summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--CREDITS12
-rw-r--r--include/linux/slab_def.h124
-rw-r--r--mm/slab.c4005
3 files changed, 8 insertions, 4133 deletions
diff --git a/CREDITS b/CREDITS
index f33a33fd2371..e9a094a93287 100644
--- a/CREDITS
+++ b/CREDITS
@@ -9,10 +9,6 @@
Linus
----------
-N: Matt Mackal
-E: mpm@selenic.com
-D: SLOB slab allocator
-
N: Matti Aarnio
E: mea@nic.funet.fi
D: Alpha systems hacking, IPv6 and other network related stuff
@@ -1572,6 +1568,10 @@ S: Ampferstr. 50 / 4
S: 6020 Innsbruck
S: Austria
+N: Mark Hemment
+E: markhe@nextd.demon.co.uk
+D: SLAB allocator implementation
+
N: Richard Henderson
E: rth@twiddle.net
E: rth@cygnus.com
@@ -2437,6 +2437,10 @@ D: work on suspend-to-ram/disk, killing duplicates from ioctl32,
D: Altera SoCFPGA and Nokia N900 support.
S: Czech Republic
+N: Olivia Mackall
+E: olivia@selenic.com
+D: SLOB slab allocator
+
N: Paul Mackerras
E: paulus@samba.org
D: PPP driver
diff --git a/include/linux/slab_def.h b/include/linux/slab_def.h
deleted file mode 100644
index a61e7d55d0d3..000000000000
--- a/include/linux/slab_def.h
+++ /dev/null
@@ -1,124 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0 */
-#ifndef _LINUX_SLAB_DEF_H
-#define _LINUX_SLAB_DEF_H
-
-#include <linux/kfence.h>
-#include <linux/reciprocal_div.h>
-
-/*
- * Definitions unique to the original Linux SLAB allocator.
- */
-
-struct kmem_cache {
- struct array_cache __percpu *cpu_cache;
-
-/* 1) Cache tunables. Protected by slab_mutex */
- unsigned int batchcount;
- unsigned int limit;
- unsigned int shared;
-
- unsigned int size;
- struct reciprocal_value reciprocal_buffer_size;
-/* 2) touched by every alloc & free from the backend */
-
- slab_flags_t flags; /* constant flags */
- unsigned int num; /* # of objs per slab */
-
-/* 3) cache_grow/shrink */
- /* order of pgs per slab (2^n) */
- unsigned int gfporder;
-
- /* force GFP flags, e.g. GFP_DMA */
- gfp_t allocflags;
-
- size_t colour; /* cache colouring range */
- unsigned int colour_off; /* colour offset */
- unsigned int freelist_size;
-
- /* constructor func */
- void (*ctor)(void *obj);
-
-/* 4) cache creation/removal */
- const char *name;
- struct list_head list;
- int refcount;
- int object_size;
- int align;
-
-/* 5) statistics */
-#ifdef CONFIG_DEBUG_SLAB
- unsigned long num_active;
- unsigned long num_allocations;
- unsigned long high_mark;
- unsigned long grown;
- unsigned long reaped;
- unsigned long errors;
- unsigned long max_freeable;
- unsigned long node_allocs;
- unsigned long node_frees;
- unsigned long node_overflow;
- atomic_t allochit;
- atomic_t allocmiss;
- atomic_t freehit;
- atomic_t freemiss;
-
- /*
- * If debugging is enabled, then the allocator can add additional
- * fields and/or padding to every object. 'size' contains the total
- * object size including these internal fields, while 'obj_offset'
- * and 'object_size' contain the offset to the user object and its
- * size.
- */
- int obj_offset;
-#endif /* CONFIG_DEBUG_SLAB */
-
-#ifdef CONFIG_KASAN_GENERIC
- struct kasan_cache kasan_info;
-#endif
-
-#ifdef CONFIG_SLAB_FREELIST_RANDOM
- unsigned int *random_seq;
-#endif
-
-#ifdef CONFIG_HARDENED_USERCOPY
- unsigned int useroffset; /* Usercopy region offset */
- unsigned int usersize; /* Usercopy region size */
-#endif
-
- struct kmem_cache_node *node[MAX_NUMNODES];
-};
-
-static inline void *nearest_obj(struct kmem_cache *cache, const struct slab *slab,
- void *x)
-{
- void *object = x - (x - slab->s_mem) % cache->size;
- void *last_object = slab->s_mem + (cache->num - 1) * cache->size;
-
- if (unlikely(object > last_object))
- return last_object;
- else
- return object;
-}
-
-/*
- * We want to avoid an expensive divide : (offset / cache->size)
- * Using the fact that size is a constant for a particular cache,
- * we can replace (offset / cache->size) by
- * reciprocal_divide(offset, cache->reciprocal_buffer_size)
- */
-static inline unsigned int obj_to_index(const struct kmem_cache *cache,
- const struct slab *slab, void *obj)
-{
- u32 offset = (obj - slab->s_mem);
- return reciprocal_divide(offset, cache->reciprocal_buffer_size);
-}
-
-static inline int objs_per_slab(const struct kmem_cache *cache,
- const struct slab *slab)
-{
- if (is_kfence_address(slab_address(slab)))
- return 1;
- return cache->num;
-}
-
-#endif /* _LINUX_SLAB_DEF_H */
diff --git a/mm/slab.c b/mm/slab.c
deleted file mode 100644
index 37efe3241f9c..000000000000
--- a/mm/slab.c
+++ /dev/null
@@ -1,4005 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0
-/*
- * linux/mm/slab.c
- * Written by Mark Hemment, 1996/97.
- * (markhe@nextd.demon.co.uk)
- *
- * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
- *
- * Major cleanup, different bufctl logic, per-cpu arrays
- * (c) 2000 Manfred Spraul
- *
- * Cleanup, make the head arrays unconditional, preparation for NUMA
- * (c) 2002 Manfred Spraul
- *
- * An implementation of the Slab Allocator as described in outline in;
- * UNIX Internals: The New Frontiers by Uresh Vahalia
- * Pub: Prentice Hall ISBN 0-13-101908-2
- * or with a little more detail in;
- * The Slab Allocator: An Object-Caching Kernel Memory Allocator
- * Jeff Bonwick (Sun Microsystems).
- * Presented at: USENIX Summer 1994 Technical Conference
- *
- * The memory is organized in caches, one cache for each object type.
- * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
- * Each cache consists out of many slabs (they are small (usually one
- * page long) and always contiguous), and each slab contains multiple
- * initialized objects.
- *
- * This means, that your constructor is used only for newly allocated
- * slabs and you must pass objects with the same initializations to
- * kmem_cache_free.
- *
- * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
- * normal). If you need a special memory type, then must create a new
- * cache for that memory type.
- *
- * In order to reduce fragmentation, the slabs are sorted in 3 groups:
- * full slabs with 0 free objects
- * partial slabs
- * empty slabs with no allocated objects
- *
- * If partial slabs exist, then new allocations come from these slabs,
- * otherwise from empty slabs or new slabs are allocated.
- *
- * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
- * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
- *
- * Each cache has a short per-cpu head array, most allocs
- * and frees go into that array, and if that array overflows, then 1/2
- * of the entries in the array are given back into the global cache.
- * The head array is strictly LIFO and should improve the cache hit rates.
- * On SMP, it additionally reduces the spinlock operations.
- *
- * The c_cpuarray may not be read with enabled local interrupts -
- * it's changed with a smp_call_function().
- *
- * SMP synchronization:
- * constructors and destructors are called without any locking.
- * Several members in struct kmem_cache and struct slab never change, they
- * are accessed without any locking.
- * The per-cpu arrays are never accessed from the wrong cpu, no locking,
- * and local interrupts are disabled so slab code is preempt-safe.
- * The non-constant members are protected with a per-cache irq spinlock.
- *
- * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
- * in 2000 - many ideas in the current implementation are derived from
- * his patch.
- *
- * Further notes from the original documentation:
- *
- * 11 April '97. Started multi-threading - markhe
- * The global cache-chain is protected by the mutex 'slab_mutex'.
- * The sem is only needed when accessing/extending the cache-chain, which
- * can never happen inside an interrupt (kmem_cache_create(),
- * kmem_cache_shrink() and kmem_cache_reap()).
- *
- * At present, each engine can be growing a cache. This should be blocked.
- *
- * 15 March 2005. NUMA slab allocator.
- * Shai Fultheim <shai@scalex86.org>.
- * Shobhit Dayal <shobhit@calsoftinc.com>
- * Alok N Kataria <alokk@calsoftinc.com>
- * Christoph Lameter <christoph@lameter.com>
- *
- * Modified the slab allocator to be node aware on NUMA systems.
- * Each node has its own list of partial, free and full slabs.
- * All object allocations for a node occur from node specific slab lists.
- */
-
-#include <linux/slab.h>
-#include <linux/mm.h>
-#include <linux/poison.h>
-#include <linux/swap.h>
-#include <linux/cache.h>
-#include <linux/interrupt.h>
-#include <linux/init.h>
-#include <linux/compiler.h>
-#include <linux/cpuset.h>
-#include <linux/proc_fs.h>
-#include <linux/seq_file.h>
-#include <linux/notifier.h>
-#include <linux/kallsyms.h>
-#include <linux/kfence.h>
-#include <linux/cpu.h>
-#include <linux/sysctl.h>
-#include <linux/module.h>
-#include <linux/rcupdate.h>
-#include <linux/string.h>
-#include <linux/uaccess.h>
-#include <linux/nodemask.h>
-#include <linux/kmemleak.h>
-#include <linux/mempolicy.h>
-#include <linux/mutex.h>
-#include <linux/fault-inject.h>
-#include <linux/rtmutex.h>
-#include <linux/reciprocal_div.h>
-#include <linux/debugobjects.h>
-#include <linux/memory.h>
-#include <linux/prefetch.h>
-#include <linux/sched/task_stack.h>
-
-#include <net/sock.h>
-
-#include <asm/cacheflush.h>
-#include <asm/tlbflush.h>
-#include <asm/page.h>
-
-#include <trace/events/kmem.h>
-
-#include "internal.h"
-
-#include "slab.h"
-
-/*
- * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
- * 0 for faster, smaller code (especially in the critical paths).
- *
- * STATS - 1 to collect stats for /proc/slabinfo.
- * 0 for faster, smaller code (especially in the critical paths).
- *
- * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
- */
-
-#ifdef CONFIG_DEBUG_SLAB
-#define DEBUG 1
-#define STATS 1
-#define FORCED_DEBUG 1
-#else
-#define DEBUG 0
-#define STATS 0
-#define FORCED_DEBUG 0
-#endif
-
-/* Shouldn't this be in a header file somewhere? */
-#define BYTES_PER_WORD sizeof(void *)
-#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
-
-#ifndef ARCH_KMALLOC_FLAGS
-#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
-#endif
-
-#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
- <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
-
-#if FREELIST_BYTE_INDEX
-typedef unsigned char freelist_idx_t;
-#else
-typedef unsigned short freelist_idx_t;
-#endif
-
-#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
-
-/*
- * struct array_cache
- *
- * Purpose:
- * - LIFO ordering, to hand out cache-warm objects from _alloc
- * - reduce the number of linked list operations
- * - reduce spinlock operations
- *
- * The limit is stored in the per-cpu structure to reduce the data cache
- * footprint.
- *
- */
-struct array_cache {
- unsigned int avail;
- unsigned int limit;
- unsigned int batchcount;
- unsigned int touched;
- void *entry[]; /*
- * Must have this definition in here for the proper
- * alignment of array_cache. Also simplifies accessing
- * the entries.
- */
-};
-
-struct alien_cache {
- spinlock_t lock;
- struct array_cache ac;
-};
-
-/*
- * Need this for bootstrapping a per node allocator.
- */
-#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
-static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
-#define CACHE_CACHE 0
-#define SIZE_NODE (MAX_NUMNODES)
-
-static int drain_freelist(struct kmem_cache *cache,
- struct kmem_cache_node *n, int tofree);
-static void free_block(struct kmem_cache *cachep, void **objpp, int len,
- int node, struct list_head *list);
-static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
-static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
-static void cache_reap(struct work_struct *unused);
-
-static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
- void **list);
-static inline void fixup_slab_list(struct kmem_cache *cachep,
- struct kmem_cache_node *n, struct slab *slab,
- void **list);
-
-#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
-
-static void kmem_cache_node_init(struct kmem_cache_node *parent)
-{
- INIT_LIST_HEAD(&parent->slabs_full);
- INIT_LIST_HEAD(&parent->slabs_partial);
- INIT_LIST_HEAD(&parent->slabs_free);
- parent->total_slabs = 0;
- parent->free_slabs = 0;
- parent->shared = NULL;
- parent->alien = NULL;
- parent->colour_next = 0;
- raw_spin_lock_init(&parent->list_lock);
- parent->free_objects = 0;
- parent->free_touched = 0;
-}
-
-#define MAKE_LIST(cachep, listp, slab, nodeid) \
- do { \
- INIT_LIST_HEAD(listp); \
- list_splice(&get_node(cachep, nodeid)->slab, listp); \
- } while (0)
-
-#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
- do { \
- MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
- MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
- MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
- } while (0)
-
-#define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
-#define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
-#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
-#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
-
-#define BATCHREFILL_LIMIT 16
-/*
- * Optimization question: fewer reaps means less probability for unnecessary
- * cpucache drain/refill cycles.
- *
- * OTOH the cpuarrays can contain lots of objects,
- * which could lock up otherwise freeable slabs.
- */
-#define REAPTIMEOUT_AC (2*HZ)
-#define REAPTIMEOUT_NODE (4*HZ)
-
-#if STATS
-#define STATS_INC_ACTIVE(x) ((x)->num_active++)
-#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
-#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
-#define STATS_INC_GROWN(x) ((x)->grown++)
-#define STATS_ADD_REAPED(x, y) ((x)->reaped += (y))
-#define STATS_SET_HIGH(x) \
- do { \
- if ((x)->num_active > (x)->high_mark) \
- (x)->high_mark = (x)->num_active; \
- } while (0)
-#define STATS_INC_ERR(x) ((x)->errors++)
-#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
-#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
-#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
-#define STATS_SET_FREEABLE(x, i) \
- do { \
- if ((x)->max_freeable < i) \
- (x)->max_freeable = i; \
- } while (0)
-#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
-#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
-#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
-#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
-#else
-#define STATS_INC_ACTIVE(x) do { } while (0)
-#define STATS_DEC_ACTIVE(x) do { } while (0)
-#define STATS_INC_ALLOCED(x) do { } while (0)
-#define STATS_INC_GROWN(x) do { } while (0)
-#define STATS_ADD_REAPED(x, y) do { (void)(y); } while (0)
-#define STATS_SET_HIGH(x) do { } while (0)
-#define STATS_INC_ERR(x) do { } while (0)
-#define STATS_INC_NODEALLOCS(x) do { } while (0)
-#define STATS_INC_NODEFREES(x) do { } while (0)
-#define STATS_INC_ACOVERFLOW(x) do { } while (0)
-#define STATS_SET_FREEABLE(x, i) do { } while (0)
-#define STATS_INC_ALLOCHIT(x) do { } while (0)
-#define STATS_INC_ALLOCMISS(x) do { } while (0)
-#define STATS_INC_FREEHIT(x) do { } while (0)
-#define STATS_INC_FREEMISS(x) do { } while (0)
-#endif
-
-#if DEBUG
-
-/*
- * memory layout of objects:
- * 0 : objp
- * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
- * the end of an object is aligned with the end of the real
- * allocation. Catches writes behind the end of the allocation.
- * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
- * redzone word.
- * cachep->obj_offset: The real object.
- * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
- * cachep->size - 1* BYTES_PER_WORD: last caller address
- * [BYTES_PER_WORD long]
- */
-static int obj_offset(struct kmem_cache *cachep)
-{
- return cachep->obj_offset;
-}
-
-static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
-{
- BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
- return (unsigned long long *) (objp + obj_offset(cachep) -
- sizeof(unsigned long long));
-}
-
-static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
-{
- BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
- if (cachep->flags & SLAB_STORE_USER)
- return (unsigned long long *)(objp + cachep->size -
- sizeof(unsigned long long) -
- REDZONE_ALIGN);
- return (unsigned long long *) (objp + cachep->size -
- sizeof(unsigned long long));
-}
-
-static void **dbg_userword(struct kmem_cache *cachep, void *objp)
-{
- BUG_ON(!(cachep->flags & SLAB_STORE_USER));
- return (void **)(objp + cachep->size - BYTES_PER_WORD);
-}
-
-#else
-
-#define obj_offset(x) 0
-#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
-#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
-#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
-
-#endif
-
-/*
- * Do not go above this order unless 0 objects fit into the slab or
- * overridden on the command line.
- */
-#define SLAB_MAX_ORDER_HI 1
-#define SLAB_MAX_ORDER_LO 0
-static int slab_max_order = SLAB_MAX_ORDER_LO;
-static bool slab_max_order_set __initdata;
-
-static inline void *index_to_obj(struct kmem_cache *cache,
- const struct slab *slab, unsigned int idx)
-{
- return slab->s_mem + cache->size * idx;
-}
-
-#define BOOT_CPUCACHE_ENTRIES 1
-/* internal cache of cache description objs */
-static struct kmem_cache kmem_cache_boot = {
- .batchcount = 1,
- .limit = BOOT_CPUCACHE_ENTRIES,
- .shared = 1,
- .size = sizeof(struct kmem_cache),
- .name = "kmem_cache",
-};
-
-static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
-
-static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
-{
- return this_cpu_ptr(cachep->cpu_cache);
-}
-
-/*
- * Calculate the number of objects and left-over bytes for a given buffer size.
- */
-static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
- slab_flags_t flags, size_t *left_over)
-{
- unsigned int num;
- size_t slab_size = PAGE_SIZE << gfporder;
-
- /*
- * The slab management structure can be either off the slab or
- * on it. For the latter case, the memory allocated for a
- * slab is used for:
- *
- * - @buffer_size bytes for each object
- * - One freelist_idx_t for each object
- *
- * We don't need to consider alignment of freelist because
- * freelist will be at the end of slab page. The objects will be
- * at the correct alignment.
- *
- * If the slab management structure is off the slab, then the
- * alignment will already be calculated into the size. Because
- * the slabs are all pages aligned, the objects will be at the
- * correct alignment when allocated.
- */
- if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
- num = slab_size / buffer_size;
- *left_over = slab_size % buffer_size;
- } else {
- num = slab_size / (buffer_size + sizeof(freelist_idx_t));
- *left_over = slab_size %
- (buffer_size + sizeof(freelist_idx_t));
- }
-
- return num;
-}
-
-#if DEBUG
-#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
-
-static void __slab_error(const char *function, struct kmem_cache *cachep,
- char *msg)
-{
- pr_err("slab error in %s(): cache `%s': %s\n",
- function, cachep->name, msg);
- dump_stack();
- add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
-}
-#endif
-
-/*
- * By default on NUMA we use alien caches to stage the freeing of
- * objects allocated from other nodes. This causes massive memory
- * inefficiencies when using fake NUMA setup to split memory into a
- * large number of small nodes, so it can be disabled on the command
- * line
- */
-
-static int use_alien_caches __read_mostly = 1;
-static int __init noaliencache_setup(char *s)
-{
- use_alien_caches = 0;
- return 1;
-}
-__setup("noaliencache", noaliencache_setup);
-
-static int __init slab_max_order_setup(char *str)
-{
- get_option(&str, &slab_max_order);
- slab_max_order = slab_max_order < 0 ? 0 :
- min(slab_max_order, MAX_ORDER);
- slab_max_order_set = true;
-
- return 1;
-}
-__setup("slab_max_order=", slab_max_order_setup);
-
-#ifdef CONFIG_NUMA
-/*
- * Special reaping functions for NUMA systems called from cache_reap().
- * These take care of doing round robin flushing of alien caches (containing
- * objects freed on different nodes from which they were allocated) and the
- * flushing of remote pcps by calling drain_node_pages.
- */
-static DEFINE_PER_CPU(unsigned long, slab_reap_node);
-
-static void init_reap_node(int cpu)
-{
- per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
- node_online_map);
-}
-
-static void next_reap_node(void)
-{
- int node = __this_cpu_read(slab_reap_node);
-
- node = next_node_in(node, node_online_map);
- __this_cpu_write(slab_reap_node, node);
-}
-
-#else
-#define init_reap_node(cpu) do { } while (0)
-#define next_reap_node(void) do { } while (0)
-#endif
-
-/*
- * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
- * via the workqueue/eventd.
- * Add the CPU number into the expiration time to minimize the possibility of
- * the CPUs getting into lockstep and contending for the global cache chain
- * lock.
- */
-static void start_cpu_timer(int cpu)
-{
- struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
-
- if (reap_work->work.func == NULL) {
- init_reap_node(cpu);
- INIT_DEFERRABLE_WORK(reap_work, cache_reap);
- schedule_delayed_work_on(cpu, reap_work,
- __round_jiffies_relative(HZ, cpu));
- }
-}
-
-static void init_arraycache(struct array_cache *ac, int limit, int batch)
-{
- if (ac) {
- ac->avail = 0;
- ac->limit = limit;
- ac->batchcount = batch;
- ac->touched = 0;
- }
-}
-
-static struct array_cache *alloc_arraycache(int node, int entries,
- int batchcount, gfp_t gfp)
-{
- size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
- struct array_cache *ac = NULL;
-
- ac = kmalloc_node(memsize, gfp, node);
- /*
- * The array_cache structures contain pointers to free object.
- * However, when such objects are allocated or transferred to another
- * cache the pointers are not cleared and they could be counted as
- * valid references during a kmemleak scan. Therefore, kmemleak must
- * not scan such objects.
- */
- kmemleak_no_scan(ac);
- init_arraycache(ac, entries, batchcount);
- return ac;
-}
-
-static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
- struct slab *slab, void *objp)
-{
- struct kmem_cache_node *n;
- int slab_node;
- LIST_HEAD(list);
-
- slab_node = slab_nid(slab);
- n = get_node(cachep, slab_node);
-
- raw_spin_lock(&n->list_lock);
- free_block(cachep, &objp, 1, slab_node, &list);
- raw_spin_unlock(&n->list_lock);
-
- slabs_destroy(cachep, &list);
-}
-
-/*
- * Transfer objects in one arraycache to another.
- * Locking must be handled by the caller.
- *
- * Return the number of entries transferred.
- */
-static int transfer_objects(struct array_cache *to,
- struct array_cache *from, unsigned int max)
-{
- /* Figure out how many entries to transfer */
- int nr = min3(from->avail, max, to->limit - to->avail);
-
- if (!nr)
- return 0;
-
- memcpy(to->entry + to->avail, from->entry + from->avail - nr,
- sizeof(void *) *nr);
-
- from->avail -= nr;
- to->avail += nr;
- return nr;
-}
-
-/* &alien->lock must be held by alien callers. */
-static __always_inline void __free_one(struct array_cache *ac, void *objp)
-{
- /* Avoid trivial double-free. */
- if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
- WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
- return;
- ac->entry[ac->avail++] = objp;
-}
-
-#ifndef CONFIG_NUMA
-
-#define drain_alien_cache(cachep, alien) do { } while (0)
-#define reap_alien(cachep, n) do { } while (0)
-
-static inline struct alien_cache **alloc_alien_cache(int node,
- int limit, gfp_t gfp)
-{
- return NULL;
-}
-
-static inline void free_alien_cache(struct alien_cache **ac_ptr)
-{
-}
-
-static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
-{
- return 0;
-}
-
-static inline gfp_t gfp_exact_node(gfp_t flags)
-{
- return flags & ~__GFP_NOFAIL;
-}
-
-#else /* CONFIG_NUMA */
-
-static struct alien_cache *__alloc_alien_cache(int node, int entries,
- int batch, gfp_t gfp)
-{
- size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
- struct alien_cache *alc = NULL;
-
- alc = kmalloc_node(memsize, gfp, node);
- if (alc) {
- kmemleak_no_scan(alc);
- init_arraycache(&alc->ac, entries, batch);
- spin_lock_init(&alc->lock);
- }
- return alc;
-}
-
-static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
-{
- struct alien_cache **alc_ptr;
- int i;
-
- if (limit > 1)
- limit = 12;
- alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
- if (!alc_ptr)
- return NULL;
-
- for_each_node(i) {
- if (i == node || !node_online(i))
- continue;
- alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
- if (!alc_ptr[i]) {
- for (i--; i >= 0; i--)
- kfree(alc_ptr[i]);
- kfree(alc_ptr);
- return NULL;
- }
- }
- return alc_ptr;
-}
-
-static void free_alien_cache(struct alien_cache **alc_ptr)
-{
- int i;
-
- if (!alc_ptr)
- return;
- for_each_node(i)
- kfree(alc_ptr[i]);
- kfree(alc_ptr);
-}
-
-static void __drain_alien_cache(struct kmem_cache *cachep,
- struct array_cache *ac, int node,
- struct list_head *list)
-{
- struct kmem_cache_node *n = get_node(cachep, node);
-
- if (ac->avail) {
- raw_spin_lock(&n->list_lock);
- /*
- * Stuff objects into the remote nodes shared array first.
- * That way we could avoid the overhead of putting the objects
- * into the free lists and getting them back later.
- */
- if (n->shared)
- transfer_objects(n->shared, ac, ac->limit);
-
- free_block(cachep, ac->entry, ac->avail, node, list);
- ac->avail = 0;
- raw_spin_unlock(&n->list_lock);
- }
-}
-
-/*
- * Called from cache_reap() to regularly drain alien caches round robin.
- */
-static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
-{
- int node = __this_cpu_read(slab_reap_node);
-
- if (n->alien) {
- struct alien_cache *alc = n->alien[node];
- struct array_cache *ac;
-
- if (alc) {
- ac = &alc->ac;
- if (ac->avail && spin_trylock_irq(&alc->lock)) {
- LIST_HEAD(list);
-
- __drain_alien_cache(cachep, ac, node, &list);
- spin_unlock_irq(&alc->lock);
- slabs_destroy(cachep, &list);
- }
- }
- }
-}
-
-static void drain_alien_cache(struct kmem_cache *cachep,
- struct alien_cache **alien)
-{
- int i = 0;
- struct alien_cache *alc;
- struct array_cache *ac;
- unsigned long flags;
-
- for_each_online_node(i) {
- alc = alien[i];
- if (alc) {
- LIST_HEAD(list);
-
- ac = &alc->ac;
- spin_lock_irqsave(&alc->lock, flags);
- __drain_alien_cache(cachep, ac, i, &list);
- spin_unlock_irqrestore(&alc->lock, flags);
- slabs_destroy(cachep, &list);
- }
- }
-}
-
-static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
- int node, int slab_node)
-{
- struct kmem_cache_node *n;
- struct alien_cache *alien = NULL;
- struct array_cache *ac;
- LIST_HEAD(list);
-
- n = get_node(cachep, node);
- STATS_INC_NODEFREES(cachep);
- if (n->alien && n->alien[slab_node]) {
- alien = n->alien[slab_node];
- ac = &alien->ac;
- spin_lock(&alien->lock);
- if (unlikely(ac->avail == ac->limit)) {
- STATS_INC_ACOVERFLOW(cachep);
- __drain_alien_cache(cachep, ac, slab_node, &list);
- }
- __free_one(ac, objp);
- spin_unlock(&alien->lock);
- slabs_destroy(cachep, &list);
- } else {
- n = get_node(cachep, slab_node);
- raw_spin_lock(&n->list_lock);
- free_block(cachep, &objp, 1, slab_node, &list);
- raw_spin_unlock(&n->list_lock);
- slabs_destroy(cachep, &list);
- }
- return 1;
-}
-
-static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
-{
- int slab_node = slab_nid(virt_to_slab(objp));
- int node = numa_mem_id();
- /*
- * Make sure we are not freeing an object from another node to the array
- * cache on this cpu.
- */
- if (likely(node == slab_node))
- return 0;
-
- return __cache_free_alien(cachep, objp, node, slab_node);
-}
-
-/*
- * Construct gfp mask to allocate from a specific node but do not reclaim or
- * warn about failures.
- */
-static inline gfp_t gfp_exact_node(gfp_t flags)
-{
- return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
-}
-#endif
-
-static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
-{
- struct kmem_cache_node *n;
-
- /*
- * Set up the kmem_cache_node for cpu before we can
- * begin anything. Make sure some other cpu on this
- * node has not already allocated this
- */
- n = get_node(cachep, node);
- if (n) {
- raw_spin_lock_irq(&n->list_lock);
- n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
- cachep->num;
- raw_spin_unlock_irq(&n->list_lock);
-
- return 0;
- }
-
- n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
- if (!n)
- return -ENOMEM;
-
- kmem_cache_node_init(n);
- n->next_reap = jiffies + REAPTIMEOUT_NODE +
- ((unsigned long)cachep) % REAPTIMEOUT_NODE;
-
- n->free_limit =
- (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
-
- /*
- * The kmem_cache_nodes don't come and go as CPUs
- * come and go. slab_mutex provides sufficient
- * protection here.
- */
- cachep->node[node] = n;
-
- return 0;
-}
-
-#if defined(CONFIG_NUMA) || defined(CONFIG_SMP)
-/*
- * Allocates and initializes node for a node on each slab cache, used for
- * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
- * will be allocated off-node since memory is not yet online for the new node.
- * When hotplugging memory or a cpu, existing nodes are not replaced if
- * already in use.
- *
- * Must hold slab_mutex.
- */
-static int init_cache_node_node(int node)
-{
- int ret;
- struct kmem_cache *cachep;
-
- list_for_each_entry(cachep, &slab_caches, list) {
- ret = init_cache_node(cachep, node, GFP_KERNEL);
- if (ret)
- return ret;
- }
-
- return 0;
-}
-#endif
-
-static int setup_kmem_cache_node(struct kmem_cache *cachep,
- int node, gfp_t gfp, bool force_change)
-{
- int ret = -ENOMEM;
- struct kmem_cache_node *n;
- struct array_cache *old_shared = NULL;
- struct array_cache *new_shared = NULL;
- struct alien_cache **new_alien = NULL;
- LIST_HEAD(list);
-
- if (use_alien_caches) {
- new_alien = alloc_alien_cache(node, cachep->limit, gfp);
- if (!new_alien)
- goto fail;
- }
-
- if (cachep->shared) {
- new_shared = alloc_arraycache(node,
- cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
- if (!new_shared)
- goto fail;
- }
-
- ret = init_cache_node(cachep, node, gfp);
- if (ret)
- goto fail;
-
- n = get_node(cachep, node);
- raw_spin_lock_irq(&n->list_lock);
- if (n->shared && force_change) {
- free_block(cachep, n->shared->entry,
- n->shared->avail, node, &list);
- n->shared->avail = 0;
- }
-
- if (!n->shared || force_change) {
- old_shared = n->shared;
- n->shared = new_shared;
- new_shared = NULL;
- }
-
- if (!n->alien) {
- n->alien = new_alien;
- new_alien = NULL;
- }
-
- raw_spin_unlock_irq(&n->list_lock);
- slabs_destroy(cachep, &list);
-
- /*
- * To protect lockless access to n->shared during irq disabled context.
- * If n->shared isn't NULL in irq disabled context, accessing to it is
- * guaranteed to be valid until irq is re-enabled, because it will be
- * freed after synchronize_rcu().
- */
- if (old_shared && force_change)
- synchronize_rcu();
-
-fail:
- kfree(old_shared);
- kfree(new_shared);
- free_alien_cache(new_alien);
-
- return ret;
-}
-
-#ifdef CONFIG_SMP
-
-static void cpuup_canceled(long cpu)
-{
- struct kmem_cache *cachep;
- struct kmem_cache_node *n = NULL;
- int node = cpu_to_mem(cpu);
- const struct cpumask *mask = cpumask_of_node(node);
-
- list_for_each_entry(cachep, &slab_caches, list) {
- struct array_cache *nc;
- struct array_cache *shared;
- struct alien_cache **alien;
- LIST_HEAD(list);
-
- n = get_node(cachep, node);
- if (!n)
- continue;
-
- raw_spin_lock_irq(&n->list_lock);
-
- /* Free limit for this kmem_cache_node */
- n->free_limit -= cachep->batchcount;
-
- /* cpu is dead; no one can alloc from it. */
- nc = per_cpu_ptr(cachep->cpu_cache, cpu);
- free_block(cachep, nc->entry, nc->avail, node, &list);
- nc->avail = 0;
-
- if (!cpumask_empty(mask)) {
- raw_spin_unlock_irq(&n->list_lock);
- goto free_slab;
- }
-
- shared = n->shared;
- if (shared) {
- free_block(cachep, shared->entry,
- shared->avail, node, &list);
- n->shared = NULL;
- }
-
- alien = n->alien;
- n->alien = NULL;
-
- raw_spin_unlock_irq(&n->list_lock);
-
- kfree(shared);
- if (alien) {
- drain_alien_cache(cachep, alien);
- free_alien_cache(alien);
- }
-
-free