summaryrefslogtreecommitdiff
path: root/mm
AgeCommit message (Collapse)AuthorFilesLines
2021-12-29mm: mempolicy: fix THP allocations escaping mempolicy restrictionsAndrey Ryabinin1-2/+2
commit 338635340669d5b317c7e8dcf4fff4a0f3651d87 upstream. alloc_pages_vma() may try to allocate THP page on the local NUMA node first: page = __alloc_pages_node(hpage_node, gfp | __GFP_THISNODE | __GFP_NORETRY, order); And if the allocation fails it retries allowing remote memory: if (!page && (gfp & __GFP_DIRECT_RECLAIM)) page = __alloc_pages_node(hpage_node, gfp, order); However, this retry allocation completely ignores memory policy nodemask allowing allocation to escape restrictions. The first appearance of this bug seems to be the commit ac5b2c18911f ("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings"). The bug disappeared later in the commit 89c83fb539f9 ("mm, thp: consolidate THP gfp handling into alloc_hugepage_direct_gfpmask") and reappeared again in slightly different form in the commit 76e654cc91bb ("mm, page_alloc: allow hugepage fallback to remote nodes when madvised") Fix this by passing correct nodemask to the __alloc_pages() call. The demonstration/reproducer of the problem: $ mount -oremount,size=4G,huge=always /dev/shm/ $ echo always > /sys/kernel/mm/transparent_hugepage/defrag $ cat mbind_thp.c #include <unistd.h> #include <sys/mman.h> #include <sys/stat.h> #include <fcntl.h> #include <assert.h> #include <stdlib.h> #include <stdio.h> #include <numaif.h> #define SIZE 2ULL << 30 int main(int argc, char **argv) { int fd; unsigned long long i; char *addr; pid_t pid; char buf[100]; unsigned long nodemask = 1; fd = open("/dev/shm/test", O_RDWR|O_CREAT); assert(fd > 0); assert(ftruncate(fd, SIZE) == 0); addr = mmap(NULL, SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); assert(mbind(addr, SIZE, MPOL_BIND, &nodemask, 2, MPOL_MF_STRICT|MPOL_MF_MOVE)==0); for (i = 0; i < SIZE; i+=4096) { addr[i] = 1; } pid = getpid(); snprintf(buf, sizeof(buf), "grep shm /proc/%d/numa_maps", pid); system(buf); sleep(10000); return 0; } $ gcc mbind_thp.c -o mbind_thp -lnuma $ numactl -H available: 2 nodes (0-1) node 0 cpus: 0 2 node 0 size: 1918 MB node 0 free: 1595 MB node 1 cpus: 1 3 node 1 size: 2014 MB node 1 free: 1731 MB node distances: node 0 1 0: 10 20 1: 20 10 $ rm -f /dev/shm/test; taskset -c 0 ./mbind_thp 7fd970a00000 bind:0 file=/dev/shm/test dirty=524288 active=0 N0=396800 N1=127488 kernelpagesize_kB=4 Link: https://lkml.kernel.org/r/20211208165343.22349-1-arbn@yandex-team.com Fixes: ac5b2c18911f ("mm: thp: relax __GFP_THISNODE for MADV_HUGEPAGE mappings") Signed-off-by: Andrey Ryabinin <arbn@yandex-team.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: David Rientjes <rientjes@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-29mm/hwpoison: clear MF_COUNT_INCREASED before retrying get_any_page()Liu Shixin1-0/+1
commit 2a57d83c78f889bf3f54eede908d0643c40d5418 upstream. Hulk Robot reported a panic in put_page_testzero() when testing madvise() with MADV_SOFT_OFFLINE. The BUG() is triggered when retrying get_any_page(). This is because we keep MF_COUNT_INCREASED flag in second try but the refcnt is not increased. page dumped because: VM_BUG_ON_PAGE(page_ref_count(page) == 0) ------------[ cut here ]------------ kernel BUG at include/linux/mm.h:737! invalid opcode: 0000 [#1] PREEMPT SMP CPU: 5 PID: 2135 Comm: sshd Tainted: G B 5.16.0-rc6-dirty #373 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014 RIP: release_pages+0x53f/0x840 Call Trace: free_pages_and_swap_cache+0x64/0x80 tlb_flush_mmu+0x6f/0x220 unmap_page_range+0xe6c/0x12c0 unmap_single_vma+0x90/0x170 unmap_vmas+0xc4/0x180 exit_mmap+0xde/0x3a0 mmput+0xa3/0x250 do_exit+0x564/0x1470 do_group_exit+0x3b/0x100 __do_sys_exit_group+0x13/0x20 __x64_sys_exit_group+0x16/0x20 do_syscall_64+0x34/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xae Modules linked in: ---[ end trace e99579b570fe0649 ]--- RIP: 0010:release_pages+0x53f/0x840 Link: https://lkml.kernel.org/r/20211221074908.3910286-1-liushixin2@huawei.com Fixes: b94e02822deb ("mm,hwpoison: try to narrow window race for free pages") Signed-off-by: Liu Shixin <liushixin2@huawei.com> Reported-by: Hulk Robot <hulkci@huawei.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-17memblock: ensure there is no overflow in memblock_overlaps_region()Mike Rapoport1-1/+2
[ Upstream commit 023accf5cdc1e504a9b04187ec23ff156fe53d90 ] There maybe an overflow in memblock_overlaps_region() if it is called with base and size such that base + size > PHYS_ADDR_MAX Make sure that memblock_overlaps_region() caps the size to prevent such overflow and remove now duplicated call to memblock_cap_size() from memblock_is_region_reserved(). Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Tested-by: Tony Lindgren <tony@atomide.com> Link: https://lore.kernel.org/lkml/20210630071211.21011-1-rppt@kernel.org/ Signed-off-by: Mark-PK Tsai <mark-pk.tsai@mediatek.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-14mm: bdi: initialize bdi_min_ratio when bdi is unregisteredManjong Lee1-0/+7
commit 3c376dfafbf7a8ea0dea212d095ddd83e93280bb upstream. Initialize min_ratio if it is set during bdi unregistration. This can prevent problems that may occur a when bdi is removed without resetting min_ratio. For example. 1) insert external sdcard 2) set external sdcard's min_ratio 70 3) remove external sdcard without setting min_ratio 0 4) insert external sdcard 5) set external sdcard's min_ratio 70 << error occur(can't set) Because when an sdcard is removed, the present bdi_min_ratio value will remain. Currently, the only way to reset bdi_min_ratio is to reboot. [akpm@linux-foundation.org: tweak comment and coding style] Link: https://lkml.kernel.org/r/20211021161942.5983-1-mj0123.lee@samsung.com Signed-off-by: Manjong Lee <mj0123.lee@samsung.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Changheun Lee <nanich.lee@samsung.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: <seunghwan.hyun@samsung.com> Cc: <sookwan7.kim@samsung.com> Cc: <yt0928.kim@samsung.com> Cc: <junho89.kim@samsung.com> Cc: <jisoo2146.oh@samsung.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-26hugetlbfs: flush TLBs correctly after huge_pmd_unshareNadav Amit1-4/+19
commit a4a118f2eead1d6c49e00765de89878288d4b890 upstream. When __unmap_hugepage_range() calls to huge_pmd_unshare() succeed, a TLB flush is missing. This TLB flush must be performed before releasing the i_mmap_rwsem, in order to prevent an unshared PMDs page from being released and reused before the TLB flush took place. Arguably, a comprehensive solution would use mmu_gather interface to batch the TLB flushes and the PMDs page release, however it is not an easy solution: (1) try_to_unmap_one() and try_to_migrate_one() also call huge_pmd_unshare() and they cannot use the mmu_gather interface; and (2) deferring the release of the page reference for the PMDs page until after i_mmap_rwsem is dropeed can confuse huge_pmd_unshare() into thinking PMDs are shared when they are not. Fix __unmap_hugepage_range() by adding the missing TLB flush, and forcing a flush when unshare is successful. Fixes: 24669e58477e ("hugetlb: use mmu_gather instead of a temporary linked list for accumulating pages)" # 3.6 Signed-off-by: Nadav Amit <namit@vmware.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-26mm: kmemleak: slob: respect SLAB_NOLEAKTRACE flagRustam Kovhaev1-1/+1
commit 34dbc3aaf5d9e89ba6cc5e24add9458c21ab1950 upstream. When kmemleak is enabled for SLOB, system does not boot and does not print anything to the console. At the very early stage in the boot process we hit infinite recursion from kmemleak_init() and eventually kernel crashes. kmemleak_init() specifies SLAB_NOLEAKTRACE for KMEM_CACHE(), but kmem_cache_create_usercopy() removes it because CACHE_CREATE_MASK is not valid for SLOB. Let's fix CACHE_CREATE_MASK and make kmemleak work with SLOB Link: https://lkml.kernel.org/r/20211115020850.3154366-1-rkovhaev@gmail.com Fixes: d8843922fba4 ("slab: Ignore internal flags in cache creation") Signed-off-by: Rustam Kovhaev <rkovhaev@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Glauber Costa <glommer@parallels.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-18mm, oom: do not trigger out_of_memory from the #PFMichal Hocko1-14/+8
commit 60e2793d440a3ec95abb5d6d4fc034a4b480472d upstream. Any allocation failure during the #PF path will return with VM_FAULT_OOM which in turn results in pagefault_out_of_memory. This can happen for 2 different reasons. a) Memcg is out of memory and we rely on mem_cgroup_oom_synchronize to perform the memcg OOM handling or b) normal allocation fails. The latter is quite problematic because allocation paths already trigger out_of_memory and the page allocator tries really hard to not fail allocations. Anyway, if the OOM killer has been already invoked there is no reason to invoke it again from the #PF path. Especially when the OOM condition might be gone by that time and we have no way to find out other than allocate. Moreover if the allocation failed and the OOM killer hasn't been invoked then we are unlikely to do the right thing from the #PF context because we have already lost the allocation context and restictions and therefore might oom kill a task from a different NUMA domain. This all suggests that there is no legitimate reason to trigger out_of_memory from pagefault_out_of_memory so drop it. Just to be sure that no #PF path returns with VM_FAULT_OOM without allocation print a warning that this is happening before we restart the #PF. [VvS: #PF allocation can hit into limit of cgroup v1 kmem controller. This is a local problem related to memcg, however, it causes unnecessary global OOM kills that are repeated over and over again and escalate into a real disaster. This has been broken since kmem accounting has been introduced for cgroup v1 (3.8). There was no kmem specific reclaim for the separate limit so the only way to handle kmem hard limit was to return with ENOMEM. In upstream the problem will be fixed by removing the outdated kmem limit, however stable and LTS kernels cannot do it and are still affected. This patch fixes the problem and should be backported into stable/LTS.] Link: https://lkml.kernel.org/r/f5fd8dd8-0ad4-c524-5f65-920b01972a42@virtuozzo.com Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Vasily Averin <vvs@virtuozzo.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: Uladzislau Rezki <urezki@gmail.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-18mm, oom: pagefault_out_of_memory: don't force global OOM for dying tasksVasily Averin1-0/+3
commit 0b28179a6138a5edd9d82ad2687c05b3773c387b upstream. Patch series "memcg: prohibit unconditional exceeding the limit of dying tasks", v3. Memory cgroup charging allows killed or exiting tasks to exceed the hard limit. It can be misused and allowed to trigger global OOM from inside a memcg-limited container. On the other hand if memcg fails allocation, called from inside #PF handler it triggers global OOM from inside pagefault_out_of_memory(). To prevent these problems this patchset: (a) removes execution of out_of_memory() from pagefault_out_of_memory(), becasue nobody can explain why it is necessary. (b) allow memcg to fail allocation of dying/killed tasks. This patch (of 3): Any allocation failure during the #PF path will return with VM_FAULT_OOM which in turn results in pagefault_out_of_memory which in turn executes out_out_memory() and can kill a random task. An allocation might fail when the current task is the oom victim and there are no memory reserves left. The OOM killer is already handled at the page allocator level for the global OOM and at the charging level for the memcg one. Both have much more information about the scope of allocation/charge request. This means that either the OOM killer has been invoked properly and didn't lead to the allocation success or it has been skipped because it couldn't have been invoked. In both cases triggering it from here is pointless and even harmful. It makes much more sense to let the killed task die rather than to wake up an eternally hungry oom-killer and send him to choose a fatter victim for breakfast. Link: https://lkml.kernel.org/r/0828a149-786e-7c06-b70a-52d086818ea3@virtuozzo.com Signed-off-by: Vasily Averin <vvs@virtuozzo.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: Uladzislau Rezki <urezki@gmail.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-18memcg: prohibit unconditional exceeding the limit of dying tasksVasily Averin1-19/+8
commit a4ebf1b6ca1e011289677239a2a361fde4a88076 upstream. Memory cgroup charging allows killed or exiting tasks to exceed the hard limit. It is assumed that the amount of the memory charged by those tasks is bound and most of the memory will get released while the task is exiting. This is resembling a heuristic for the global OOM situation when tasks get access to memory reserves. There is no global memory shortage at the memcg level so the memcg heuristic is more relieved. The above assumption is overly optimistic though. E.g. vmalloc can scale to really large requests and the heuristic would allow that. We used to have an early break in the vmalloc allocator for killed tasks but this has been reverted by commit b8c8a338f75e ("Revert "vmalloc: back off when the current task is killed""). There are likely other similar code paths which do not check for fatal signals in an allocation&charge loop. Also there are some kernel objects charged to a memcg which are not bound to a process life time. It has been observed that it is not really hard to trigger these bypasses and cause global OOM situation. One potential way to address these runaways would be to limit the amount of excess (similar to the global OOM with limited oom reserves). This is certainly possible but it is not really clear how much of an excess is desirable and still protects from global OOMs as that would have to consider the overall memcg configuration. This patch is addressing the problem by removing the heuristic altogether. Bypass is only allowed for requests which either cannot fail or where the failure is not desirable while excess should be still limited (e.g. atomic requests). Implementation wise a killed or dying task fails to charge if it has passed the OOM killer stage. That should give all forms of reclaim chance to restore the limit before the failure (ENOMEM) and tell the caller to back off. In addition, this patch renames should_force_charge() helper to task_is_dying() because now its use is not associated witch forced charging. This patch depends on pagefault_out_of_memory() to not trigger out_of_memory(), because then a memcg failure can unwind to VM_FAULT_OOM and cause a global OOM killer. Link: https://lkml.kernel.org/r/8f5cebbb-06da-4902-91f0-6566fc4b4203@virtuozzo.com Signed-off-by: Vasily Averin <vvs@virtuozzo.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Roman Gushchin <guro@fb.com> Cc: Uladzislau Rezki <urezki@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Shakeel Butt <shakeelb@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-18mm/zsmalloc.c: close race window between zs_pool_dec_isolated() and ↵Miaohe Lin1-3/+4
zs_unregister_migration() [ Upstream commit afe8605ca45424629fdddfd85984b442c763dc47 ] There is one possible race window between zs_pool_dec_isolated() and zs_unregister_migration() because wait_for_isolated_drain() checks the isolated count without holding class->lock and there is no order inside zs_pool_dec_isolated(). Thus the below race window could be possible: zs_pool_dec_isolated zs_unregister_migration check pool->destroying != 0 pool->destroying = true; smp_mb(); wait_for_isolated_drain() wait for pool->isolated_pages == 0 atomic_long_dec(&pool->isolated_pages); atomic_long_read(&pool->isolated_pages) == 0 Since we observe the pool->destroying (false) before atomic_long_dec() for pool->isolated_pages, waking pool->migration_wait up is missed. Fix this by ensure checking pool->destroying happens after the atomic_long_dec(&pool->isolated_pages). Link: https://lkml.kernel.org/r/20210708115027.7557-1-linmiaohe@huawei.com Fixes: 701d678599d0 ("mm/zsmalloc.c: fix race condition in zs_destroy_pool") Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Henry Burns <henryburns@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-06mm: khugepaged: skip huge page collapse for special filesYang Shi1-7/+10
commit a4aeaa06d45e90f9b279f0b09de84bd00006e733 upstream. The read-only THP for filesystems will collapse THP for files opened readonly and mapped with VM_EXEC. The intended usecase is to avoid TLB misses for large text segments. But it doesn't restrict the file types so a THP could be collapsed for a non-regular file, for example, block device, if it is opened readonly and mapped with EXEC permission. This may cause bugs, like [1] and [2]. This is definitely not the intended usecase, so just collapse THP for regular files in order to close the attack surface. [shy828301@gmail.com: fix vm_file check [3]] Link: https://lore.kernel.org/lkml/CACkBjsYwLYLRmX8GpsDpMthagWOjWWrNxqY6ZLNQVr6yx+f5vA@mail.gmail.com/ [1] Link: https://lore.kernel.org/linux-mm/000000000000c6a82505ce284e4c@google.com/ [2] Link: https://lkml.kernel.org/r/CAHbLzkqTW9U3VvTu1Ki5v_cLRC9gHW+znBukg_ycergE0JWj-A@mail.gmail.com [3] Link: https://lkml.kernel.org/r/20211027195221.3825-1-shy828301@gmail.com Fixes: 99cb0dbd47a1 ("mm,thp: add read-only THP support for (non-shmem) FS") Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Yang Shi <shy828301@gmail.com> Reported-by: Hao Sun <sunhao.th@gmail.com> Reported-by: syzbot+aae069be1de40fb11825@syzkaller.appspotmail.com Cc: Matthew Wilcox <willy@infradead.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Song Liu <songliubraving@fb.com> Cc: Andrea Righi <andrea.righi@canonical.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-02mm, thp: bail out early in collapse_file for writeback pageRongwei Wang1-1/+6
commit 74c42e1baacf206338b1dd6b6199ac964512b5bb upstream. Currently collapse_file does not explicitly check PG_writeback, instead, page_has_private and try_to_release_page are used to filter writeback pages. This does not work for xfs with blocksize equal to or larger than pagesize, because in such case xfs has no page->private. This makes collapse_file bail out early for writeback page. Otherwise, xfs end_page_writeback will panic as follows. page:fffffe00201bcc80 refcount:0 mapcount:0 mapping:ffff0003f88c86a8 index:0x0 pfn:0x84ef32 aops:xfs_address_space_operations [xfs] ino:30000b7 dentry name:"libtest.so" flags: 0x57fffe0000008027(locked|referenced|uptodate|active|writeback) raw: 57fffe0000008027 ffff80001b48bc28 ffff80001b48bc28 ffff0003f88c86a8 raw: 0000000000000000 0000000000000000 00000000ffffffff ffff0000c3e9a000 page dumped because: VM_BUG_ON_PAGE(((unsigned int) page_ref_count(page) + 127u <= 127u)) page->mem_cgroup:ffff0000c3e9a000 ------------[ cut here ]------------ kernel BUG at include/linux/mm.h:1212! Internal error: Oops - BUG: 0 [#1] SMP Modules linked in: BUG: Bad page state in process khugepaged pfn:84ef32 xfs(E) page:fffffe00201bcc80 refcount:0 mapcount:0 mapping:0 index:0x0 pfn:0x84ef32 libcrc32c(E) rfkill(E) aes_ce_blk(E) crypto_simd(E) ... CPU: 25 PID: 0 Comm: swapper/25 Kdump: loaded Tainted: ... pstate: 60400005 (nZCv daif +PAN -UAO -TCO BTYPE=--) Call trace: end_page_writeback+0x1c0/0x214 iomap_finish_page_writeback+0x13c/0x204 iomap_finish_ioend+0xe8/0x19c iomap_writepage_end_bio+0x38/0x50 bio_endio+0x168/0x1ec blk_update_request+0x278/0x3f0 blk_mq_end_request+0x34/0x15c virtblk_request_done+0x38/0x74 [virtio_blk] blk_done_softirq+0xc4/0x110 __do_softirq+0x128/0x38c __irq_exit_rcu+0x118/0x150 irq_exit+0x1c/0x30 __handle_domain_irq+0x8c/0xf0 gic_handle_irq+0x84/0x108 el1_irq+0xcc/0x180 arch_cpu_idle+0x18/0x40 default_idle_call+0x4c/0x1a0 cpuidle_idle_call+0x168/0x1e0 do_idle+0xb4/0x104 cpu_startup_entry+0x30/0x9c secondary_start_kernel+0x104/0x180 Code: d4210000 b0006161 910c8021 94013f4d (d4210000) ---[ end trace 4a88c6a074082f8c ]--- Kernel panic - not syncing: Oops - BUG: Fatal exception in interrupt Link: https://lkml.kernel.org/r/20211022023052.33114-1-rongwei.wang@linux.alibaba.com Fixes: 99cb0dbd47a1 ("mm,thp: add read-only THP support for (non-shmem) FS") Signed-off-by: Rongwei Wang <rongwei.wang@linux.alibaba.com> Signed-off-by: Xu Yu <xuyu@linux.alibaba.com> Suggested-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Yang Shi <shy828301@gmail.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Song Liu <song@kernel.org> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-27mm, slub: fix incorrect memcg slab count for bulk freeMiaohe Lin1-1/+3
commit 3ddd60268c24bcac9d744404cc277e9dc52fe6b6 upstream. kmem_cache_free_bulk() will call memcg_slab_free_hook() for all objects when doing bulk free. So we shouldn't call memcg_slab_free_hook() again for bulk free to avoid incorrect memcg slab count. Link: https://lkml.kernel.org/r/20210916123920.48704-6-linmiaohe@huawei.com Fixes: d1b2cf6cb84a ("mm: memcg/slab: uncharge during kmem_cache_free_bulk()") Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Bharata B Rao <bharata@linux.ibm.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Faiyaz Mohammed <faiyazm@codeaurora.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <keescook@chromium.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-27mm, slub: fix potential memoryleak in kmem_cache_open()Miaohe Lin1-1/+1
commit 9037c57681d25e4dcc442d940d6dbe24dd31f461 upstream. In error path, the random_seq of slub cache might be leaked. Fix this by using __kmem_cache_release() to release all the relevant resources. Link: https://lkml.kernel.org/r/20210916123920.48704-4-linmiaohe@huawei.com Fixes: 210e7a43fa90 ("mm: SLUB freelist randomization") Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Bharata B Rao <bharata@linux.ibm.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Faiyaz Mohammed <faiyazm@codeaurora.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <keescook@chromium.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-27mm, slub: fix mismatch between reconstructed freelist depth and cntMiaohe Lin1-2/+9
commit 899447f669da76cc3605665e1a95ee877bc464cc upstream. If object's reuse is delayed, it will be excluded from the reconstructed freelist. But we forgot to adjust the cnt accordingly. So there will be a mismatch between reconstructed freelist depth and cnt. This will lead to free_debug_processing() complaining about freelist count or a incorrect slub inuse count. Link: https://lkml.kernel.org/r/20210916123920.48704-3-linmiaohe@huawei.com Fixes: c3895391df38 ("kasan, slub: fix handling of kasan_slab_free hook") Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Bharata B Rao <bharata@linux.ibm.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Faiyaz Mohammed <faiyazm@codeaurora.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <keescook@chromium.org> Cc: Pekka Enberg <penberg@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-10-06mm: don't allow oversized kvmalloc() callsLinus Torvalds1-0/+4
commit 7661809d493b426e979f39ab512e3adf41fbcc69 upstream. 'kvmalloc()' is a convenience function for people who want to do a kmalloc() but fall back on vmalloc() if there aren't enough physically contiguous pages, or if the allocation is larger than what kmalloc() supports. However, let's make sure it doesn't get _too_ easy to do crazy things with it. In particular, don't allow big allocations that could be due to integer overflow or underflow. So make sure the allocation size fits in an 'int', to protect against trivial integer conversion issues. Acked-by: Willy Tarreau <w@1wt.eu> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-30mm: fix uninitialized use in overcommit_policy_handlerChen Jun1-2/+2
commit bcbda81020c3ee77e2c098cadf3e84f99ca3de17 upstream. We get an unexpected value of /proc/sys/vm/overcommit_memory after running the following program: int main() { int fd = open("/proc/sys/vm/overcommit_memory", O_RDWR); write(fd, "1", 1); write(fd, "2", 1); close(fd); } write(fd, "2", 1) will pass *ppos = 1 to proc_dointvec_minmax. proc_dointvec_minmax will return 0 without setting new_policy. t.data = &new_policy; ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos) -->do_proc_dointvec -->__do_proc_dointvec if (write) { if (proc_first_pos_non_zero_ignore(ppos, table)) goto out; sysctl_overcommit_memory = new_policy; so sysctl_overcommit_memory will be set to an uninitialized value. Check whether new_policy has been changed by proc_dointvec_minmax. Link: https://lkml.kernel.org/r/20210923020524.13289-1-chenjun102@huawei.com Fixes: 56f3547bfa4d ("mm: adjust vm_committed_as_batch according to vm overcommit policy") Signed-off-by: Chen Jun <chenjun102@huawei.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Feng Tang <feng.tang@intel.com> Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Rui Xiang <rui.xiang@huawei.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-22mm/memory_hotplug: use "unsigned long" for PFN in zone_for_pfn_range()David Hildenbrand1-2/+2
commit 7cf209ba8a86410939a24cb1aeb279479a7e0ca6 upstream. Patch series "mm/memory_hotplug: preparatory patches for new online policy and memory" These are all cleanups and one fix previously sent as part of [1]: [PATCH v1 00/12] mm/memory_hotplug: "auto-movable" online policy and memory groups. These patches make sense even without the other series, therefore I pulled them out to make the other series easier to digest. [1] https://lkml.kernel.org/r/20210607195430.48228-1-david@redhat.com This patch (of 4): Checkpatch complained on a follow-up patch that we are using "unsigned" here, which defaults to "unsigned int" and checkpatch is correct. As we will search for a fitting zone using the wrong pfn, we might end up onlining memory to one of the special kernel zones, such as ZONE_DMA, which can end badly as the onlined memory does not satisfy properties of these zones. Use "unsigned long" instead, just as we do in other places when handling PFNs. This can bite us once we have physical addresses in the range of multiple TB. Link: https://lkml.kernel.org/r/20210712124052.26491-2-david@redhat.com Fixes: e5e689302633 ("mm, memory_hotplug: display allowed zones in the preferred ordering") Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pankaj Gupta <pankaj.gupta@ionos.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: David Hildenbrand <david@redhat.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Jason Wang <jasowang@redhat.com> Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com> Cc: Wei Yang <richard.weiyang@linux.alibaba.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mike Rapoport <rppt@kernel.org> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Pavel Tatashin <pasha.tatashin@soleen.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: virtualization@lists.linux-foundation.org Cc: Andy Lutomirski <luto@kernel.org> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com> Cc: Anton Blanchard <anton@ozlabs.org> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Baoquan He <bhe@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Dave Jiang <dave.jiang@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jia He <justin.he@arm.com> Cc: Joe Perches <joe@perches.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Laurent Dufour <ldufour@linux.ibm.com> Cc: Michel Lespinasse <michel@lespinasse.org> Cc: Nathan Lynch <nathanl@linux.ibm.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Pierre Morel <pmorel@linux.ibm.com> Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Cc: Rich Felker <dalias@libc.org> Cc: Scott Cheloha <cheloha@linux.ibm.com> Cc: Sergei Trofimovich <slyfox@gentoo.org> Cc: Thiago Jung Bauermann <bauerman@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-18mm,vmscan: fix divide by zero in get_scan_countRik van Riel1-1/+1
commit 32d4f4b782bb8f0ceb78c6b5dc46eb577ae25bf7 upstream. Commit f56ce412a59d ("mm: memcontrol: fix occasional OOMs due to proportional memory.low reclaim") introduced a divide by zero corner case when oomd is being used in combination with cgroup memory.low protection. When oomd decides to kill a cgroup, it will force the cgroup memory to be reclaimed after killing the tasks, by writing to the memory.max file for that cgroup, forcing the remaining page cache and reclaimable slab to be reclaimed down to zero. Previously, on cgroups with some memory.low protection that would result in the memory being reclaimed down to the memory.low limit, or likely not at all, having the page cache reclaimed asynchronously later. With f56ce412a59d the oomd write to memory.max tries to reclaim all the way down to zero, which may race with another reclaimer, to the point of ending up with the divide by zero below. This patch implements the obvious fix. Link: https://lkml.kernel.org/r/20210826220149.058089c6@imladris.surriel.com Fixes: f56ce412a59d ("mm: memcontrol: fix occasional OOMs due to proportional memory.low reclaim") Signed-off-by: Rik van Riel <riel@surriel.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Chris Down <chris@chrisdown.name> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-18mm/hmm: bypass devmap pte when all pfn requested flags are fulfilledLi Zhijian1-1/+4
commit 4b42fb213678d2b6a9eeea92a9be200f23e49583 upstream. Previously, we noticed the one rpma example was failed[1] since commit 36f30e486dce ("IB/core: Improve ODP to use hmm_range_fault()"), where it will use ODP feature to do RDMA WRITE between fsdax files. After digging into the code, we found hmm_vma_handle_pte() will still return EFAULT even though all the its requesting flags has been fulfilled. That's because a DAX page will be marked as (_PAGE_SPECIAL | PAGE_DEVMAP) by pte_mkdevmap(). Link: https://github.com/pmem/rpma/issues/1142 [1] Link: https://lkml.kernel.org/r/20210830094232.203029-1-lizhijian@cn.fujitsu.com Fixes: 405506274922 ("mm/hmm: add missing call to hmm_pte_need_fault in HMM_PFN_SPECIAL handling") Signed-off-by: Li Zhijian <lizhijian@cn.fujitsu.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-18hugetlb: fix hugetlb cgroup refcounting during vma splitMike Kravetz1-1/+3
commit 09a26e832705fdb7a9484495b71a05e0bbc65207 upstream. Guillaume Morin reported hitting the following WARNING followed by GPF or NULL pointer deference either in cgroups_destroy or in the kill_css path.: percpu ref (css_release) <= 0 (-1) after switching to atomic WARNING: CPU: 23 PID: 130 at lib/percpu-refcount.c:196 percpu_ref_switch_to_atomic_rcu+0x127/0x130 CPU: 23 PID: 130 Comm: ksoftirqd/23 Kdump: loaded Tainted: G O 5.10.60 #1 RIP: 0010:percpu_ref_switch_to_atomic_rcu+0x127/0x130 Call Trace: rcu_core+0x30f/0x530 rcu_core_si+0xe/0x10 __do_softirq+0x103/0x2a2 run_ksoftirqd+0x2b/0x40 smpboot_thread_fn+0x11a/0x170 kthread+0x10a/0x140 ret_from_fork+0x22/0x30 Upon further examination, it was discovered that the css structure was associated with hugetlb reservations. For private hugetlb mappings the vma points to a reserve map that contains a pointer to the css. At mmap time, reservations are set up and a reference to the css is taken. This reference is dropped in the vma close operation; hugetlb_vm_op_close. However, if a vma is split no additional reference to the css is taken yet hugetlb_vm_op_close will be called twice for the split vma resulting in an underflow. Fix by taking another reference in hugetlb_vm_op_open. Note that the reference is only taken for the owner of the reserve map. In the more common fork case, the pointer to the reserve map is cleared for non-owning vmas. Link: https://lkml.kernel.org/r/20210830215015.155224-1-mike.kravetz@oracle.com Fixes: e9fe92ae0cd2 ("hugetlb_cgroup: add reservation accounting for private mappings") Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reported-by: Guillaume Morin <guillaume@morinfr.org> Suggested-by: Guillaume Morin <guillaume@morinfr.org> Tested-by: Guillaume Morin <guillaume@morinfr.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-09-12mm/page_alloc: speed up the iteration of max_orderMuchun Song1-4/+4
commit 7ad69832f37e3cea8557db6df7c793905f1135e8 upstream. When we free a page whose order is very close to MAX_ORDER and greater than pageblock_order, it wastes some CPU cycles to increase max_order to MAX_ORDER one by one and check the pageblock migratetype of that page repeatedly especially when MAX_ORDER is much larger than pageblock_order. We also should not be checking migratetype of buddy when "order == MAX_ORDER - 1" as the buddy pfn may be invalid, so adjust the condition. With the new check, we don't need the max_order check anymore, so we replace it. Also adjust max_order initialization so that it's lower by one than previously, which makes the code hopefully more clear. Link: https://lkml.kernel.org/r/20201204155109.55451-1-songmuchun@bytedance.com Fixes: d9dddbf55667 ("mm/page_alloc: prevent merging between isolated and other pageblocks") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-26mm: memcontrol: fix occasional OOMs due to proportional memory.low reclaimJohannes Weiner1-8/+19
[ Upstream commit f56ce412a59d7d938b81de8878faef128812482c ] We've noticed occasional OOM killing when memory.low settings are in effect for cgroups. This is unexpected and undesirable as memory.low is supposed to express non-OOMing memory priorities between cgroups. The reason for this is proportional memory.low reclaim. When cgroups are below their memory.low threshold, reclaim passes them over in the first round, and then retries if it couldn't find pages anywhere else. But when cgroups are slightly above their memory.low setting, page scan force is scaled down and diminished in proportion to the overage, to the point where it can cause reclaim to fail as well - only in that case we currently don't retry, and instead trigger OOM. To fix this, hook proportional reclaim into the same retry logic we have in place for when cgroups are skipped entirely. This way if reclaim fails and some cgroups were scanned with diminished pressure, we'll try another full-force cycle before giving up and OOMing. [akpm@linux-foundation.org: coding-style fixes] Link: https://lkml.kernel.org/r/20210817180506.220056-1-hannes@cmpxchg.org Fixes: 9783aa9917f8 ("mm, memcg: proportional memory.{low,min} reclaim") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Leon Yang <lnyng@fb.com> Reviewed-by: Rik van Riel <riel@surriel.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Roman Gushchin <guro@fb.com> Acked-by: Chris Down <chris@chrisdown.name> Acked-by: Michal Hocko <mhocko@suse.com> Cc: <stable@vger.kernel.org> [5.4+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-28memblock: make for_each_mem_range() traverse MEMBLOCK_HOTPLUG regionsMike Rapoport1-1/+2
commit 79e482e9c3ae86e849c701c846592e72baddda5a upstream. Commit b10d6bca8720 ("arch, drivers: replace for_each_membock() with for_each_mem_range()") didn't take into account that when there is movable_node parameter in the kernel command line, for_each_mem_range() would skip ranges marked with MEMBLOCK_HOTPLUG. The page table setup code in POWER uses for_each_mem_range() to create the linear mapping of the physical memory and since the regions marked as MEMORY_HOTPLUG are skipped, they never make it to the linear map. A later access to the memory in those ranges will fail: BUG: Unable to handle kernel data access on write at 0xc000000400000000 Faulting instruction address: 0xc00000000008a3c0 Oops: Kernel access of bad area, sig: 11 [#1] LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA pSeries Modules linked in: CPU: 0 PID: 53 Comm: kworker/u2:0 Not tainted 5.13.0 #7 NIP: c00000000008a3c0 LR: c0000000003c1ed8 CTR: 0000000000000040 REGS: c000000008a57770 TRAP: 0300 Not tainted (5.13.0) MSR: 8000000002009033 <SF,VEC,EE,ME,IR,DR,RI,LE> CR: 84222202 XER: 20040000 CFAR: c0000000003c1ed4 DAR: c000000400000000 DSISR: 42000000 IRQMASK: 0 GPR00: c0000000003c1ed8 c000000008a57a10 c0000000019da700 c000000400000000 GPR04: 0000000000000280 0000000000000180 0000000000000400 0000000000000200 GPR08: 0000000000000100 0000000000000080 0000000000000040 0000000000000300 GPR12: 0000000000000380 c000000001bc0000 c0000000001660c8 c000000006337e00 GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000 GPR20: 0000000040000000 0000000020000000 c000000001a81990 c000000008c30000 GPR24: c000000008c20000 c000000001a81998 000fffffffff0000 c000000001a819a0 GPR28: c000000001a81908 c00c000001000000 c000000008c40000 c000000008a64680 NIP clear_user_page+0x50/0x80 LR __handle_mm_fault+0xc88/0x1910 Call Trace: __handle_mm_fault+0xc44/0x1910 (unreliable) handle_mm_fault+0x130/0x2a0 __get_user_pages+0x248/0x610 __get_user_pages_remote+0x12c/0x3e0 get_arg_page+0x54/0xf0 copy_string_kernel+0x11c/0x210 kernel_execve+0x16c/0x220 call_usermodehelper_exec_async+0x1b0/0x2f0 ret_from_kernel_thread+0x5c/0x70 Instruction dump: 79280fa4 79271764 79261f24 794ae8e2 7ca94214 7d683a14 7c893a14 7d893050 7d4903a6 60000000 60000000 60000000 <7c001fec> 7c091fec 7c081fec 7c051fec ---[ end trace 490b8c67e6075e09 ]--- Making for_each_mem_range() include MEMBLOCK_HOTPLUG regions in the traversal fixes this issue. Link: https://bugzilla.redhat.com/show_bug.cgi?id=1976100 Link: https://lkml.kernel.org/r/20210712071132.20902-1-rppt@kernel.org Fixes: b10d6bca8720 ("arch, drivers: replace for_each_membock() with for_each_mem_range()") Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Tested-by: Greg Kurz <groug@kaod.org> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: <stable@vger.kernel.org> [5.10+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-25Revert "mm/shmem: fix shmem_swapin() race with swapoff"Greg Kroah-Hartman1-13/+1
This reverts commit a533a21b692fc15a6aadfa827b29c7d9989109ca which is commit 2efa33fc7f6ec94a3a538c1a264273c889be2b36 upstream. It should not have been added to the stable trees, sorry about that. Link: https://lore.kernel.org/r/YPVgaY6uw59Fqg5x@casper.infradead.org Reported-by: From: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Ying Huang <ying.huang@intel.com> Cc: Alex Shi <alexs@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: Dennis Zhou <dennis@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Wei Yang <richard.weiyang@gmail.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Sasha Levin <sashal@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-25mm/page_alloc: fix memory map initialization for descending nodesMike Rapoport1-39/+67
commit 122e093c1734361dedb64f65c99b93e28e4624f4 upstream. On systems with memory nodes sorted in descending order, for instance Dell Precision WorkStation T5500, the struct pages for higher PFNs and respectively lower nodes, could be overwritten by the initialization of struct pages corresponding to the holes in the memory sections. For example for the below memory layout [ 0.245624] Early memory node ranges [ 0.248496] node 1: [mem 0x0000000000001000-0x0000000000090fff] [ 0.251376] node 1: [mem 0x0000000000100000-0x00000000dbdf8fff] [ 0.254256] node 1: [mem 0x0000000100000000-0x0000001423ffffff] [ 0.257144] node 0: [mem 0x0000001424000000-0x0000002023ffffff] the range 0x1424000000 - 0x1428000000 in the beginning of node 0 starts in the middle of a section and will be considered as a hole during the initialization of the last section in node 1. The wrong initialization of the memory map causes panic on boot when CONFIG_DEBUG_VM is enabled. Reorder loop order of the memory map initialization so that the outer loop will always iterate over populated memory regions in the ascending order and the inner loop will select the zone corresponding to the PFN range. This way initialization of the struct pages for the memory holes will be always done for the ranges that are actually not populated. [akpm@linux-foundation.org: coding style fixes] Link: https://lkml.kernel.org/r/YNXlMqBbL+tBG7yq@kernel.org Link: https://bugzilla.kernel.org/show_bug.cgi?id=213073 Link: https://lkml.kernel.org/r/20210624062305.10940-1-rppt@kernel.org Fixes: 0740a50b9baa ("mm/page_alloc.c: refactor initialization of struct page for holes in memory layout") Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Boris Petkov <bp@alien8.de> Cc: Robert Shteynfeld <robert.shteynfeld@gmail.com> Cc: Baoquan He <bhe@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: David Hildenbrand <david@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew M