000fd7 x9 : ffff80008011bc40
[ 13.343351] x8 : 0000000000017fe8 x7 : 00000000fffff000 x6 : ffff8000829eebf8
[ 13.343498] x5 : c0000000fffff000 x4 : 0000000000000000 x3 : 0000000000000000
[ 13.343645] x2 : 0000000000000000 x1 : ffff0000062db980 x0 : 000000000000005f
[ 13.343876] Call trace:
[ 13.344045] __page_check_anon_rmap+0xa0/0xb0 (P)
[ 13.344234] folio_add_anon_rmap_ptes+0x22c/0x320
[ 13.344333] do_swap_page+0x1060/0x1400
[ 13.344417] __handle_mm_fault+0x61c/0xbc8
[ 13.344504] handle_mm_fault+0xd8/0x2e8
[ 13.344586] do_page_fault+0x20c/0x770
[ 13.344673] do_translation_fault+0xb4/0xf0
[ 13.344759] do_mem_abort+0x48/0xa0
[ 13.344842] el0_da+0x58/0x130
[ 13.344914] el0t_64_sync_handler+0xc4/0x138
[ 13.345002] el0t_64_sync+0x1ac/0x1b0
[ 13.345208] Code: aa1503e0 f000f801 910f6021 97ff5779 (d4210000)
[ 13.345504] ---[ end trace 0000000000000000 ]---
[ 13.345715] note: a.out[107] exited with irqs disabled
[ 13.345954] note: a.out[107] exited with preempt_count 2
If KSM is enabled, Peter Xu also discovered that do_swap_page() may
trigger an unexpected CoW operation for small folios because
ksm_might_need_to_copy() allocates a new folio when the folio index
does not match linear_page_index(vma, addr).
This patch also checks the swapcache when handling swap entries. If a
match is found in the swapcache, it processes it similarly to a present
PTE.
However, there are some differences. For example, the folio is no longer
exclusive because folio_try_share_anon_rmap_pte() is performed during
unmapping.
Furthermore, in the case of swapcache, the folio has already been
unmapped, eliminating the risk of concurrent rmap walks and removing the
need to acquire src_folio's anon_vma or lock.
Note that for large folios, in the swapcache handling path, we directly
return -EBUSY since split_folio() will return -EBUSY regardless if
the folio is under writeback or unmapped. This is not an urgent issue,
so a follow-up patch may address it separately.
[v-songbaohua@oppo.com: minor cleanup according to Peter Xu]
Link: https://lkml.kernel.org/r/20250226024411.47092-1-21cnbao@gmail.com
Link: https://lkml.kernel.org/r/20250226001400.9129-1-21cnbao@gmail.com
Fixes: adef440691ba ("userfaultfd: UFFDIO_MOVE uABI")
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Acked-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Nicolas Geoffray <ngeoffray@google.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: ZhangPeng <zhangpeng362@huawei.com>
Cc: Tangquan Zheng <zhengtangquan@oppo.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In move_pages_pte(), since dst_pte needs to be none, the subsequent
pte_same() check cannot prevent the dst_pte page from being freed
concurrently, so we also need to abtain dst_pmdval and recheck pmd_same().
Otherwise, once we support empty PTE page reclaimation for anonymous
pages, it may result in moving the src_pte page into the dts_pte page that
is about to be freed by RCU.
[zhengqi.arch@bytedance.com: remove WARN_ON_ONCE()s]
Link: https://lkml.kernel.org/r/20241210084156.89877-1-zhengqi.arch@bytedance.com
Link: https://lkml.kernel.org/r/8108c262757fc492626f3a2ffc44b775f2710e16.1733305182.git.zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will@kernel.org>
Cc: Zach O'Keefe <zokeefe@google.com>
Cc: Dan Carpenter <dan.carpenter@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The hugepage parameter was deprecated since commit ddc1a5cbc05d
("mempolicy: alloc_pages_mpol() for NUMA policy without vma"), for
PMD-sized THP, it still tries only preferred node if possible in
vma_alloc_folio() by checking the order of the folio allocation.
Link: https://lkml.kernel.org/r/20241010061556.1846751-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Barry Song <baohua@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
In move_pages_pte(), we may modify the dst_pte and src_pte after acquiring
the ptl, so convert it to using pte_offset_map_rw_nolock(). But since we
will use pte_same() to detect the change of the pte entry, there is no
need to get pmdval, so just pass a dummy variable to it.
Link: https://lkml.kernel.org/r/1530e8fdbfc72eacf3b095babe139ce3d715600a.1727332572.git.zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Reviewed-by: Muchun Song <muchun.song@linux.dev>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Rapoport (Microsoft) <rppt@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Along with the usual shower of singleton patches, notable patch series
in this pull request are:
- "Align kvrealloc() with krealloc()" from Danilo Krummrich. Adds
consistency to the APIs and behaviour of these two core allocation
functions. This also simplifies/enables Rustification.
- "Some cleanups for shmem" from Baolin Wang. No functional changes -
mode code reuse, better function naming, logic simplifications.
- "mm: some small page fault cleanups" from Josef Bacik. No
functional changes - code cleanups only.
- "Various memory tiering fixes" from Zi Yan. A small fix and a
little cleanup.
- "mm/swap: remove boilerplate" from Yu Zhao. Code cleanups and
simplifications and .text shrinkage.
- "Kernel stack usage histogram" from Pasha Tatashin and Shakeel
Butt. This is a feature, it adds new feilds to /proc/vmstat such as
$ grep kstack /proc/vmstat
kstack_1k 3
kstack_2k 188
kstack_4k 11391
kstack_8k 243
kstack_16k 0
which tells us that 11391 processes used 4k of stack while none at
all used 16k. Useful for some system tuning things, but
partivularly useful for "the dynamic kernel stack project".
- "kmemleak: support for percpu memory leak detect" from Pavel
Tikhomirov. Teaches kmemleak to detect leaksage of percpu memory.
- "mm: memcg: page counters optimizations" from Roman Gushchin. "3
independent small optimizations of page counters".
- "mm: split PTE/PMD PT table Kconfig cleanups+clarifications" from
David Hildenbrand. Improves PTE/PMD splitlock detection, makes
powerpc/8xx work correctly by design rather than by accident.
- "mm: remove arch_make_page_accessible()" from David Hildenbrand.
Some folio conversions which make arch_make_page_accessible()
unneeded.
- "mm, memcg: cg2 memory{.swap,}.peak write handlers" fro David
Finkel. Cleans up and fixes our handling of the resetting of the
cgroup/process peak-memory-use detector.
- "Make core VMA operations internal and testable" from Lorenzo
Stoakes. Rationalizaion and encapsulation of the VMA manipulation
APIs. With a view to better enable testing of the VMA functions,
even from a userspace-only harness.
- "mm: zswap: fixes for global shrinker" from Takero Funaki. Fix
issues in the zswap global shrinker, resulting in improved
performance.
- "mm: print the promo watermark in zoneinfo" from Kaiyang Zhao. Fill
in some missing info in /proc/zoneinfo.
- "mm: replace follow_page() by folio_walk" from David Hildenbrand.
Code cleanups and rationalizations (conversion to folio_walk())
resulting in the removal of follow_page().
- "improving dynamic zswap shrinker protection scheme" from Nhat
Pham. Some tuning to improve zswap's dynamic shrinker. Significant
reductions in swapin and improvements in performance are shown.
- "mm: Fix several issues with unaccepted memory" from Kirill
Shutemov. Improvements to the new unaccepted memory feature,
- "mm/mprotect: Fix dax puds" from Peter Xu. Implements mprotect on
DAX PUDs. This was missing, although nobody seems to have notied
yet.
- "Introduce a store type enum for the Maple tree" from Sidhartha
Kumar. Cleanups and modest performance improvements for the maple
tree library code.
- "memcg: further decouple v1 code from v2" from Shakeel Butt. Move
more cgroup v1 remnants away from the v2 memcg code.
- "memcg: initiate deprecation of v1 features" from Shakeel Butt.
Adds various warnings telling users that memcg v1 features are
deprecated.
- "mm: swap: mTHP swap allocator base on swap cluster order" from
Chris Li. Greatly improves the success rate of the mTHP swap
allocation.
- "mm: introduce numa_memblks" from Mike Rapoport. Moves various
disparate per-arch implementations of numa_memblk code into generic
code.
- "mm: batch free swaps for zap_pte_range()" from Barry Song. Greatly
improves the performance of munmap() of swap-filled ptes.
- "support large folio swap-out and swap-in for shmem" from Baolin
Wang. With this series we no longer split shmem large folios into
simgle-page folios when swapping out shmem.
- "mm/hugetlb: alloc/free gigantic folios" from Yu Zhao. Nice
performance improvements and code reductions for gigantic folios.
- "support shmem mTHP collapse" from Baolin Wang. Adds support for
khugepaged's collapsing of shmem mTHP folios.
- "mm: Optimize mseal checks" from Pedro Falcato. Fixes an mprotect()
performance regression due to the addition of mseal().
- "Increase the number of bits available in page_type" from Matthew
Wilcox. Increases the number of bits available in page_type!
- "Simplify the page flags a little" from Matthew Wilcox. Many legacy
page flags are now folio flags, so the page-based flags and their
accessors/mutators can be removed.
- "mm: store zero pages to be swapped out in a bitmap" from Usama
Arif. An optimization which permits us to avoid writing/reading
zero-filled zswap pages to backing store.
- "Avoid MAP_FIXED gap exposure" from Liam Howlett. Fixes a race
window which occurs when a MAP_FIXED operqtion is occurring during
an unrelated vma tree walk.
- "mm: remove vma_merge()" from Lorenzo Stoakes. Major rotorooting of
the vma_merge() functionality, making ot cleaner, more testable and
better tested.
- "misc fixups for DAMON {self,kunit} tests" from SeongJae Park.
Minor fixups of DAMON selftests and kunit tests.
- "mm: memory_hotplug: improve do_migrate_range()" from Kefeng Wang.
Code cleanups and folio conversions.
- "Shmem mTHP controls and stats improvements" from Ryan Roberts.
Cleanups for shmem controls and stats.
- "mm: count the number of anonymous THPs per size" from Barry Song.
Expose additional anon THP stats to userspace for improved tuning.
- "mm: finish isolate/putback_lru_page()" from Kefeng Wang: more
folio conversions and removal of now-unused page-based APIs.
- "replace per-quota region priorities histogram buffer with
per-context one" from SeongJae Park. DAMON histogram
rationalization.
- "Docs/damon: update GitHub repo URLs and maintainer-profile" from
SeongJae Park. DAMON documentation updates.
- "mm/vdpa: correct misuse of non-direct-reclaim __GFP_NOFAIL and
improve related doc and warn" from Jason Wang: fixes usage of page
allocator __GFP_NOFAIL and GFP_ATOMIC flags.
- "mm: split underused THPs" from Yu Zhao. Improve THP=always policy.
This was overprovisioning THPs in sparsely accessed memory areas.
- "zram: introduce custom comp backends API" frm Sergey Senozhatsky.
Add support for zram run-time compression algorithm tuning.
- "mm: Care about shadow stack guard gap when getting an unmapped
area" from Mark Brown. Fix up the various arch_get_unmapped_area()
implementations to better respect guard areas.
- "Improve mem_cgroup_iter()" from Kinsey Ho. Improve the reliability
of mem_cgroup_iter() and various code cleanups.
- "mm: Support huge pfnmaps" from Peter Xu. Extends the usage of huge
pfnmap support.
- "resource: Fix region_intersects() vs add_memory_driver_managed()"
from Huang Ying. Fix a bug in region_intersects() for systems with
CXL memory.
- "mm: hwpoison: two more poison recovery" from Kefeng Wang. Teaches
a couple more code paths to correctly recover from the encountering
of poisoned memry.
- "mm: enable large folios swap-in support" from Barry Song. Support
the swapin of mTHP memory into appropriately-sized folios, rather
than into single-page folios"
* tag 'mm-stable-2024-09-20-02-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (416 commits)
zram: free secondary algorithms names
uprobes: turn xol_area->pages[2] into xol_area->page
uprobes: introduce the global struct vm_special_mapping xol_mapping
Revert "uprobes: use vm_special_mapping close() functionality"
mm: support large folios swap-in for sync io devices
mm: add nr argument in mem_cgroup_swapin_uncharge_swap() helper to support large folios
mm: fix swap_read_folio_zeromap() for large folios with partial zeromap
mm/debug_vm_pgtable: Use pxdp_get() for accessing page table entries
set_memory: add __must_check to generic stubs
mm/vma: return the exact errno in vms_gather_munmap_vmas()
memcg: cleanup with !CONFIG_MEMCG_V1
mm/show_mem.c: report alloc tags in human readable units
mm: support poison recovery from copy_present_page()
mm: support poison recovery from do_cow_fault()
resource, kunit: add test case for region_intersects()
resource: make alloc_free_mem_region() works for iomem_resource
mm: z3fold: deprecate CONFIG_Z3FOLD
vfio/pci: implement huge_fault support
mm/arm64: support large pfn mappings
mm/x86: support large pfn mappings
...
|
|
Take the end of a file write into consideration when deciding whether or
not to use huge pages for tmpfs files when the tmpfs filesystem is mounted
with huge=within_size
This allows large writes that append to the end of a file to automatically
use large pages.
Doing 4MB sequential writes without fallocate to a 16GB tmpfs file with
fio. The numbers without THP or with huge=always stay the same, but the
performance with huge=within_size now matches that of huge=always.
huge before after
4kB pages 1560 MB/s 1560 MB/s
within_size 1560 MB/s 4720 MB/s
always: 4720 MB/s 4720 MB/s
[akpm@linux-foundation.org: coding-style cleanups]
Link: https://lkml.kernel.org/r/20240903111928.7171e60c@imladris.surriel.com
Signed-off-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "Make core VMA operations internal and testable", v4.
There are a number of "core" VMA manipulation functions implemented in
mm/mmap.c, notably those concerning VMA merging, splitting, modifying,
expanding and shrinking, which logically don't belong there.
More importantly this functionality represents an internal implementation
detail of memory management and should not be exposed outside of mm/
itself.
This patch series isolates core VMA manipulation functionality into its
own file, mm/vma.c, and provides an API to the rest of the mm code in
mm/vma.h.
Importantly, it also carefully implements mm/vma_internal.h, which
specifies which headers need to be imported by vma.c, leading to the very
useful property that vma.c depends only on mm/vma.h and mm/vma_internal.h.
This means we can then re-implement vma_internal.h in userland, adding
shims for kernel mechanisms as required, allowing us to unit test internal
VMA functionality.
This testing is useful as opposed to an e.g. kunit implementation as this
way we can avoid all external kernel side-effects while testing, run tests
VERY quickly, and iterate on and debug problems quickly.
Excitingly this opens the door to, in the future, recreating precise
problems observed in production in userland and very quickly debugging
problems that might otherwise be very difficult to reproduce.
This patch series takes advantage of existing shim logic and full userland
maple tree support contained in tools/testing/radix-tree/ and
tools/include/linux/, separating out shared components of the radix tree
implementation to provide this testing.
Kernel functionality is stubbed and shimmed as needed in
tools/testing/vma/ which contains a fully functional userland
vma_internal.h file and which imports mm/vma.c and mm/vma.h to be directly
tested from userland.
A simple, skeleton testing implementation is provided in
tools/testing/vma/vma.c as a proof-of-concept, asserting that simple VMA
merge, modify (testing split), expand and shrink functionality work
correctly.
This patch (of 4):
This patch forms part of a patch series intending to separate out VMA
logic and render it testable from userspace, which requires that core
manipulation functions be exposed in an mm/-internal header file.
In order to do this, we must abstract APIs we wish to test, in this
instance functions which ultimately invoke vma_modify().
This patch therefore moves all logic which ultimately invokes vma_modify()
to mm/userfaultfd.c, trying to transfer code at a functional granularity
where possible.
[lorenzo.stoakes@oracle.com: fix user-after-free in userfaultfd_clear_vma()]
Link: https://lkml.kernel.org/r/3c947ddc-b804-49b7-8fe9-3ea3ca13def5@lucifer.local
Link: https://lkml.kernel.org/r/cover.1722251717.git.lorenzo.stoakes@oracle.com
Link: https://lkml.kernel.org/r/50c3ed995fd81c45876c86304c8a00bf3e396cfd.1722251717.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: David Gow <davidgow@google.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Kees Cook <kees@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Rae Moar <rmoar@google.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Pengfei Xu <pengfei.xu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Since khugepaged was changed to allow retracting page tables in file
mappings without holding the mmap lock, these BUG_ON()s are wrong - get
rid of them.
We could also remove the preceding "if (unlikely(...))" block, but then we
could reach pte_offset_map_lock() with transhuge pages not just for file
mappings but also for anonymous mappings - which would probably be fine
but I think is not necessarily expected.
Link: https://lkml.kernel.org/r/20240813-uffd-thp-flip-fix-v2-2-5efa61078a41@google.com
Fixes: 1d65b771bc08 ("mm/khugepaged: retract_page_tables() without mmap or vma lock")
Signed-off-by: Jann Horn <jannh@google.com>
Reviewed-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "userfaultfd: fix races around pmd_trans_huge() check", v2.
The pmd_trans_huge() code in mfill_atomic() is wrong in three different
ways depending on kernel version:
1. The pmd_trans_huge() check is racy and can lead to a BUG_ON() (if you hit
the right two race windows) - I've tested this in a kernel build with
some extra mdelay() calls. See the commit message for a description
of the race scenario.
On older kernels (before 6.5), I think the same bug can even
theoretically lead to accessing transhuge page contents as a page table
if you hit the right 5 narrow race windows (I haven't tested this case).
2. As pointed out by Qi Zheng, pmd_trans_huge() is not sufficient for
detecting PMDs that don't point to page tables.
On older kernels (before 6.5), you'd just have to win a single fairly
wide race to hit this.
I've tested this on 6.1 stable by racing migration (with a mdelay()
patched into try_to_migrate()) against UFFDIO_ZEROPAGE - on my x86
VM, that causes a kernel oops in ptlock_ptr().
3. On newer kernels (>=6.5), for shmem mappings, khugepaged is allowed
to yank page tables out from under us (though I haven't tested that),
so I think the BUG_ON() checks in mfill_atomic() are just wrong.
I decided to write two separate fixes for these (one fix for bugs 1+2, one
fix for bug 3), so that the first fix can be backported to kernels
affected by bugs 1+2.
This patch (of 2):
This fixes two issues.
I discovered that the following race can occur:
mfill_atomic other thread
============ ============
<zap PMD>
pmdp_get_lockless() [reads none pmd]
<bail if trans_huge>
<if none:>
<pagefault creates transhuge zeropage>
__pte_alloc [no-op]
<zap PMD>
<bail if pmd_trans_huge(*dst_pmd)>
BUG_ON(pmd_none(*dst_pmd))
I have experimentally verified this in a kernel with extra mdelay() calls;
the BUG_ON(pmd_none(*dst_pmd)) triggers.
On kernels newer than commit 0d940a9b270b ("mm/pgtable: allow
pte_offset_map[_lock]() to fail"), this can't lead to anything worse than
a BUG_ON(), since the page table access helpers are actually designed to
deal with page tables concurrently disappearing; but on older kernels
(<=6.4), I think we could probably theoretically race past the two
BUG_ON() checks and end up treating a hugepage as a page table.
The second issue is that, as Qi Zheng pointed out, there are other types
of huge PMDs that pmd_trans_huge() can't catch: devmap PMDs and swap PMDs
(in particular, migration PMDs).
On <=6.4, this is worse than the first issue: If mfill_atomic() runs on a
PMD that contains a migration entry (which just requires winning a single,
fairly wide race), it will pass the PMD to pte_offset_map_lock(), which
assumes that the PMD points to a page table.
Breakage follows: First, the kernel tries to take the PTE lock (which will
crash or maybe worse if there is no "struct page" for the address bits in
the migration entry PMD - I think at least on X86 there usually is no
corresponding "struct page" thanks to the PTE inversion mitigation, amd64
looks different).
If that didn't crash, the kernel would next try to write a PTE into what
it wrongly thinks is a page table.
As part of fixing these issues, get rid of the check for pmd_trans_huge()
before __pte_alloc() - that's redundant, we're going to have to check for
that after the __pte_alloc() anyway.
Backport note: pmdp_get_lockless() is pmd_read_atomic() in older kernels.
Link: https://lkml.kernel.org/r/20240813-uffd-thp-flip-fix-v2-0-5efa61078a41@google.com
Link: https://lkml.kernel.org/r/20240813-uffd-thp-flip-fix-v2-1-5efa61078a41@google.com
Fixes: c1a4de99fada ("userfaultfd: mcopy_atomic|mfill_zeropage: UFFDIO_COPY|UFFDIO_ZEROPAGE preparation")
Signed-off-by: Jann Horn <jannh@google.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
On powerpc 8xx huge_ptep_get() will need to know whether the given ptep is
a PTE entry or a PMD entry. This cannot be known with the PMD entry
itself because there is no easy way to know it from the content of the
entry.
So huge_ptep_get() will need to know either the size of the page or get
the pmd.
In order to be consistent with huge_ptep_get_and_clear(), give mm and
address to huge_ptep_get().
Link: https://lkml.kernel.org/r/cc00c70dd384298796a4e1b25d6c4eb306d3af85.1719928057.git.christophe.leroy@csgroup.eu
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "mm: clarify folio_add_new_anon_rmap() and
__folio_add_anon_rmap()", v2.
This patchset is preparatory work for mTHP swapin.
folio_add_new_anon_rmap() assumes that new anon rmaps are always
exclusive. However, this assumption doesn’t hold true for cases like
do_swap_page(), where a new anon might be added to the swapcache and is
not necessarily exclusive.
The patchset extends the rmap flags to allow folio_add_new_anon_rmap() to
handle both exclusive and non-exclusive new anon folios. The
do_swap_page() function is updated to use this extended API with rmap
flags. Consequently, all new anon folios now consistently use
folio_add_new_anon_rmap(). The special case for !folio_test_anon() in
__folio_add_anon_rmap() can be safely removed.
In conclusion, new anon folios always use folio_add_new_anon_rmap(),
regardless of exclusivity. Old anon folios continue to use
__folio_add_anon_rmap() via folio_add_anon_rmap_pmd() and
folio_add_anon_rmap_ptes().
This patch (of 3):
In the case of a swap-in, a new anonymous folio is not necessarily
exclusive. This patch updates the rmap flags to allow a new anonymous
folio to be treated as either exclusive or non-exclusive. To maintain the
existing behavior, we always use EXCLUSIVE as the default setting.
[akpm@linux-foundation.org: cleanup and constifications per David and akpm]
[v-songbaohua@oppo.com: fix missing doc for flags of folio_add_new_anon_rmap()]
Link: https://lkml.kernel.org/r/20240619210641.62542-1-21cnbao@gmail.com
[v-songbaohua@oppo.com: enhance doc for extend rmap flags arguments for folio_add_new_anon_rmap]
Link: https://lkml.kernel.org/r/20240622030256.43775-1-21cnbao@gmail.com
Link: https://lkml.kernel.org/r/20240617231137.80726-1-21cnbao@gmail.com
Link: https://lkml.kernel.org/r/20240617231137.80726-2-21cnbao@gmail.com
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Tested-by: Shuai Yuan <yuanshuai@oppo.com>
Acked-by: David Hildenbrand <david@ |