summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Documentation/admin-guide/pm/cpuidle.rst77
-rw-r--r--Documentation/admin-guide/pm/intel_pstate.rst6
-rw-r--r--Documentation/devicetree/bindings/arm/tegra/nvidia,tegra30-actmon.txt57
-rw-r--r--Documentation/devicetree/bindings/devfreq/nvidia,tegra30-actmon.yaml126
-rw-r--r--Documentation/power/runtime_pm.rst15
-rw-r--r--drivers/base/power/domain.c64
-rw-r--r--drivers/base/power/domain_governor.c1
-rw-r--r--drivers/base/power/runtime.c18
-rw-r--r--drivers/base/power/wakeirq.c4
-rw-r--r--drivers/cpufreq/cpufreq.c11
-rw-r--r--drivers/cpufreq/cpufreq_stats.c5
-rw-r--r--drivers/cpufreq/intel_pstate.c263
-rw-r--r--drivers/cpufreq/loongson2_cpufreq.c1
-rw-r--r--drivers/cpufreq/sc520_freq.c1
-rw-r--r--drivers/cpufreq/sh-cpufreq.c1
-rw-r--r--drivers/cpuidle/governors/teo.c476
-rw-r--r--drivers/devfreq/Kconfig1
-rw-r--r--drivers/devfreq/devfreq.c1
-rw-r--r--drivers/devfreq/governor_passive.c3
-rw-r--r--drivers/devfreq/governor_userspace.c10
-rw-r--r--drivers/devfreq/imx-bus.c14
-rw-r--r--drivers/devfreq/tegra30-devfreq.c1
-rw-r--r--drivers/idle/intel_idle.c33
-rw-r--r--drivers/opp/core.c10
-rw-r--r--drivers/opp/of.c27
-rw-r--r--include/linux/pm_domain.h1
-rw-r--r--include/linux/pm_runtime.h3
-rw-r--r--kernel/power/Kconfig12
-rw-r--r--kernel/power/process.c2
-rw-r--r--kernel/power/snapshot.c10
-rw-r--r--kernel/power/swap.c2
31 files changed, 775 insertions, 481 deletions
diff --git a/Documentation/admin-guide/pm/cpuidle.rst b/Documentation/admin-guide/pm/cpuidle.rst
index 10fde58d0869..aec2cd2aaea7 100644
--- a/Documentation/admin-guide/pm/cpuidle.rst
+++ b/Documentation/admin-guide/pm/cpuidle.rst
@@ -347,81 +347,8 @@ for tickless systems. It follows the same basic strategy as the ``menu`` `one
<menu-gov_>`_: it always tries to find the deepest idle state suitable for the
given conditions. However, it applies a different approach to that problem.
-First, it does not use sleep length correction factors, but instead it attempts
-to correlate the observed idle duration values with the available idle states
-and use that information to pick up the idle state that is most likely to
-"match" the upcoming CPU idle interval. Second, it does not take the tasks
-that were running on the given CPU in the past and are waiting on some I/O
-operations to complete now at all (there is no guarantee that they will run on
-the same CPU when they become runnable again) and the pattern detection code in
-it avoids taking timer wakeups into account. It also only uses idle duration
-values less than the current time till the closest timer (with the scheduler
-tick excluded) for that purpose.
-
-Like in the ``menu`` governor `case <menu-gov_>`_, the first step is to obtain
-the *sleep length*, which is the time until the closest timer event with the
-assumption that the scheduler tick will be stopped (that also is the upper bound
-on the time until the next CPU wakeup). That value is then used to preselect an
-idle state on the basis of three metrics maintained for each idle state provided
-by the ``CPUIdle`` driver: ``hits``, ``misses`` and ``early_hits``.
-
-The ``hits`` and ``misses`` metrics measure the likelihood that a given idle
-state will "match" the observed (post-wakeup) idle duration if it "matches" the
-sleep length. They both are subject to decay (after a CPU wakeup) every time
-the target residency of the idle state corresponding to them is less than or
-equal to the sleep length and the target residency of the next idle state is
-greater than the sleep length (that is, when the idle state corresponding to
-them "matches" the sleep length). The ``hits`` metric is increased if the
-former condition is satisfied and the target residency of the given idle state
-is less than or equal to the observed idle duration and the target residency of
-the next idle state is greater than the observed idle duration at the same time
-(that is, it is increased when the given idle state "matches" both the sleep
-length and the observed idle duration). In turn, the ``misses`` metric is
-increased when the given idle state "matches" the sleep length only and the
-observed idle duration is too short for its target residency.
-
-The ``early_hits`` metric measures the likelihood that a given idle state will
-"match" the observed (post-wakeup) idle duration if it does not "match" the
-sleep length. It is subject to decay on every CPU wakeup and it is increased
-when the idle state corresponding to it "matches" the observed (post-wakeup)
-idle duration and the target residency of the next idle state is less than or
-equal to the sleep length (i.e. the idle state "matching" the sleep length is
-deeper than the given one).
-
-The governor walks the list of idle states provided by the ``CPUIdle`` driver
-and finds the last (deepest) one with the target residency less than or equal
-to the sleep length. Then, the ``hits`` and ``misses`` metrics of that idle
-state are compared with each other and it is preselected if the ``hits`` one is
-greater (which means that that idle state is likely to "match" the observed idle
-duration after CPU wakeup). If the ``misses`` one is greater, the governor
-preselects the shallower idle state with the maximum ``early_hits`` metric
-(or if there are multiple shallower idle states with equal ``early_hits``
-metric which also is the maximum, the shallowest of them will be preselected).
-[If there is a wakeup latency constraint coming from the `PM QoS framework
-<cpu-pm-qos_>`_ which is hit before reaching the deepest idle state with the
-target residency within the sleep length, the deepest idle state with the exit
-latency within the constraint is preselected without consulting the ``hits``,
-``misses`` and ``early_hits`` metrics.]
-
-Next, the governor takes several idle duration values observed most recently
-into consideration and if at least a half of them are greater than or equal to
-the target residency of the preselected idle state, that idle state becomes the
-final candidate to ask for. Otherwise, the average of the most recent idle
-duration values below the target residency of the preselected idle state is
-computed and the governor walks the idle states shallower than the preselected
-one and finds the deepest of them with the target residency within that average.
-That idle state is then taken as the final candidate to ask for.
-
-Still, at this point the governor may need to refine the idle state selection if
-it has not decided to `stop the scheduler tick <idle-cpus-and-tick_>`_. That
-generally happens if the target residency of the idle state selected so far is
-less than the tick period and the tick has not been stopped already (in a
-previous iteration of the idle loop). Then, like in the ``menu`` governor
-`case <menu-gov_>`_, the sleep length used in the previous computations may not
-reflect the real time until the closest timer event and if it really is greater
-than that time, a shallower state with a suitable target residency may need to
-be selected.
-
+.. kernel-doc:: drivers/cpuidle/governors/teo.c
+ :doc: teo-description
.. _idle-states-representation:
diff --git a/Documentation/admin-guide/pm/intel_pstate.rst b/Documentation/admin-guide/pm/intel_pstate.rst
index 7a7d4b041eac..d5043cd8d2f5 100644
--- a/Documentation/admin-guide/pm/intel_pstate.rst
+++ b/Documentation/admin-guide/pm/intel_pstate.rst
@@ -365,6 +365,9 @@ argument is passed to the kernel in the command line.
inclusive) including both turbo and non-turbo P-states (see
`Turbo P-states Support`_).
+ This attribute is present only if the value exposed by it is the same
+ for all of the CPUs in the system.
+
The value of this attribute is not affected by the ``no_turbo``
setting described `below <no_turbo_attr_>`_.
@@ -374,6 +377,9 @@ argument is passed to the kernel in the command line.
Ratio of the `turbo range <turbo_>`_ size to the size of the entire
range of supported P-states, in percent.
+ This attribute is present only if the value exposed by it is the same
+ for all of the CPUs in the system.
+
This attribute is read-only.
.. _no_turbo_attr:
diff --git a/Documentation/devicetree/bindings/arm/tegra/nvidia,tegra30-actmon.txt b/Documentation/devicetree/bindings/arm/tegra/nvidia,tegra30-actmon.txt
deleted file mode 100644
index 897eedfa2bc8..000000000000
--- a/Documentation/devicetree/bindings/arm/tegra/nvidia,tegra30-actmon.txt
+++ /dev/null
@@ -1,57 +0,0 @@
-NVIDIA Tegra Activity Monitor
-
-The activity monitor block collects statistics about the behaviour of other
-components in the system. This information can be used to derive the rate at
-which the external memory needs to be clocked in order to serve all requests
-from the monitored clients.
-
-Required properties:
-- compatible: should be "nvidia,tegra<chip>-actmon"
-- reg: offset and length of the register set for the device
-- interrupts: standard interrupt property
-- clocks: Must contain a phandle and clock specifier pair for each entry in
-clock-names. See ../../clock/clock-bindings.txt for details.
-- clock-names: Must include the following entries:
- - actmon
- - emc
-- resets: Must contain an entry for each entry in reset-names. See
-../../reset/reset.txt for details.
-- reset-names: Must include the following entries:
- - actmon
-- operating-points-v2: See ../bindings/opp/opp.txt for details.
-- interconnects: Should contain entries for memory clients sitting on
- MC->EMC memory interconnect path.
-- interconnect-names: Should include name of the interconnect path for each
- interconnect entry. Consult TRM documentation for
- information about available memory clients, see MEMORY
- CONTROLLER section.
-
-For each opp entry in 'operating-points-v2' table:
-- opp-supported-hw: bitfield indicating SoC speedo ID mask
-- opp-peak-kBps: peak bandwidth of the memory channel
-
-Example:
- dfs_opp_table: opp-table {
- compatible = "operating-points-v2";
-
- opp@12750000 {
- opp-hz = /bits/ 64 <12750000>;
- opp-supported-hw = <0x000F>;
- opp-peak-kBps = <51000>;
- };
- ...
- };
-
- actmon@6000c800 {
- compatible = "nvidia,tegra124-actmon";
- reg = <0x0 0x6000c800 0x0 0x400>;
- interrupts = <GIC_SPI 45 IRQ_TYPE_LEVEL_HIGH>;
- clocks = <&tegra_car TEGRA124_CLK_ACTMON>,
- <&tegra_car TEGRA124_CLK_EMC>;
- clock-names = "actmon", "emc";
- resets = <&tegra_car 119>;
- reset-names = "actmon";
- operating-points-v2 = <&dfs_opp_table>;
- interconnects = <&mc TEGRA124_MC_MPCORER &emc>;
- interconnect-names = "cpu";
- };
diff --git a/Documentation/devicetree/bindings/devfreq/nvidia,tegra30-actmon.yaml b/Documentation/devicetree/bindings/devfreq/nvidia,tegra30-actmon.yaml
new file mode 100644
index 000000000000..e3379d106728
--- /dev/null
+++ b/Documentation/devicetree/bindings/devfreq/nvidia,tegra30-actmon.yaml
@@ -0,0 +1,126 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/devfreq/nvidia,tegra30-actmon.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: NVIDIA Tegra30 Activity Monitor
+
+maintainers:
+ - Dmitry Osipenko <digetx@gmail.com>
+ - Jon Hunter <jonathanh@nvidia.com>
+ - Thierry Reding <thierry.reding@gmail.com>
+
+description: |
+ The activity monitor block collects statistics about the behaviour of other
+ components in the system. This information can be used to derive the rate at
+ which the external memory needs to be clocked in order to serve all requests
+ from the monitored clients.
+
+properties:
+ compatible:
+ enum:
+ - nvidia,tegra30-actmon
+ - nvidia,tegra114-actmon
+ - nvidia,tegra124-actmon
+ - nvidia,tegra210-actmon
+
+ reg:
+ maxItems: 1
+
+ clocks:
+ maxItems: 2
+
+ clock-names:
+ items:
+ - const: actmon
+ - const: emc
+
+ resets:
+ maxItems: 1
+
+ reset-names:
+ items:
+ - const: actmon
+
+ interrupts:
+ maxItems: 1
+
+ interconnects:
+ minItems: 1
+ maxItems: 12
+
+ interconnect-names:
+ minItems: 1
+ maxItems: 12
+ description:
+ Should include name of the interconnect path for each interconnect
+ entry. Consult TRM documentation for information about available
+ memory clients, see MEMORY CONTROLLER and ACTIVITY MONITOR sections.
+
+ operating-points-v2:
+ description:
+ Should contain freqs and voltages and opp-supported-hw property, which
+ is a bitfield indicating SoC speedo ID mask.
+
+ "#cooling-cells":
+ const: 2
+
+required:
+ - compatible
+ - reg
+ - clocks
+ - clock-names
+ - resets
+ - reset-names
+ - interrupts
+ - interconnects
+ - interconnect-names
+ - operating-points-v2
+ - "#cooling-cells"
+
+additionalProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/memory/tegra30-mc.h>
+
+ mc: memory-controller@7000f000 {
+ compatible = "nvidia,tegra30-mc";
+ reg = <0x7000f000 0x400>;
+ clocks = <&clk 32>;
+ clock-names = "mc";
+
+ interrupts = <0 77 4>;
+
+ #iommu-cells = <1>;
+ #reset-cells = <1>;
+ #interconnect-cells = <1>;
+ };
+
+ emc: external-memory-controller@7000f400 {
+ compatible = "nvidia,tegra30-emc";
+ reg = <0x7000f400 0x400>;
+ interrupts = <0 78 4>;
+ clocks = <&clk 57>;
+
+ nvidia,memory-controller = <&mc>;
+ operating-points-v2 = <&dvfs_opp_table>;
+ power-domains = <&domain>;
+
+ #interconnect-cells = <0>;
+ };
+
+ actmon@6000c800 {
+ compatible = "nvidia,tegra30-actmon";
+ reg = <0x6000c800 0x400>;
+ interrupts = <0 45 4>;
+ clocks = <&clk 119>, <&clk 57>;
+ clock-names = "actmon", "emc";
+ resets = <&rst 119>;
+ reset-names = "actmon";
+ operating-points-v2 = <&dvfs_opp_table>;
+ interconnects = <&mc TEGRA30_MC_MPCORER &emc>;
+ interconnect-names = "cpu-read";
+ #cooling-cells = <2>;
+ };
diff --git a/Documentation/power/runtime_pm.rst b/Documentation/power/runtime_pm.rst
index 18ae21bf7f92..d6bf84f061f4 100644
--- a/Documentation/power/runtime_pm.rst
+++ b/Documentation/power/runtime_pm.rst
@@ -378,7 +378,11 @@ drivers/base/power/runtime.c and include/linux/pm_runtime.h:
`int pm_runtime_get_sync(struct device *dev);`
- increment the device's usage counter, run pm_runtime_resume(dev) and
- return its result
+ return its result;
+ note that it does not drop the device's usage counter on errors, so
+ consider using pm_runtime_resume_and_get() instead of it, especially
+ if its return value is checked by the caller, as this is likely to
+ result in cleaner code.
`int pm_runtime_get_if_in_use(struct device *dev);`
- return -EINVAL if 'power.disable_depth' is nonzero; otherwise, if the
@@ -827,6 +831,15 @@ or driver about runtime power changes. Instead, the driver for the device's
parent must take responsibility for telling the device's driver when the
parent's power state changes.
+Note that, in some cases it may not be desirable for subsystems/drivers to call
+pm_runtime_no_callbacks() for their devices. This could be because a subset of
+the runtime PM callbacks needs to be implemented, a platform dependent PM
+domain could get attached to the device or that the device is power managed
+through a supplier device link. For these reasons and to avoid boilerplate code
+in subsystems/drivers, the PM core allows runtime PM callbacks to be
+unassigned. More precisely, if a callback pointer is NULL, the PM core will act
+as though there was a callback and it returned 0.
+
9. Autosuspend, or automatically-delayed suspends
=================================================
diff --git a/drivers/base/power/domain.c b/drivers/base/power/domain.c
index b6a782c31613..ab0b740cc0f1 100644
--- a/drivers/base/power/domain.c
+++ b/drivers/base/power/domain.c
@@ -379,6 +379,44 @@ err:
return ret;
}
+static int genpd_set_performance_state(struct device *dev, unsigned int state)
+{
+ struct generic_pm_domain *genpd = dev_to_genpd(dev);
+ struct generic_pm_domain_data *gpd_data = dev_gpd_data(dev);
+ unsigned int prev_state;
+ int ret;
+
+ prev_state = gpd_data->performance_state;
+ if (prev_state == state)
+ return 0;
+
+ gpd_data->performance_state = state;
+ state = _genpd_reeval_performance_state(genpd, state);
+
+ ret = _genpd_set_performance_state(genpd, state, 0);
+ if (ret)
+ gpd_data->performance_state = prev_state;
+
+ return ret;
+}
+
+static int genpd_drop_performance_state(struct device *dev)
+{
+ unsigned int prev_state = dev_gpd_data(dev)->performance_state;
+
+ if (!genpd_set_performance_state(dev, 0))
+ return prev_state;
+
+ return 0;
+}
+
+static void genpd_restore_performance_state(struct device *dev,
+ unsigned int state)
+{
+ if (state)
+ genpd_set_performance_state(dev, state);
+}
+
/**
* dev_pm_genpd_set_performance_state- Set performance state of device's power
* domain.
@@ -397,8 +435,6 @@ err:
int dev_pm_genpd_set_performance_state(struct device *dev, unsigned int state)
{
struct generic_pm_domain *genpd;
- struct generic_pm_domain_data *gpd_data;
- unsigned int prev;
int ret;
genpd = dev_to_genpd_safe(dev);
@@ -410,16 +446,7 @@ int dev_pm_genpd_set_performance_state(struct device *dev, unsigned int state)
return -EINVAL;
genpd_lock(genpd);
-
- gpd_data = to_gpd_data(dev->power.subsys_data->domain_data);
- prev = gpd_data->performance_state;
- gpd_data->performance_state = state;
-
- state = _genpd_reeval_performance_state(genpd, state);
- ret = _genpd_set_performance_state(genpd, state, 0);
- if (ret)
- gpd_data->performance_state = prev;
-
+ ret = genpd_set_performance_state(dev, state);
genpd_unlock(genpd);
return ret;
@@ -572,6 +599,7 @@ static void genpd_queue_power_off_work(struct generic_pm_domain *genpd)
* RPM status of the releated device is in an intermediate state, not yet turned
* into RPM_SUSPENDED. This means genpd_power_off() must allow one device to not
* be RPM_SUSPENDED, while it tries to power off the PM domain.
+ * @depth: nesting count for lockdep.
*
* If all of the @genpd's devices have been suspended and all of its subdomains
* have been powered down, remove power from @genpd.
@@ -832,7 +860,8 @@ static int genpd_runtime_suspend(struct device *dev)
{
struct generic_pm_domain *genpd;
bool (*suspend_ok)(struct device *__dev);
- struct gpd_timing_data *td = &dev_gpd_data(dev)->td;
+ struct generic_pm_domain_data *gpd_data = dev_gpd_data(dev);
+ struct gpd_timing_data *td = &gpd_data->td;
bool runtime_pm = pm_runtime_enabled(dev);
ktime_t time_start;
s64 elapsed_ns;
@@ -889,6 +918,7 @@ static int genpd_runtime_suspend(struct device *dev)
return 0;
genpd_lock(genpd);
+ gpd_data->rpm_pstate = genpd_drop_performance_state(dev);
genpd_power_off(genpd, true, 0);
genpd_unlock(genpd);
@@ -906,7 +936,8 @@ static int genpd_runtime_suspend(struct device *dev)
static int genpd_runtime_resume(struct device *dev)
{
struct generic_pm_domain *genpd;
- struct gpd_timing_data *td = &dev_gpd_data(dev)->td;
+ struct generic_pm_domain_data *gpd_data = dev_gpd_data(dev);
+ struct gpd_timing_data *td = &gpd_data->td;
bool runtime_pm = pm_runtime_enabled(dev);
ktime_t time_start;
s64 elapsed_ns;
@@ -930,6 +961,8 @@ static int genpd_runtime_resume(struct device *dev)
genpd_lock(genpd);
ret = genpd_power_on(genpd, 0);
+ if (!ret)
+ genpd_restore_performance_state(dev, gpd_data->rpm_pstate);
genpd_unlock(genpd);
if (ret)
@@ -968,6 +1001,7 @@ err_stop:
err_poweroff:
if (!pm_runtime_is_irq_safe(dev) || genpd_is_irq_safe(genpd)) {
genpd_lock(genpd);
+ gpd_data->rpm_pstate = genpd_drop_performance_state(dev);
genpd_power_off(genpd, true, 0);
genpd_unlock(genpd);
}
@@ -2505,7 +2539,7 @@ EXPORT_SYMBOL_GPL(of_genpd_remove_subdomain);
/**
* of_genpd_remove_last - Remove the last PM domain registered for a provider
- * @provider: Pointer to device structure associated with provider
+ * @np: Pointer to device node associated with provider
*
* Find the last PM domain that was added by a particular provider and
* remove this PM domain from the list of PM domains. The provider is
diff --git a/drivers/base/power/domain_governor.c b/drivers/base/power/domain_governor.c
index c6c218758f0b..cd08c5885190 100644
--- a/drivers/base/power/domain_governor.c
+++ b/drivers/base/power/domain_governor.c
@@ -252,6 +252,7 @@ static bool __default_power_down_ok(struct dev_pm_domain *pd,
/**
* _default_power_down_ok - Default generic PM domain power off governor routine.
* @pd: PM domain to check.
+ * @now: current ktime.
*
* This routine must be executed under the PM domain's lock.
*/
diff --git a/drivers/base/power/runtime.c b/drivers/base/power/runtime.c
index b570848d23e0..8a66eaf731e4 100644
--- a/drivers/base/power/runtime.c
+++ b/drivers/base/power/runtime.c
@@ -345,7 +345,7 @@ static void rpm_suspend_suppliers(struct device *dev)
static int __rpm_callback(int (*cb)(struct device *), struct device *dev)
__releases(&dev->power.lock) __acquires(&dev->power.lock)
{
- int retval, idx;
+ int retval = 0, idx;
bool use_links = dev->power.links_count > 0;
if (dev->power.irq_safe) {
@@ -373,7 +373,8 @@ static int __rpm_callback(int (*cb)(struct device *), struct device *dev)
}
}
- retval = cb(dev);
+ if (cb)
+ retval = cb(dev);
if (dev->power.irq_safe) {
spin_lock(&dev->power.lock);
@@ -446,7 +447,10 @@ static int rpm_idle(struct device *dev, int rpmflags)
/* Pending requests need to be canceled. */
dev->power.request = RPM_REQ_NONE;
- if (dev->power.no_callbacks)
+ callback = RPM_GET_CALLBACK(dev, runtime_idle);
+
+ /* If no callback assume success. */
+ if (!callback || dev->power.no_callbacks)
goto out;
/* Carry out an asynchronous or a synchronous idle notification. */
@@ -462,10 +466,7 @@ static int rpm_idle(struct device *dev, int rpmflags)
dev->power.idle_notification = true;
- callback = RPM_GET_CALLBACK(dev, runtime_idle);
-
- if (callback)
- retval = __rpm_callback(callback, dev);
+ retval = __rpm_callback(callback, dev);
dev->power.idle_notification = false;
wake_up_all(&dev->power.wait_queue);
@@ -484,9 +485,6 @@ static int rpm_callback(int (*cb)(struct device *), struct device *dev)
{
int retval;
- if (!cb)
- return -ENOSYS;
-
if (dev->power.memalloc_noio) {
unsigned int noio_flag;
diff --git a/drivers/base/power/wakeirq.c b/drivers/base/power/wakeirq.c
index 8e021082dba8..3bad3266a2ad 100644
--- a/drivers/base/power/wakeirq.c
+++ b/drivers/base/power/wakeirq.c
@@ -182,7 +182,6 @@ int dev_pm_set_dedicated_wake_irq(struct device *dev, int irq)
wirq->dev = dev;
wirq->irq = irq;
- irq_set_status_flags(irq, IRQ_NOAUTOEN);
/* Prevent deferred spurious wakeirqs with disable_irq_nosync() */
irq_set_status_flags(irq, IRQ_DISABLE_UNLAZY);
@@ -192,7 +191,8 @@ int dev_pm_set_dedicated_wake_irq(struct device *dev, int irq)
* so we use a threaded irq.
*/
err = request_threaded_irq(irq, NULL, handle_threaded_wake_irq,
- IRQF_ONESHOT, wirq->name, wirq);
+ IRQF_ONESHOT | IRQF_NO_AUTOEN,
+ wirq->name, wirq);
if (err)
goto err_free_name;
diff --git a/drivers/cpufreq/cpufreq.c b/drivers/cpufreq/cpufreq.c
index 802abc925b2a..cbab834c37a0 100644
--- a/drivers/cpufreq/cpufreq.c
+++ b/drivers/cpufreq/cpufreq.c
@@ -1367,9 +1367,14 @@ static int cpufreq_online(unsigned int cpu)
goto out_free_policy;
}
+ /*
+ * The initialization has succeeded and the policy is online.
+ * If there is a problem with its frequency table, take it
+ * offline and drop it.
+ */
ret = cpufreq_table_validate_and_sort(policy);
if (ret)
- goto out_exit_policy;
+ goto out_offline_policy;
/* related_cpus should at least include policy->cpus. */
cpumask_copy(policy->related_cpus, policy->cpus);
@@ -1515,6 +1520,10 @@ out_destroy_policy:
up_write(&policy->rwsem);
+out_offline_policy:
+ if (cpufreq_driver->offline)
+ cpufreq_driver->offline(policy);
+
out_exit_policy:
if (cpufreq_driver->exit)
cpufreq_driver->exit(policy);
diff --git a/drivers/cpufreq/cpufreq_stats.c b/drivers/cpufreq/cpufreq_stats.c
index da717f7cd9a9..1570d6f3e75d 100644
--- a/drivers/cpufreq/cpufreq_stats.c
+++ b/drivers/cpufreq/cpufreq_stats.c
@@ -211,7 +211,7 @@ void cpufreq_stats_free_table(struct cpufreq_policy *policy)
void cpufreq_stats_create_table(struct cpufreq_policy *policy)
{
- unsigned int i = 0, count = 0, ret = -ENOMEM;
+ unsigned int i = 0, count;
struct cpufreq_stats *stats;
unsigned int alloc_size;
struct cpufreq_frequency_table *pos;
@@ -253,8 +253,7 @@ void cpufreq_stats_create_table(struct cpufreq_policy *policy)
stats->last_index = freq_table_get_index(stats, policy->cur);
policy->stats = stats;
- ret = sysfs_create_group(&policy->kobj, &stats_attr_group);
- if (!ret)
+ if (!sysfs_create_group(&policy->kobj, &stats_attr_group))
return;
/* We failed, release resources */
diff --git a/drivers/cpufreq/intel_pstate.c b/drivers/cpufreq/intel_pstate.c
index 0e69dffd5a76..6012964df51b 100644
--- a/drivers/cpufreq/intel_pstate.c
+++ b/drivers/cpufreq/intel_pstate.c
@@ -121,9 +121,10 @@ struct sample {
* @max_pstate_physical:This is physical Max P state for a processor
* This can be higher than the max_pstate which can
* be limited by platform thermal design power limits
- * @scaling: Scaling factor to convert frequency to cpufreq
- * frequency units
+ * @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor
+ * @scaling: Scaling factor between performance and frequency
* @turbo_pstate: Max Turbo P state possible for this platform
+ * @min_freq: @min_pstate frequency in cpufreq units
* @max_freq: @max_pstate frequency in cpufreq units
* @turbo_freq: @turbo_pstate frequency in cpufreq units
*
@@ -134,8 +135,10 @@ struct pstate_data {
int min_pstate;
int max_pstate;
int max_pstate_physical;
+ int perf_ctl_scaling;
int scaling;
int turbo_pstate;
+ unsigned int min_freq;
unsigned int max_freq;
unsigned int turbo_freq;
};
@@ -366,7 +369,7 @@ static void intel_pstate_set_itmt_prio(int cpu)
}
}
-static int intel_pstate_get_cppc_guranteed(int cpu)
+static int intel_pstate_get_cppc_guaranteed(int cpu)
{
struct cppc_perf_caps cppc_perf;
int ret;
@@ -382,7 +385,7 @@ static int intel_pstate_get_cppc_guranteed(int cpu)
}
#else /* CONFIG_ACPI_CPPC_LIB */
-static void intel_pstate_set_itmt_prio(int cpu)
+static inline void intel_pstate_set_itmt_prio(int cpu)
{
}
#endif /* CONFIG_ACPI_CPPC_LIB */
@@ -467,6 +470,20 @@ static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
acpi_processor_unregister_performance(policy->cpu);
}
+
+static bool intel_pstate_cppc_perf_valid(u32 perf, struct cppc_perf_caps *caps)
+{
+ return perf && perf <= caps->highest_perf && perf >= caps->lowest_perf;
+}
+
+static bool intel_pstate_cppc_perf_caps(struct cpudata *cpu,
+ struct cppc_perf_caps *caps)
+{
+ if (cppc_get_perf_caps(cpu->cpu, caps))
+ return false;
+
+ return caps->highest_perf && caps->lowest_perf <= caps->highest_perf;
+}
#else /* CONFIG_ACPI */
static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
@@ -483,12 +500,146 @@ static inline bool intel_pstate_acpi_pm_profile_server(void)
#endif /* CONFIG_ACPI */
#ifndef CONFIG_ACPI_CPPC_LIB
-static int intel_pstate_get_cppc_guranteed(int cpu)
+static inline int intel_pstate_get_cppc_guaranteed(int cpu)
{
return -ENOTSUPP;
}
#endif /* CONFIG_ACPI_CPPC_LIB */
+static void intel_pstate_hybrid_hwp_perf_ctl_parity(struct cpudata *cpu)
+{
+ pr_debug("CPU%d: Using PERF_CTL scaling for HWP\n", cpu->cpu);
+
+ cpu->pstate.scaling = cpu->pstate.perf_ctl_scaling;
+}
+
+/**
+ * intel_pstate_hybrid_hwp_calibrate - Calibrate HWP performance levels.
+ * @cpu: Target CPU.
+ *
+ * On hybrid processors, HWP may expose more performance levels than there are
+ * P-states accessible through the PERF_CTL interface. If that happens, the
+ * scaling factor between HWP performance levels and CPU frequency will be less
+ * than the scaling factor between P-state values and CPU frequency.
+ *
+ * In that case, the scaling factor between HWP performance levels and CPU
+ * frequency needs to be determined which can be done with the help of the
+ * observation that certain HWP performance levels should correspond to certain
+ * P-states, like for example the HWP highest performance should correspond
+ * to the maximum turbo P-state of the CPU.
+ */
+static void intel_pstate_hybrid_hwp_calibrate(struct cpudata *cpu)
+{
+ int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
+ int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
+ int perf_ctl_turbo = pstate_funcs.get_turbo();
+ int turbo_freq = perf_ctl_turbo * perf_ctl_scaling;
+ int perf_ctl_max = pstate_funcs.get_max();
+ int max_freq = perf_ctl_max * perf_ctl_scaling;
+ int scaling = INT_MAX;
+ int freq;
+
+ pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
+ pr_debug("CPU%d: perf_ctl_max = %d\n", cpu->cpu, perf_ctl_max);
+ pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
+ pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
+
+ pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
+ pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
+
+#ifdef CONFIG_ACPI
+ if (IS_ENABLED(CONFIG_ACPI_CPPC_LIB)) {
+ struct cppc_perf_caps caps;
+
+ if (intel_pstate_cppc_perf_caps(cpu, &caps)) {
+ if (intel_pstate_cppc_perf_valid(caps.nominal_perf, &caps)) {
+ pr_debug("CPU%d: Using CPPC nominal\n", cpu->cpu);
+
+ /*
+