summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2015-06-29 10:34:42 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2015-06-29 10:34:42 -0700
commit88793e5c774ec69351ef6b5200bb59f532e41bca (patch)
tree54c4be61777ea53fde892b71e795322c5227d16e
parent1bc5e157ed2b4f5b206155fc772d860158acd201 (diff)
parent61031952f4c89dba1065f7a5b9419badb112554c (diff)
downloadlinux-88793e5c774ec69351ef6b5200bb59f532e41bca.tar.gz
linux-88793e5c774ec69351ef6b5200bb59f532e41bca.tar.bz2
linux-88793e5c774ec69351ef6b5200bb59f532e41bca.zip
Merge tag 'libnvdimm-for-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm
Pull libnvdimm subsystem from Dan Williams: "The libnvdimm sub-system introduces, in addition to the libnvdimm-core, 4 drivers / enabling modules: NFIT: Instantiates an "nvdimm bus" with the core and registers memory devices (NVDIMMs) enumerated by the ACPI 6.0 NFIT (NVDIMM Firmware Interface table). After registering NVDIMMs the NFIT driver then registers "region" devices. A libnvdimm-region defines an access mode and the boundaries of persistent memory media. A region may span multiple NVDIMMs that are interleaved by the hardware memory controller. In turn, a libnvdimm-region can be carved into a "namespace" device and bound to the PMEM or BLK driver which will attach a Linux block device (disk) interface to the memory. PMEM: Initially merged in v4.1 this driver for contiguous spans of persistent memory address ranges is re-worked to drive PMEM-namespaces emitted by the libnvdimm-core. In this update the PMEM driver, on x86, gains the ability to assert that writes to persistent memory have been flushed all the way through the caches and buffers in the platform to persistent media. See memcpy_to_pmem() and wmb_pmem(). BLK: This new driver enables access to persistent memory media through "Block Data Windows" as defined by the NFIT. The primary difference of this driver to PMEM is that only a small window of persistent memory is mapped into system address space at any given point in time. Per-NVDIMM windows are reprogrammed at run time, per-I/O, to access different portions of the media. BLK-mode, by definition, does not support DAX. BTT: This is a library, optionally consumed by either PMEM or BLK, that converts a byte-accessible namespace into a disk with atomic sector update semantics (prevents sector tearing on crash or power loss). The sinister aspect of sector tearing is that most applications do not know they have a atomic sector dependency. At least today's disk's rarely ever tear sectors and if they do one almost certainly gets a CRC error on access. NVDIMMs will always tear and always silently. Until an application is audited to be robust in the presence of sector-tearing the usage of BTT is recommended. Thanks to: Ross Zwisler, Jeff Moyer, Vishal Verma, Christoph Hellwig, Ingo Molnar, Neil Brown, Boaz Harrosh, Robert Elliott, Matthew Wilcox, Andy Rudoff, Linda Knippers, Toshi Kani, Nicholas Moulin, Rafael Wysocki, and Bob Moore" * tag 'libnvdimm-for-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm: (33 commits) arch, x86: pmem api for ensuring durability of persistent memory updates libnvdimm: Add sysfs numa_node to NVDIMM devices libnvdimm: Set numa_node to NVDIMM devices acpi: Add acpi_map_pxm_to_online_node() libnvdimm, nfit: handle unarmed dimms, mark namespaces read-only pmem: flag pmem block devices as non-rotational libnvdimm: enable iostat pmem: make_request cleanups libnvdimm, pmem: fix up max_hw_sectors libnvdimm, blk: add support for blk integrity libnvdimm, btt: add support for blk integrity fs/block_dev.c: skip rw_page if bdev has integrity libnvdimm: Non-Volatile Devices tools/testing/nvdimm: libnvdimm unit test infrastructure libnvdimm, nfit, nd_blk: driver for BLK-mode access persistent memory nd_btt: atomic sector updates libnvdimm: infrastructure for btt devices libnvdimm: write blk label set libnvdimm: write pmem label set libnvdimm: blk labels and namespace instantiation ...
-rw-r--r--Documentation/nvdimm/btt.txt283
-rw-r--r--Documentation/nvdimm/nvdimm.txt808
-rw-r--r--MAINTAINERS39
-rw-r--r--arch/arm64/kernel/efi.c1
-rw-r--r--arch/ia64/kernel/efi.c4
-rw-r--r--arch/x86/Kconfig4
-rw-r--r--arch/x86/boot/compressed/eboot.c4
-rw-r--r--arch/x86/include/asm/cacheflush.h72
-rw-r--r--arch/x86/include/asm/io.h6
-rw-r--r--arch/x86/include/uapi/asm/e820.h1
-rw-r--r--arch/x86/kernel/e820.c28
-rw-r--r--arch/x86/kernel/pmem.c93
-rw-r--r--arch/x86/platform/efi/efi.c3
-rw-r--r--drivers/Kconfig2
-rw-r--r--drivers/Makefile1
-rw-r--r--drivers/acpi/Kconfig26
-rw-r--r--drivers/acpi/Makefile1
-rw-r--r--drivers/acpi/nfit.c1587
-rw-r--r--drivers/acpi/nfit.h158
-rw-r--r--drivers/acpi/numa.c50
-rw-r--r--drivers/block/Kconfig12
-rw-r--r--drivers/block/Makefile1
-rw-r--r--drivers/nvdimm/Kconfig68
-rw-r--r--drivers/nvdimm/Makefile20
-rw-r--r--drivers/nvdimm/blk.c384
-rw-r--r--drivers/nvdimm/btt.c1479
-rw-r--r--drivers/nvdimm/btt.h185
-rw-r--r--drivers/nvdimm/btt_devs.c425
-rw-r--r--drivers/nvdimm/bus.c730
-rw-r--r--drivers/nvdimm/core.c465
-rw-r--r--drivers/nvdimm/dimm.c102
-rw-r--r--drivers/nvdimm/dimm_devs.c551
-rw-r--r--drivers/nvdimm/label.c927
-rw-r--r--drivers/nvdimm/label.h141
-rw-r--r--drivers/nvdimm/namespace_devs.c1870
-rw-r--r--drivers/nvdimm/nd-core.h83
-rw-r--r--drivers/nvdimm/nd.h220
-rw-r--r--drivers/nvdimm/pmem.c (renamed from drivers/block/pmem.c)227
-rw-r--r--drivers/nvdimm/region.c114
-rw-r--r--drivers/nvdimm/region_devs.c787
-rw-r--r--fs/block_dev.c4
-rw-r--r--include/linux/acpi.h5
-rw-r--r--include/linux/compiler.h2
-rw-r--r--include/linux/efi.h3
-rw-r--r--include/linux/libnvdimm.h151
-rw-r--r--include/linux/nd.h151
-rw-r--r--include/linux/pmem.h152
-rw-r--r--include/uapi/linux/Kbuild1
-rw-r--r--include/uapi/linux/ndctl.h197
-rw-r--r--lib/Kconfig3
-rw-r--r--tools/testing/nvdimm/Kbuild40
-rw-r--r--tools/testing/nvdimm/Makefile7
-rw-r--r--tools/testing/nvdimm/config_check.c15
-rw-r--r--tools/testing/nvdimm/test/Kbuild8
-rw-r--r--tools/testing/nvdimm/test/iomap.c151
-rw-r--r--tools/testing/nvdimm/test/nfit.c1116
-rw-r--r--tools/testing/nvdimm/test/nfit_test.h29
57 files changed, 13842 insertions, 155 deletions
diff --git a/Documentation/nvdimm/btt.txt b/Documentation/nvdimm/btt.txt
new file mode 100644
index 000000000000..b91443f577dc
--- /dev/null
+++ b/Documentation/nvdimm/btt.txt
@@ -0,0 +1,283 @@
+BTT - Block Translation Table
+=============================
+
+
+1. Introduction
+---------------
+
+Persistent memory based storage is able to perform IO at byte (or more
+accurately, cache line) granularity. However, we often want to expose such
+storage as traditional block devices. The block drivers for persistent memory
+will do exactly this. However, they do not provide any atomicity guarantees.
+Traditional SSDs typically provide protection against torn sectors in hardware,
+using stored energy in capacitors to complete in-flight block writes, or perhaps
+in firmware. We don't have this luxury with persistent memory - if a write is in
+progress, and we experience a power failure, the block will contain a mix of old
+and new data. Applications may not be prepared to handle such a scenario.
+
+The Block Translation Table (BTT) provides atomic sector update semantics for
+persistent memory devices, so that applications that rely on sector writes not
+being torn can continue to do so. The BTT manifests itself as a stacked block
+device, and reserves a portion of the underlying storage for its metadata. At
+the heart of it, is an indirection table that re-maps all the blocks on the
+volume. It can be thought of as an extremely simple file system that only
+provides atomic sector updates.
+
+
+2. Static Layout
+----------------
+
+The underlying storage on which a BTT can be laid out is not limited in any way.
+The BTT, however, splits the available space into chunks of up to 512 GiB,
+called "Arenas".
+
+Each arena follows the same layout for its metadata, and all references in an
+arena are internal to it (with the exception of one field that points to the
+next arena). The following depicts the "On-disk" metadata layout:
+
+
+ Backing Store +-------> Arena
++---------------+ | +------------------+
+| | | | Arena info block |
+| Arena 0 +---+ | 4K |
+| 512G | +------------------+
+| | | |
++---------------+ | |
+| | | |
+| Arena 1 | | Data Blocks |
+| 512G | | |
+| | | |
++---------------+ | |
+| . | | |
+| . | | |
+| . | | |
+| | | |
+| | | |
++---------------+ +------------------+
+ | |
+ | BTT Map |
+ | |
+ | |
+ +------------------+
+ | |
+ | BTT Flog |
+ | |
+ +------------------+
+ | Info block copy |
+ | 4K |
+ +------------------+
+
+
+3. Theory of Operation
+----------------------
+
+
+a. The BTT Map
+--------------
+
+The map is a simple lookup/indirection table that maps an LBA to an internal
+block. Each map entry is 32 bits. The two most significant bits are special
+flags, and the remaining form the internal block number.
+
+Bit Description
+31 - 30 : Error and Zero flags - Used in the following way:
+ Bit Description
+ 31 30
+ -----------------------------------------------------------------------
+ 00 Initial state. Reads return zeroes; Premap = Postmap
+ 01 Zero state: Reads return zeroes
+ 10 Error state: Reads fail; Writes clear 'E' bit
+ 11 Normal Block – has valid postmap
+
+
+29 - 0 : Mappings to internal 'postmap' blocks
+
+
+Some of the terminology that will be subsequently used:
+
+External LBA : LBA as made visible to upper layers.
+ABA : Arena Block Address - Block offset/number within an arena
+Premap ABA : The block offset into an arena, which was decided upon by range
+ checking the External LBA
+Postmap ABA : The block number in the "Data Blocks" area obtained after
+ indirection from the map
+nfree : The number of free blocks that are maintained at any given time.
+ This is the number of concurrent writes that can happen to the
+ arena.
+
+
+For example, after adding a BTT, we surface a disk of 1024G. We get a read for
+the external LBA at 768G. This falls into the second arena, and of the 512G
+worth of blocks that this arena contributes, this block is at 256G. Thus, the
+premap ABA is 256G. We now refer to the map, and find out the mapping for block
+'X' (256G) points to block 'Y', say '64'. Thus the postmap ABA is 64.
+
+
+b. The BTT Flog
+---------------
+
+The BTT provides sector atomicity by making every write an "allocating write",
+i.e. Every write goes to a "free" block. A running list of free blocks is
+maintained in the form of the BTT flog. 'Flog' is a combination of the words
+"free list" and "log". The flog contains 'nfree' entries, and an entry contains:
+
+lba : The premap ABA that is being written to
+old_map : The old postmap ABA - after 'this' write completes, this will be a
+ free block.
+new_map : The new postmap ABA. The map will up updated to reflect this
+ lba->postmap_aba mapping, but we log it here in case we have to
+ recover.
+seq : Sequence number to mark which of the 2 sections of this flog entry is
+ valid/newest. It cycles between 01->10->11->01 (binary) under normal
+ operation, with 00 indicating an uninitialized state.
+lba' : alternate lba entry
+old_map': alternate old postmap entry
+new_map': alternate new postmap entry
+seq' : alternate sequence number.
+
+Each of the above fields is 32-bit, making one entry 32 bytes. Entries are also
+padded to 64 bytes to avoid cache line sharing or aliasing. Flog updates are
+done such that for any entry being written, it:
+a. overwrites the 'old' section in the entry based on sequence numbers
+b. writes the 'new' section such that the sequence number is written last.
+
+
+c. The concept of lanes
+-----------------------
+
+While 'nfree' describes the number of concurrent IOs an arena can process
+concurrently, 'nlanes' is the number of IOs the BTT device as a whole can
+process.
+ nlanes = min(nfree, num_cpus)
+A lane number is obtained at the start of any IO, and is used for indexing into
+all the on-disk and in-memory data structures for the duration of the IO. If
+there are more CPUs than the max number of available lanes, than lanes are
+protected by spinlocks.
+
+
+d. In-memory data structure: Read Tracking Table (RTT)
+------------------------------------------------------
+
+Consider a case where we have two threads, one doing reads and the other,
+writes. We can hit a condition where the writer thread grabs a free block to do
+a new IO, but the (slow) reader thread is still reading from it. In other words,
+the reader consulted a map entry, and started reading the corresponding block. A
+writer started writing to the same external LBA, and finished the write updating
+the map for that external LBA to point to its new postmap ABA. At this point the
+internal, postmap block that the reader is (still) reading has been inserted
+into the list of free blocks. If another write comes in for the same LBA, it can
+grab this free block, and start writing to it, causing the reader to read
+incorrect data. To prevent this, we introduce the RTT.
+
+The RTT is a simple, per arena table with 'nfree' entries. Every reader inserts
+into rtt[lane_number], the postmap ABA it is reading, and clears it after the
+read is complete. Every writer thread, after grabbing a free block, checks the
+RTT for its presence. If the postmap free block is in the RTT, it waits till the
+reader clears the RTT entry, and only then starts writing to it.
+
+
+e. In-memory data structure: map locks
+--------------------------------------
+
+Consider a case where two writer threads are writing to the same LBA. There can
+be a race in the following sequence of steps:
+
+free[lane] = map[premap_aba]
+map[premap_aba] = postmap_aba
+
+Both threads can update their respective free[lane] with the same old, freed
+postmap_aba. This has made the layout inconsistent by losing a free entry, and
+at the same time, duplicating another free entry for two lanes.
+
+To solve this, we could have a single map lock (per arena) that has to be taken
+before performing the above sequence, but we feel that could be too contentious.
+Instead we use an array of (nfree) map_locks that is indexed by
+(premap_aba modulo nfree).
+
+
+f. Reconstruction from the Flog
+-------------------------------
+
+On startup, we analyze the BTT flog to create our list of free blocks. We walk
+through all the entries, and for each lane, of the set of two possible
+'sections', we always look at the most recent one only (based on the sequence
+number). The reconstruction rules/steps are simple:
+- Read map[log_entry.lba].
+- If log_entry.new matches the map entry, then log_entry.old is free.
+- If log_entry.new does not match the map entry, then log_entry.new is free.
+ (This case can only be caused by power-fails/unsafe shutdowns)
+
+
+g. Summarizing - Read and Write flows
+-------------------------------------
+
+Read:
+
+1. Convert external LBA to arena number + pre-map ABA
+2. Get a lane (and take lane_lock)
+3. Read map to get the entry for this pre-map ABA
+4. Enter post-map ABA into RTT[lane]
+5. If TRIM flag set in map, return zeroes, and end IO (go to step 8)
+6. If ERROR flag set in map, end IO with EIO (go to step 8)
+7. Read data from this block
+8. Remove post-map ABA entry from RTT[lane]
+9. Release lane (and lane_lock)
+
+Write:
+
+1. Convert external LBA to Arena number + pre-map ABA
+2. Get a lane (and take lane_lock)
+3. Use lane to index into in-memory free list and obtain a new block, next flog
+ index, next sequence number
+4. Scan the RTT to check if free block is present, and spin/wait if it is.
+5. Write data to this free block
+6. Read map to get the existing post-map ABA entry for this pre-map ABA
+7. Write flog entry: [premap_aba / old postmap_aba / new postmap_aba / seq_num]
+8. Write new post-map ABA into map.
+9. Write old post-map entry into the free list
+10. Calculate next sequence number and write into the free list entry
+11. Release lane (and lane_lock)
+
+
+4. Error Handling
+=================
+
+An arena would be in an error state if any of the metadata is corrupted
+irrecoverably, either due to a bug or a media error. The following conditions
+indicate an error:
+- Info block checksum does not match (and recovering from the copy also fails)
+- All internal available blocks are not uniquely and entirely addressed by the
+ sum of mapped blocks and free blocks (from the BTT flog).
+- Rebuilding free list from the flog reveals missing/duplicate/impossible
+ entries
+- A map entry is out of bounds
+
+If any of these error conditions are encountered, the arena is put into a read
+only state using a flag in the info block.
+
+
+5. In-kernel usage
+==================
+
+Any block driver that supports byte granularity IO to the storage may register
+with the BTT. It will have to provide the rw_bytes interface in its
+block_device_operations struct:
+
+ int (*rw_bytes)(struct gendisk *, void *, size_t, off_t, int rw);
+
+It may register with the BTT after it adds its own gendisk, using btt_init:
+
+ struct btt *btt_init(struct gendisk *disk, unsigned long long rawsize,
+ u32 lbasize, u8 uuid[], int maxlane);
+
+note that maxlane is the maximum amount of concurrency the driver wishes to
+allow the BTT to use.
+
+The BTT 'disk' appears as a stacked block device that grabs the underlying block
+device in the O_EXCL mode.
+
+When the driver wishes to remove the backing disk, it should similarly call
+btt_fini using the same struct btt* handle that was provided to it by btt_init.
+
+ void btt_fini(struct btt *btt);
+
diff --git a/Documentation/nvdimm/nvdimm.txt b/Documentation/nvdimm/nvdimm.txt
new file mode 100644
index 000000000000..197a0b6b0582
--- /dev/null
+++ b/Documentation/nvdimm/nvdimm.txt
@@ -0,0 +1,808 @@
+ LIBNVDIMM: Non-Volatile Devices
+ libnvdimm - kernel / libndctl - userspace helper library
+ linux-nvdimm@lists.01.org
+ v13
+
+
+ Glossary
+ Overview
+ Supporting Documents
+ Git Trees
+ LIBNVDIMM PMEM and BLK
+ Why BLK?
+ PMEM vs BLK
+ BLK-REGIONs, PMEM-REGIONs, Atomic Sectors, and DAX
+ Example NVDIMM Platform
+ LIBNVDIMM Kernel Device Model and LIBNDCTL Userspace API
+ LIBNDCTL: Context
+ libndctl: instantiate a new library context example
+ LIBNVDIMM/LIBNDCTL: Bus
+ libnvdimm: control class device in /sys/class
+ libnvdimm: bus
+ libndctl: bus enumeration example
+ LIBNVDIMM/LIBNDCTL: DIMM (NMEM)
+ libnvdimm: DIMM (NMEM)
+ libndctl: DIMM enumeration example
+ LIBNVDIMM/LIBNDCTL: Region
+ libnvdimm: region
+ libndctl: region enumeration example
+ Why Not Encode the Region Type into the Region Name?
+ How Do I Determine the Major Type of a Region?
+ LIBNVDIMM/LIBNDCTL: Namespace
+ libnvdimm: namespace
+ libndctl: namespace enumeration example
+ libndctl: namespace creation example
+ Why the Term "namespace"?
+ LIBNVDIMM/LIBNDCTL: Block Translation Table "btt"
+ libnvdimm: btt layout
+ libndctl: btt creation example
+ Summary LIBNDCTL Diagram
+
+
+Glossary
+--------
+
+PMEM: A system-physical-address range where writes are persistent. A
+block device composed of PMEM is capable of DAX. A PMEM address range
+may span an interleave of several DIMMs.
+
+BLK: A set of one or more programmable memory mapped apertures provided
+by a DIMM to access its media. This indirection precludes the
+performance benefit of interleaving, but enables DIMM-bounded failure
+modes.
+
+DPA: DIMM Physical Address, is a DIMM-relative offset. With one DIMM in
+the system there would be a 1:1 system-physical-address:DPA association.
+Once more DIMMs are added a memory controller interleave must be
+decoded to determine the DPA associated with a given
+system-physical-address. BLK capacity always has a 1:1 relationship
+with a single-DIMM's DPA range.
+
+DAX: File system extensions to bypass the page cache and block layer to
+mmap persistent memory, from a PMEM block device, directly into a
+process address space.
+
+BTT: Block Translation Table: Persistent memory is byte addressable.
+Existing software may have an expectation that the power-fail-atomicity
+of writes is at least one sector, 512 bytes. The BTT is an indirection
+table with atomic update semantics to front a PMEM/BLK block device
+driver and present arbitrary atomic sector sizes.
+
+LABEL: Metadata stored on a DIMM device that partitions and identifies
+(persistently names) storage between PMEM and BLK. It also partitions
+BLK storage to host BTTs with different parameters per BLK-partition.
+Note that traditional partition tables, GPT/MBR, are layered on top of a
+BLK or PMEM device.
+
+
+Overview
+--------
+
+The LIBNVDIMM subsystem provides support for three types of NVDIMMs, namely,
+PMEM, BLK, and NVDIMM devices that can simultaneously support both PMEM
+and BLK mode access. These three modes of operation are described by
+the "NVDIMM Firmware Interface Table" (NFIT) in ACPI 6. While the LIBNVDIMM
+implementation is generic and supports pre-NFIT platforms, it was guided
+by the superset of capabilities need to support this ACPI 6 definition
+for NVDIMM resources. The bulk of the kernel implementation is in place
+to handle the case where DPA accessible via PMEM is aliased with DPA
+accessible via BLK. When that occurs a LABEL is needed to reserve DPA
+for exclusive access via one mode a time.
+
+Supporting Documents
+ACPI 6: http://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf
+NVDIMM Namespace: http://pmem.io/documents/NVDIMM_Namespace_Spec.pdf
+DSM Interface Example: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
+Driver Writer's Guide: http://pmem.io/documents/NVDIMM_Driver_Writers_Guide.pdf
+
+Git Trees
+LIBNVDIMM: https://git.kernel.org/cgit/linux/kernel/git/djbw/nvdimm.git
+LIBNDCTL: https://github.com/pmem/ndctl.git
+PMEM: https://github.com/01org/prd
+
+
+LIBNVDIMM PMEM and BLK
+------------------
+
+Prior to the arrival of the NFIT, non-volatile memory was described to a
+system in various ad-hoc ways. Usually only the bare minimum was
+provided, namely, a single system-physical-address range where writes
+are expected to be durable after a system power loss. Now, the NFIT
+specification standardizes not only the description of PMEM, but also
+BLK and platform message-passing entry points for control and
+configuration.
+
+For each NVDIMM access method (PMEM, BLK), LIBNVDIMM provides a block
+device driver:
+
+ 1. PMEM (nd_pmem.ko): Drives a system-physical-address range. This
+ range is contiguous in system memory and may be interleaved (hardware
+ memory controller striped) across multiple DIMMs. When interleaved the
+ platform may optionally provide details of which DIMMs are participating
+ in the interleave.
+
+ Note that while LIBNVDIMM describes system-physical-address ranges that may
+ alias with BLK access as ND_NAMESPACE_PMEM ranges and those without
+ alias as ND_NAMESPACE_IO ranges, to the nd_pmem driver there is no
+ distinction. The different device-types are an implementation detail
+ that userspace can exploit to implement policies like "only interface
+ with address ranges from certain DIMMs". It is worth noting that when
+ aliasing is present and a DIMM lacks a label, then no block device can
+ be created by default as userspace needs to do at least one allocation
+ of DPA to the PMEM range. In contrast ND_NAMESPACE_IO ranges, once
+ registered, can be immediately attached to nd_pmem.
+
+ 2. BLK (nd_blk.ko): This driver performs I/O using a set of platform
+ defined apertures. A set of apertures will all access just one DIMM.
+ Multiple windows allow multiple concurrent accesses, much like
+ tagged-command-queuing, and would likely be used by different threads or
+ different CPUs.
+
+ The NFIT specification defines a standard format for a BLK-aperture, but
+ the spec also allows for vendor specific layouts, and non-NFIT BLK
+ implementations may other designs for BLK I/O. For this reason "nd_blk"
+ calls back into platform-specific code to perform the I/O. One such
+ implementation is defined in the "Driver Writer's Guide" and "DSM
+ Interface Example".
+
+
+Why BLK?
+--------
+
+While PMEM provides direct byte-addressable CPU-load/store access to
+NVDIMM storage, it does not provide the best system RAS (recovery,
+availability, and serviceability) model. An access to a corrupted
+system-physical-address address causes a cpu exception while an access
+to a corrupted address through an BLK-aperture causes that block window
+to raise an error status in a register. The latter is more aligned with
+the standard error model that host-bus-adapter attached disks present.
+Also, if an administrator ever wants to replace a memory it is easier to
+service a system at DIMM module boundaries. Compare this to PMEM where
+data could be interleaved in an opaque hardware specific manner across
+several DIMMs.
+
+PMEM vs BLK
+BLK-apertures solve this RAS problem, but their presence is also the
+major contributing factor to the complexity of the ND subsystem. They
+complicate the implementation because PMEM and BLK alias in DPA space.
+Any given DIMM's DPA-range may contribute to one or more
+system-physical-address sets of interleaved DIMMs, *and* may also be
+accessed in its entirety through its BLK-aperture. Accessing a DPA
+through a system-physical-address while simultaneously accessing the
+same DPA through a BLK-aperture has undefined results. For this reason,
+DIMMs with this dual interface configuration include a DSM function to
+store/retrieve a LABEL. The LABEL effectively partitions the DPA-space
+into exclusive system-physical-address and BLK-aperture accessible
+regions. For simplicity a DIM