summaryrefslogtreecommitdiff
path: root/kernel
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2024-05-13 17:18:51 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2024-05-13 17:18:51 -0700
commit6e5a0c30b616bfff6926ecca5d88e3d06e6bf79a (patch)
treec8b459ab41f9265828116d04faa23e5224be6e5e /kernel
parent17ca7fc22f4bbc795e4d136449521b2fecb88e06 (diff)
parent97450eb909658573dcacc1063b06d3d08642c0c1 (diff)
downloadlinux-6e5a0c30b616bfff6926ecca5d88e3d06e6bf79a.tar.gz
linux-6e5a0c30b616bfff6926ecca5d88e3d06e6bf79a.tar.bz2
linux-6e5a0c30b616bfff6926ecca5d88e3d06e6bf79a.zip
Merge tag 'sched-core-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar: - Add cpufreq pressure feedback for the scheduler - Rework misfit load-balancing wrt affinity restrictions - Clean up and simplify the code around ::overutilized and ::overload access. - Simplify sched_balance_newidle() - Bump SCHEDSTAT_VERSION to 16 due to a cleanup of CPU_MAX_IDLE_TYPES handling that changed the output. - Rework & clean up <asm/vtime.h> interactions wrt arch_vtime_task_switch() - Reorganize, clean up and unify most of the higher level scheduler balancing function names around the sched_balance_*() prefix - Simplify the balancing flag code (sched_balance_running) - Miscellaneous cleanups & fixes * tag 'sched-core-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (50 commits) sched/pelt: Remove shift of thermal clock sched/cpufreq: Rename arch_update_thermal_pressure() => arch_update_hw_pressure() thermal/cpufreq: Remove arch_update_thermal_pressure() sched/cpufreq: Take cpufreq feedback into account cpufreq: Add a cpufreq pressure feedback for the scheduler sched/fair: Fix update of rd->sg_overutilized sched/vtime: Do not include <asm/vtime.h> header s390/irq,nmi: Include <asm/vtime.h> header directly s390/vtime: Remove unused __ARCH_HAS_VTIME_TASK_SWITCH leftover sched/vtime: Get rid of generic vtime_task_switch() implementation sched/vtime: Remove confusing arch_vtime_task_switch() declaration sched/balancing: Simplify the sg_status bitmask and use separate ->overloaded and ->overutilized flags sched/fair: Rename set_rd_overutilized_status() to set_rd_overutilized() sched/fair: Rename SG_OVERLOAD to SG_OVERLOADED sched/fair: Rename {set|get}_rd_overload() to {set|get}_rd_overloaded() sched/fair: Rename root_domain::overload to ::overloaded sched/fair: Use helper functions to access root_domain::overload sched/fair: Check root_domain::overload value before update sched/fair: Combine EAS check with root_domain::overutilized access sched/fair: Simplify the continue_balancing logic in sched_balance_newidle() ...
Diffstat (limited to 'kernel')
-rw-r--r--kernel/sched/core.c14
-rw-r--r--kernel/sched/cputime.c13
-rw-r--r--kernel/sched/fair.c503
-rw-r--r--kernel/sched/loadavg.c2
-rw-r--r--kernel/sched/pelt.c22
-rw-r--r--kernel/sched/pelt.h16
-rw-r--r--kernel/sched/sched.h71
-rw-r--r--kernel/sched/stats.c5
-rw-r--r--kernel/sched/topology.c56
-rw-r--r--kernel/time/timer.c2
-rw-r--r--kernel/workqueue.c2
11 files changed, 381 insertions, 325 deletions
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index 7019a40457a6..1a914388144a 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -108,7 +108,7 @@ EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
-EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
+EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
@@ -5662,13 +5662,13 @@ static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
* This function gets called by the timer code, with HZ frequency.
* We call it with interrupts disabled.
*/
-void scheduler_tick(void)
+void sched_tick(void)
{
int cpu = smp_processor_id();
struct rq *rq = cpu_rq(cpu);
struct task_struct *curr = rq->curr;
struct rq_flags rf;
- unsigned long thermal_pressure;
+ unsigned long hw_pressure;
u64 resched_latency;
if (housekeeping_cpu(cpu, HK_TYPE_TICK))
@@ -5679,8 +5679,8 @@ void scheduler_tick(void)
rq_lock(rq, &rf);
update_rq_clock(rq);
- thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
- update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
+ hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
+ update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure);
curr->sched_class->task_tick(rq, curr, 0);
if (sched_feat(LATENCY_WARN))
resched_latency = cpu_resched_latency(rq);
@@ -5700,7 +5700,7 @@ void scheduler_tick(void)
#ifdef CONFIG_SMP
rq->idle_balance = idle_cpu(cpu);
- trigger_load_balance(rq);
+ sched_balance_trigger(rq);
#endif
}
@@ -6585,7 +6585,7 @@ pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
* paths. For example, see arch/x86/entry_64.S.
*
* To drive preemption between tasks, the scheduler sets the flag in timer
- * interrupt handler scheduler_tick().
+ * interrupt handler sched_tick().
*
* 3. Wakeups don't really cause entry into schedule(). They add a
* task to the run-queue and that's it.
diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c
index af7952f12e6c..aa48b2ec879d 100644
--- a/kernel/sched/cputime.c
+++ b/kernel/sched/cputime.c
@@ -424,19 +424,6 @@ static inline void irqtime_account_process_tick(struct task_struct *p, int user_
*/
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
-# ifndef __ARCH_HAS_VTIME_TASK_SWITCH
-void vtime_task_switch(struct task_struct *prev)
-{
- if (is_idle_task(prev))
- vtime_account_idle(prev);
- else
- vtime_account_kernel(prev);
-
- vtime_flush(prev);
- arch_vtime_task_switch(prev);
-}
-# endif
-
void vtime_account_irq(struct task_struct *tsk, unsigned int offset)
{
unsigned int pc = irq_count() - offset;
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index c62805dbd608..146ecf9cc3af 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -78,15 +78,9 @@ static unsigned int normalized_sysctl_sched_base_slice = 750000ULL;
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
-int sched_thermal_decay_shift;
static int __init setup_sched_thermal_decay_shift(char *str)
{
- int _shift = 0;
-
- if (kstrtoint(str, 0, &_shift))
- pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
-
- sched_thermal_decay_shift = clamp(_shift, 0, 10);
+ pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
return 1;
}
__setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
@@ -388,8 +382,8 @@ static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
/*
* With cfs_rq being unthrottled/throttled during an enqueue,
- * it can happen the tmp_alone_branch points the a leaf that
- * we finally want to del. In this case, tmp_alone_branch moves
+ * it can happen the tmp_alone_branch points to the leaf that
+ * we finally want to delete. In this case, tmp_alone_branch moves
* to the prev element but it will point to rq->leaf_cfs_rq_list
* at the end of the enqueue.
*/
@@ -406,7 +400,7 @@ static inline void assert_list_leaf_cfs_rq(struct rq *rq)
SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
}
-/* Iterate thr' all leaf cfs_rq's on a runqueue */
+/* Iterate through all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
leaf_cfs_rq_list)
@@ -595,13 +589,13 @@ static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
*
* [[ NOTE: this is only equal to the ideal scheduler under the condition
* that join/leave operations happen at lag_i = 0, otherwise the
- * virtual time has non-continguous motion equivalent to:
+ * virtual time has non-contiguous motion equivalent to:
*
* V +-= lag_i / W
*
* Also see the comment in place_entity() that deals with this. ]]
*
- * However, since v_i is u64, and the multiplcation could easily overflow
+ * However, since v_i is u64, and the multiplication could easily overflow
* transform it into a relative form that uses smaller quantities:
*
* Substitute: v_i == (v_i - v0) + v0
@@ -671,7 +665,7 @@ u64 avg_vruntime(struct cfs_rq *cfs_rq)
}
if (load) {
- /* sign flips effective floor / ceil */
+ /* sign flips effective floor / ceiling */
if (avg < 0)
avg -= (load - 1);
avg = div_s64(avg, load);
@@ -727,7 +721,7 @@ static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
*
* lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
*
- * Note: using 'avg_vruntime() > se->vruntime' is inacurate due
+ * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
* to the loss in precision caused by the division.
*/
static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
@@ -1030,7 +1024,7 @@ void init_entity_runnable_average(struct sched_entity *se)
if (entity_is_task(se))
sa->load_avg = scale_load_down(se->load.weight);
- /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
+ /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
}
/*
@@ -1622,7 +1616,7 @@ static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
max_dist = READ_ONCE(sched_max_numa_distance);
/*
* This code is called for each node, introducing N^2 complexity,
- * which should be ok given the number of nodes rarely exceeds 8.
+ * which should be OK given the number of nodes rarely exceeds 8.
*/
for_each_online_node(node) {
unsigned long faults;
@@ -3296,7 +3290,7 @@ retry_pids:
/*
* Shared library pages mapped by multiple processes are not
* migrated as it is expected they are cache replicated. Avoid
- * hinting faults in read-only file-backed mappings or the vdso
+ * hinting faults in read-only file-backed mappings or the vDSO
* as migrating the pages will be of marginal benefit.
*/
if (!vma->vm_mm ||
@@ -3307,7 +3301,7 @@ retry_pids:
/*
* Skip inaccessible VMAs to avoid any confusion between
- * PROT_NONE and NUMA hinting ptes
+ * PROT_NONE and NUMA hinting PTEs
*/
if (!vma_is_accessible(vma)) {
trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
@@ -3339,7 +3333,7 @@ retry_pids:
}
/*
- * Scanning the VMA's of short lived tasks add more overhead. So
+ * Scanning the VMAs of short lived tasks add more overhead. So
* delay the scan for new VMAs.
*/
if (mm->numa_scan_seq && time_before(jiffies,
@@ -3383,7 +3377,7 @@ retry_pids:
/*
* Try to scan sysctl_numa_balancing_size worth of
* hpages that have at least one present PTE that
- * is not already pte-numa. If the VMA contains
+ * is not already PTE-numa. If the VMA contains
* areas that are unused or already full of prot_numa
* PTEs, scan up to virtpages, to skip through those
* areas faster.
@@ -3690,7 +3684,7 @@ static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
/*
* VRUNTIME
- * ========
+ * --------
*
* COROLLARY #1: The virtual runtime of the entity needs to be
* adjusted if re-weight at !0-lag point.
@@ -3773,7 +3767,7 @@ static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
/*
* DEADLINE
- * ========
+ * --------
*
* When the weight changes, the virtual time slope changes and
* we should adjust the relative virtual deadline accordingly.
@@ -4745,7 +4739,7 @@ static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *s
/*
* Track task load average for carrying it to new CPU after migrated, and
- * track group sched_entity load average for task_h_load calc in migration
+ * track group sched_entity load average for task_h_load calculation in migration
*/
if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
__update_load_avg_se(now, cfs_rq, se);
@@ -4828,7 +4822,7 @@ static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
return cfs_rq->avg.load_avg;
}
-static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
+static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
static inline unsigned long task_util(struct task_struct *p)
{
@@ -4971,13 +4965,22 @@ done:
trace_sched_util_est_se_tp(&p->se);
}
+static inline unsigned long get_actual_cpu_capacity(int cpu)
+{
+ unsigned long capacity = arch_scale_cpu_capacity(cpu);
+
+ capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
+
+ return capacity;
+}
+
static inline int util_fits_cpu(unsigned long util,
unsigned long uclamp_min,
unsigned long uclamp_max,
int cpu)
{
- unsigned long capacity_orig, capacity_orig_thermal;
unsigned long capacity = capacity_of(cpu);
+ unsigned long capacity_orig;
bool fits, uclamp_max_fits;
/*
@@ -4999,7 +5002,7 @@ static inline int util_fits_cpu(unsigned long util,
* Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
* should fit a little cpu even if there's some pressure.
*
- * Only exception is for thermal pressure since it has a direct impact
+ * Only exception is for HW or cpufreq pressure since it has a direct impact
* on available OPP of the system.
*
* We honour it for uclamp_min only as a drop in performance level
@@ -5009,7 +5012,6 @@ static inline int util_fits_cpu(unsigned long util,
* goal is to cap the task. So it's okay if it's getting less.
*/
capacity_orig = arch_scale_cpu_capacity(cpu);
- capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
/*
* We want to force a task to fit a cpu as implied by uclamp_max.
@@ -5026,14 +5028,14 @@ static inline int util_fits_cpu(unsigned long util,
* | | | | | | |
* | | | | | | |
* +----------------------------------------
- * cpu0 cpu1 cpu2
+ * CPU0 CPU1 CPU2
*
* In the above example if a task is capped to a specific performance
* point, y, then when:
*
- * * util = 80% of x then it does not fit on cpu0 and should migrate
- * to cpu1
- * * util = 80% of y then it is forced to fit on cpu1 to honour
+ * * util = 80% of x then it does not fit on CPU0 and should migrate
+ * to CPU1
+ * * util = 80% of y then it is forced to fit on CPU1 to honour
* uclamp_max request.
*
* which is what we're enforcing here. A task always fits if
@@ -5064,7 +5066,7 @@ static inline int util_fits_cpu(unsigned long util,
* | | | | | | |
* | | | | | | | (region c, boosted, util < uclamp_min)
* +----------------------------------------
- * cpu0 cpu1 cpu2
+ * CPU0 CPU1 CPU2
*
* a) If util > uclamp_max, then we're capped, we don't care about
* actual fitness value here. We only care if uclamp_max fits
@@ -5084,7 +5086,8 @@ static inline int util_fits_cpu(unsigned long util,
* handle the case uclamp_min > uclamp_max.
*/
uclamp_min = min(uclamp_min, uclamp_max);
- if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
+ if (fits && (util < uclamp_min) &&
+ (uclamp_min > get_actual_cpu_capacity(cpu)))
return -1;
return fits;
@@ -5104,15 +5107,19 @@ static inline int task_fits_cpu(struct task_struct *p, int cpu)
static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
{
+ int cpu = cpu_of(rq);
+
if (!sched_asym_cpucap_active())
return;
- if (!p || p->nr_cpus_allowed == 1) {
- rq->misfit_task_load = 0;
- return;
- }
+ /*
+ * Affinity allows us to go somewhere higher? Or are we on biggest
+ * available CPU already? Or do we fit into this CPU ?
+ */
+ if (!p || (p->nr_cpus_allowed == 1) ||
+ (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
+ task_fits_cpu(p, cpu)) {
- if (task_fits_cpu(p, cpu_of(rq))) {
rq->misfit_task_load = 0;
return;
}
@@ -5148,7 +5155,7 @@ attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
static inline void
detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
-static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
+static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
{
return 0;
}
@@ -5254,7 +5261,7 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
se->vruntime = vruntime - lag;
/*
- * When joining the competition; the exisiting tasks will be,
+ * When joining the competition; the existing tasks will be,
* on average, halfway through their slice, as such start tasks
* off with half a slice to ease into the competition.
*/
@@ -5403,7 +5410,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
* Now advance min_vruntime if @se was the entity holding it back,
* except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
* put back on, and if we advance min_vruntime, we'll be placed back
- * further than we started -- ie. we'll be penalized.
+ * further than we started -- i.e. we'll be penalized.
*/
if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
update_min_vruntime(cfs_rq);
@@ -5439,7 +5446,7 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
/*
* Track our maximum slice length, if the CPU's load is at
- * least twice that of our own weight (i.e. dont track it
+ * least twice that of our own weight (i.e. don't track it
* when there are only lesser-weight tasks around):
*/
if (schedstat_enabled() &&
@@ -6675,22 +6682,47 @@ static inline void hrtick_update(struct rq *rq)
#ifdef CONFIG_SMP
static inline bool cpu_overutilized(int cpu)
{
- unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
- unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
+ unsigned long rq_util_min, rq_util_max;
+
+ if (!sched_energy_enabled())
+ return false;
+
+ rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
+ rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
/* Return true only if the utilization doesn't fit CPU's capacity */
return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
}
-static inline void update_overutilized_status(struct rq *rq)
+/*
+ * overutilized value make sense only if EAS is enabled
+ */
+static inline bool is_rd_overutilized(struct root_domain *rd)
+{
+ return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
+}
+
+static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
{
- if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
- WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
- trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
- }
+ if (!sched_energy_enabled())
+ return;
+
+ WRITE_ONCE(rd->overutilized, flag);
+ trace_sched_overutilized_tp(rd, flag);
+}
+
+static inline void check_update_overutilized_status(struct rq *rq)
+{
+ /*
+ * overutilized field is used for load balancing decisions only
+ * if energy aware scheduler is being used
+ */
+
+ if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
+ set_rd_overutilized(rq->rd, 1);
}
#else
-static inline void update_overutilized_status(struct rq *rq) { }
+static inline void check_update_overutilized_status(struct rq *rq) { }
#endif
/* Runqueue only has SCHED_IDLE tasks enqueued */
@@ -6791,7 +6823,7 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
* and the following generally works well enough in practice.
*/
if (!task_new)
- update_overutilized_status(rq);
+ check_update_overutilized_status(rq);
enqueue_throttle:
assert_list_leaf_cfs_rq(rq);
@@ -6878,7 +6910,7 @@ dequeue_throttle:
#ifdef CONFIG_SMP
-/* Working cpumask for: load_balance, load_balance_newidle. */
+/* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
@@ -7110,13 +7142,13 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p,
}
static struct sched_group *
-find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
+sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
/*
- * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
+ * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
*/
static int
-find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
+sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
{
unsigned long load, min_load = ULONG_MAX;
unsigned int min_exit_latency = UINT_MAX;
@@ -7172,7 +7204,7 @@ find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this
return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
}
-static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
+static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
int cpu, int prev_cpu, int sd_flag)
{
int new_cpu = cpu;
@@ -7197,13 +7229,13 @@ static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p
continue;
}
- group = find_idlest_group(sd, p, cpu);
+ group = sched_balance_find_dst_group(sd, p, cpu);
if (!group) {
sd = sd->child;
continue;
}
- new_cpu = find_idlest_group_cpu(group, p, cpu);
+ new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
if (new_cpu == cpu) {
/* Now try balancing at a lower domain level of 'cpu': */
sd = sd->child;
@@ -7471,7 +7503,7 @@ select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
* Look for the CPU with best capacity.
*/
else if (fits < 0)
- cpu_cap = arch_scale_cpu_capacity(cpu) - thermal_load_avg(cpu_rq(cpu));
+ cpu_cap = get_actual_cpu_capacity(cpu);
/*
* First, select CPU which fits better (-1 being better than 0).
@@ -7515,7 +7547,7 @@ static int select_idle_sibling(struct task_struct *p, int prev, int target)
/*
* On asymmetric system, update task utilization because we will check
- * that the task fits with cpu's capacity.
+ * that the task fits with CPU's capacity.
*/
if (sched_asym_cpucap_active()) {
sync_entity_load_avg(&p->se);
@@ -7948,7 +7980,7 @@ compute_energy(struct energy_env *eenv, struct perf_domain *pd,
* NOTE: Forkees are not accepted in the energy-aware wake-up path because
* they don't have any useful utilization data yet and it's not possible to
* forecast their impact on energy consumption. Consequently, they will be
- * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
+ * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
* to be energy-inefficient in some use-cases. The alternative would be to
* bias new tasks towards specific types of CPUs first, or to try to infer
* their util_avg from the parent task, but those heuristics could hurt
@@ -7964,15 +7996,15 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
struct root_domain *rd = this_rq()->rd;
int cpu, best_energy_cpu, target = -1;
int prev_fits = -1, best_fits = -1;
- unsigned long best_thermal_cap = 0;
- unsigned long prev_thermal_cap = 0;
+ unsigned long best_actual_cap = 0;
+ unsigned long prev_actual_cap = 0;
struct sched_domain *sd;
struct perf_domain *pd;
struct energy_env eenv;
rcu_read_lock();
pd = rcu_dereference(rd->pd);
- if (!pd || READ_ONCE(rd->overutilized))
+ if (!pd)
goto unlock;
/*
@@ -7995,7 +8027,7 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
for (; pd; pd = pd->next) {
unsigned long util_min = p_util_min, util_max = p_util_max;
- unsigned long cpu_cap, cpu_thermal_cap, util;
+ unsigned long cpu_cap, cpu_actual_cap, util;
long prev_spare_cap = -1, max_spare_cap = -1;
unsigned long rq_util_min, rq_util_max;
unsigned long cur_delta, base_energy;
@@ -8007,18 +8039,17 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
if (cpumask_empty(cpus))
continue;
- /* Account thermal pressure for the energy estimation */
+ /* Account external pressure for the energy estimation */
cpu = cpumask_first(cpus);
- cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
- cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
+ cpu_actual_cap = get_actual_cpu_capacity(cpu);
- eenv.cpu_cap = cpu_thermal_cap;
+ eenv.cpu_cap = cpu_actual_cap;
eenv.pd_cap = 0;
for_each_cpu(cpu, cpus) {
struct rq *rq = cpu_rq(cpu);
- eenv.pd_cap += cpu_thermal_cap;
+ eenv.pd_cap += cpu_actual_cap;
if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
continue;
@@ -8039,7 +8070,7 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
/*
* Open code uclamp_rq_util_with() except for
- * the clamp() part. Ie: apply max aggregation
+ * the clamp() part. I.e.: apply max aggregation
* only. util_fits_cpu() logic requires to
* operate on non clamped util but must use the
* max-aggregated uclamp_{min, max}.
@@ -8089,7 +8120,7 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
if (prev_delta < base_energy)
goto unlock;
prev_delta -= base_energy;
- prev_thermal_cap = cpu_thermal_cap;
+ prev_actual_cap = cpu_actual_cap;
best_delta = min(best_delta, prev_delta);
}
@@ -8104,7 +8135,7 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
* but best energy cpu has better capacity.
*/
if ((max_fits < 0) &&
- (cpu_thermal_cap <= best_thermal_cap))
+ (cpu_actual_cap <= best_actual_cap))
continue;
cur_delta = compute_energy(&eenv, pd, cpus, p,
@@ -8125,14 +8156,14 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
best_delta = cur_delta;
best_energy_cpu = max_spare_cap_cpu;
best_fits = max_fits;
- best_thermal_cap = cpu_thermal_cap;
+ best_actual_cap = cpu_actual_cap;
}
}
rcu_read_unlock();
if ((best_fits > prev_fits) ||
((best_fits > 0) && (best_delta < prev_delta)) ||
- ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
+ ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
target = best_energy_cpu;
return target;
@@ -8175,7 +8206,7 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
cpumask_test_cpu(cpu, p->cpus_ptr))
return cpu;
- if (sched_energy_enabled()) {
+ if (!is_rd_overutilized(this_rq()->rd)) {
new_cpu = find_energy_efficient_cpu(p, prev_cpu);
if (new_cpu >= 0)
return new_cpu;
@@ -8213,7 +8244,7 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
if (unlikely(sd)) {
/* Slow path */
- new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
+ new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
} else if (wake_flags & WF_TTWU) { /* XXX always ? */
/* Fast path */
new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
@@ -8259,14 +8290,46 @@ static void task_dead_fair(struct task_struct *p)
remove_entity_load_avg(&p->se);
}
+/*
+ * Set the max capacity the task is allowed to run at for misfit detection.
+ */
+static void set_task_max_allowed_capacity(struct task_struct *p)
+{
+ struct asym_cap_data *entry;
+
+ if (!sched_asym_cpucap_active())
+ return;
+
+ rcu_read_lock();
+ list_for_each_entry_rcu(entry, &asym_cap_list, link) {
+ cpumask_t *cpumask;
+
+ cpumask = cpu_capacity_span(entry);
+ if (!cpumask_intersects(p->cpus_ptr, cpumask))
+ continue;
+
+ p->max_allowed_capacity = entry->capacity;
+ break;
+ }
+ rcu_read_unlock();
+}
+
+static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
+{
+ set_cpus_allowed_common(p, ctx);
+ set_task_max_allowed_capacity(p);
+}
+
static int
balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
if (rq->nr_running)
return 1;
- return newidle_balance(rq, rf) != 0;
+ return sched_balance_newidle(rq, rf) != 0;
}
+#else
+static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
#endif /* CONFIG_SMP */
static void set_next_buddy(struct sched_entity *se)
@@ -8517,10 +8580,10 @@ idle:
if (!rf)
return NULL;
- new_tasks = newidle_balance(rq, rf);
+ new_tasks = sched_balance_newidle(rq, rf);
/*
- * Because newidle_balance() releases (and re-acquires) rq->lock, it is
+ * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
* possible for any higher priority task to appear. In that case we
* must re-start the pick_next_entity() loop.
*/
@@ -8598,7 +8661,7 @@ static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
return false;
- /* Tell the scheduler that we'd really like pse to run next. */
+ /* Tell the scheduler that we'd really like se to run next. */
set_next_buddy(se);
yield_task_fair(rq);
@@ -8936,7 +8999,7 @@ int can_migrate_task(struct task_struct *p, struct lb_env *env)
if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
return 0;
- /* Disregard pcpu kthreads; they are where they need to be. */
+ /* Disregard percpu kthreads; they are where they need to be. */
if (kthread_is_per_cpu(p))
return 0;
@@ -9082,7 +9145,7 @@ static int detach_tasks(struct lb_env *env)
* We don't want to steal all, otherwise we may be treated likewise,
* which could at worst lead to a livelock crash.
*/
- if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
+ if (env->idle && env->src_rq->nr_running <= 1)
break;
env->loop++;
@@ -9261,7 +9324,7 @@ static inline bool others_have_blocked(struct rq *rq)
if (cpu_util_dl(rq))
return true;
- if (thermal_load_avg(rq))
+ if (hw_load_avg(rq))
return true;
if (cpu_util_irq(rq))
@@ -9291,7 +9354,7 @@ static bool __update_blocked_others(struct rq *rq, bool *done)
{
const struct sched_class *curr_class;
u64 now = rq_clock_pelt(rq);
- unsigned long thermal_pressure;
+ unsigned long hw_pressure;
bool decayed;
/*
@@ -9300,11 +9363,11 @@ static bool __update_blocked_others(struct rq *rq, bool *done)
*/
curr_class = rq->curr->sched_class;
- thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
+ hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
- update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
+ update_hw_load_avg(now, rq, hw_pressure) |
update_irq_load_avg(rq, 0);
if (others_have_blocked(rq))
@@ -9423,7 +9486,7 @@ static unsigned long task_h_load(struct task_struct *p)
}
#endif
-static void update_blocked_averages(int cpu)
+static void sched_balance_update_blocked_averages(int cpu)
{
bool decayed = false, done = true;
struct rq *rq = cpu_rq(cpu);
@@ -9442,25 +9505,25 @@ static void update_blocked_averages(int cpu)
rq_unlock_irqrestore(rq, &rf);
}
-/********** Helpers for find_busiest_group ************************/
+/********** Helpers for sched_balance_find_src_group ************************/
/*
- * sg_lb_stats - stats of a sched_group required for load_balancing
+ * sg_lb_stats - stats of a sched_group required for load-balancing:
*/
struct sg_lb_stats {
- unsigned long avg_load; /*Avg load across the CPUs of the group */
- unsigned long group_load; /* Total load over the CPUs of the group */
- unsigned long group_capacity;
- unsigned long group_util; /* Total utilization over the CPUs of the group */
- unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
- unsigned int sum_nr_running; /* Nr of tasks running in the group */
- unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
- unsigned int idle_cpus;
+ unsigned long avg_load; /* Avg load over the CPUs of the group */
+ unsigned long group_load; /* Total load over the CPUs of the group */
+ unsigned long group_capacity; /* Capacity over the CPUs of the group */
+ unsigned long group_util; /* Total utilization over the CPUs of the group */
+ unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
+ unsigned int sum_nr_running; /* Nr of all tasks running in the group */
+ unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
+ unsigned int idle_cpus; /* Nr of idle CPUs in the group */
unsigned int group_weight;
enum group_type group_type;
- unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
- unsigned int group_smt_balance; /* Task on busy SMT be moved */
- unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
+ unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
+ unsigned int group_smt_balance; /* Task on busy SMT be moved */
+ unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
#ifdef CONFIG_NUMA_BALANCING
unsigned int nr_numa_running;
unsigned int nr_preferred_running;
@@ -9468,19 +9531,18 @@ struct sg_lb_stats {
};
/*
- * sd_lb_stats - Structure to store the statistics of a sched_domain
- * during load balancing.
+ * sd_lb_stats - stats of a sched_domain required for load-balancing:
*/
struct sd_lb_stats {
- struct sched_group *busiest; /* Busiest group in this sd */
- struct sched_group *local; /* Local group in this sd */
- unsigned long total_load; /* Total load of all groups in sd */
- unsigned long total_capacity; /* Total capacity of all groups in sd */
- unsigned long avg_load; /* Average load across all groups in sd */
- unsigned int prefer_sibling; /* tasks should go to sibling first */
-
- struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
- struct sg_lb_stats local_stat; /* Statistics of the local group */
+ struct sched_group *busiest; /* Busiest group in this sd */
+ struct sched_group *local; /* Local group in this sd */
+ unsigned long total_load; /* Total load of all groups in sd */
+ unsigned long total_capacity; /* Total capacity of all groups in sd */
+ unsigned long avg_load; /* Average load across all groups in sd */
+ unsigned int prefer_sibling; /* T