diff options
author | Michal Hocko <mhocko@suse.com> | 2025-02-06 13:26:33 +0100 |
---|---|---|
committer | Andrew Morton <akpm@linux-foundation.org> | 2025-03-16 22:06:08 -0700 |
commit | 9a5b183941b52f84c0f9e5f27ce44e99318c9e0f (patch) | |
tree | 87fac74052391b36c02c1c29b7b6eb69ab48e3d6 | |
parent | 1d212293ffd145eebd795d5969a81a3b59f71bcb (diff) | |
download | linux-9a5b183941b52f84c0f9e5f27ce44e99318c9e0f.tar.gz linux-9a5b183941b52f84c0f9e5f27ce44e99318c9e0f.tar.bz2 linux-9a5b183941b52f84c0f9e5f27ce44e99318c9e0f.zip |
mm, percpu: do not consider sleepable allocations atomic
28307d938fb2 ("percpu: make pcpu_alloc() aware of current gfp context")
has fixed a reclaim recursion for scoped GFP_NOFS context. It has done
that by avoiding taking pcpu_alloc_mutex. This is a correct solution as
the worker context with full GFP_KERNEL allocation/reclaim power and which
is using the same lock cannot block the NOFS pcpu_alloc caller.
On the other hand this is a very conservative approach that could lead to
failures because pcpu_alloc lockless implementation is quite limited.
We have a bug report about premature failures when scsi array of 193
devices is scanned. Sometimes (not consistently) the scanning aborts
because the iscsid daemon fails to create the queue for a random scsi
device during the scan. iscsid itslef is running with PR_SET_IO_FLUSHER
set so all allocations from this process context are GFP_NOIO. This in
turn makes any pcpu_alloc lockless (without pcpu_alloc_mutex) which leads
to pre-mature failures.
It has turned out that iscsid has worked around this by dropping
PR_SET_IO_FLUSHER (https://github.com/open-iscsi/open-iscsi/pull/382) when
scanning host. But we can do better in this case on the kernel side and
use pcpu_alloc_mutex for NOIO resp. NOFS constrained allocation scopes
too. We just need the WQ worker to never trigger IO/FS reclaim. Achieve
that by enforcing scoped GFP_NOIO for the whole execution of
pcpu_balance_workfn (this will imply NOFS constrain as well). This will
remove the dependency chain and preserve the full allocation power of the
pcpu_alloc call.
While at it make is_atomic really test for blockable allocations.
Link: https://lkml.kernel.org/r/20250206122633.167896-1-mhocko@kernel.org
Fixes: 28307d938fb2 ("percpu: make pcpu_alloc() aware of current gfp context")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Filipe David Manana <fdmanana@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-rw-r--r-- | mm/percpu.c | 8 |
1 files changed, 7 insertions, 1 deletions
diff --git a/mm/percpu.c b/mm/percpu.c index ac61e3fc5f15..027fb6497495 100644 --- a/mm/percpu.c +++ b/mm/percpu.c @@ -1745,7 +1745,7 @@ void __percpu *pcpu_alloc_noprof(size_t size, size_t align, bool reserved, gfp = current_gfp_context(gfp); /* whitelisted flags that can be passed to the backing allocators */ pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); - is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; + is_atomic = !gfpflags_allow_blocking(gfp); do_warn = !(gfp & __GFP_NOWARN); /* @@ -2191,7 +2191,12 @@ static void pcpu_balance_workfn(struct work_struct *work) * to grow other chunks. This then gives pcpu_reclaim_populated() time * to move fully free chunks to the active list to be freed if * appropriate. + * + * Enforce GFP_NOIO allocations because we have pcpu_alloc users + * constrained to GFP_NOIO/NOFS contexts and they could form lock + * dependency through pcpu_alloc_mutex */ + unsigned int flags = memalloc_noio_save(); mutex_lock(&pcpu_alloc_mutex); spin_lock_irq(&pcpu_lock); @@ -2202,6 +2207,7 @@ static void pcpu_balance_workfn(struct work_struct *work) spin_unlock_irq(&pcpu_lock); mutex_unlock(&pcpu_alloc_mutex); + memalloc_noio_restore(flags); } /** |