diff options
47 files changed, 15 insertions, 8806 deletions
diff --git a/Documentation/00-INDEX b/Documentation/00-INDEX index 07de7e19b4ce..27e67a98b7be 100644 --- a/Documentation/00-INDEX +++ b/Documentation/00-INDEX @@ -413,8 +413,6 @@ serial-console.txt - how to set up Linux with a serial line console as the default. sgi-ioc4.txt - description of the SGI IOC4 PCI (multi function) device. -sgi-visws.txt - - short blurb on the SGI Visual Workstations. sh/ - directory with info on porting Linux to a new architecture. smsc_ece1099.txt diff --git a/Documentation/sgi-visws.txt b/Documentation/sgi-visws.txt deleted file mode 100644 index 7ff0811ca2ba..000000000000 --- a/Documentation/sgi-visws.txt +++ /dev/null @@ -1,13 +0,0 @@ - -The SGI Visual Workstations (models 320 and 540) are based around -the Cobalt, Lithium, and Arsenic ASICs. The Cobalt ASIC is the -main system ASIC which interfaces the 1-4 IA32 cpus, the memory -system, and the I/O system in the Lithium ASIC. The Cobalt ASIC -also contains the 3D gfx rendering engine which renders to main -system memory -- part of which is used as the frame buffer which -is DMA'ed to a video connector using the Arsenic ASIC. A PIIX4 -chip and NS87307 are used to provide legacy device support (IDE, -serial, floppy, and parallel). - -The Visual Workstation chipset largely conforms to the PC architecture -with some notable exceptions such as interrupt handling. diff --git a/Documentation/sound/oss/vwsnd b/Documentation/sound/oss/vwsnd deleted file mode 100644 index 4c6cbdb3c548..000000000000 --- a/Documentation/sound/oss/vwsnd +++ /dev/null @@ -1,293 +0,0 @@ -vwsnd - Sound driver for the Silicon Graphics 320 and 540 Visual -Workstations' onboard audio. - -Copyright 1999 Silicon Graphics, Inc. All rights reserved. - - -At the time of this writing, March 1999, there are two models of -Visual Workstation, the 320 and the 540. This document only describes -those models. Future Visual Workstation models may have different -sound capabilities, and this driver will probably not work on those -boxes. - -The Visual Workstation has an Analog Devices AD1843 "SoundComm" audio -codec chip. The AD1843 is accessed through the Cobalt I/O ASIC, also -known as Lithium. This driver programs both chips. - -============================================================================== -QUICK CONFIGURATION - - # insmod soundcore - # insmod vwsnd - -============================================================================== -I/O CONNECTIONS - -On the Visual Workstation, only three of the AD1843 inputs are hooked -up. The analog line in jacks are connected to the AD1843's AUX1 -input. The CD audio lines are connected to the AD1843's AUX2 input. -The microphone jack is connected to the AD1843's MIC input. The mic -jack is mono, but the signal is delivered to both the left and right -MIC inputs. You can record in stereo from the mic input, but you will -get the same signal on both channels (within the limits of A/D -accuracy). Full scale on the Line input is +/- 2.0 V. Full scale on -the MIC input is 20 dB less, or +/- 0.2 V. - -The AD1843's LOUT1 outputs are connected to the Line Out jacks. The -AD1843's HPOUT outputs are connected to the speaker/headphone jack. -LOUT2 is not connected. Line out's maximum level is +/- 2.0 V peak to -peak. The speaker/headphone out's maximum is +/- 4.0 V peak to peak. - -The AD1843's PCM input channel and one of its output channels (DAC1) -are connected to Lithium. The other output channel (DAC2) is not -connected. - -============================================================================== -CAPABILITIES - -The AD1843 has PCM input and output (Pulse Code Modulation, also known -as wavetable). PCM input and output can be mono or stereo in any of -four formats. The formats are 16 bit signed and 8 bit unsigned, -u-Law, and A-Law format. Any sample rate from 4 KHz to 49 KHz is -available, in 1 Hz increments. - -The AD1843 includes an analog mixer that can mix all three input -signals (line, mic and CD) into the analog outputs. The mixer has a -separate gain control and mute switch for each input. - -There are two outputs, line out and speaker/headphone out. They -always produce the same signal, and the speaker always has 3 dB more -gain than the line out. The speaker/headphone output can be muted, -but this driver does not export that function. - -The hardware can sync audio to the video clock, but this driver does -not have a way to specify syncing to video. - -============================================================================== -PROGRAMMING - -This section explains the API supported by the driver. Also see the -Open Sound Programming Guide at http://www.opensound.com/pguide/ . -This section assumes familiarity with that document. - -The driver has two interfaces, an I/O interface and a mixer interface. -There is no MIDI or sequencer capability. - -============================================================================== -PROGRAMMING PCM I/O - -The I/O interface is usually accessed as /dev/audio or /dev/dsp. -Using the standard Open Sound System (OSS) ioctl calls, the sample -rate, number of channels, and sample format may be set within the -limitations described above. The driver supports triggering. It also -supports getting the input and output pointers with one-sample -accuracy. - -The SNDCTL_DSP_GETCAP ioctl returns these capabilities. - - DSP_CAP_DUPLEX - driver supports full duplex. - - DSP_CAP_TRIGGER - driver supports triggering. - - DSP_CAP_REALTIME - values returned by SNDCTL_DSP_GETIPTR - and SNDCTL_DSP_GETOPTR are accurate to a few samples. - -Memory mapping (mmap) is not implemented. - -The driver permits subdivided fragment sizes from 64 to 4096 bytes. -The number of fragments can be anything from 3 fragments to however -many fragments fit into 124 kilobytes. It is up to the user to -determine how few/small fragments can be used without introducing -glitches with a given workload. Linux is not realtime, so we can't -promise anything. (sigh...) - -When this driver is switched into or out of mu-Law or A-Law mode on -output, it may produce an audible click. This is unavoidable. To -prevent clicking, use signed 16-bit mode instead, and convert from -mu-Law or A-Law format in software. - -============================================================================== -PROGRAMMING THE MIXER INTERFACE - -The mixer interface is usually accessed as /dev/mixer. It is accessed -through ioctls. The mixer allows the application to control gain or -mute several audio signal paths, and also allows selection of the -recording source. - -Each of the constants described here can be read using the -MIXER_READ(SOUND_MIXER_xxx) ioctl. Those that are not read-only can -also be written using the MIXER_WRITE(SOUND_MIXER_xxx) ioctl. In most -cases, <sys/soundcard.h> defines constants SOUND_MIXER_READ_xxx and -SOUND_MIXER_WRITE_xxx which work just as well. - -SOUND_MIXER_CAPS Read-only - -This is a mask of optional driver capabilities that are implemented. -This driver's only capability is SOUND_CAP_EXCL_INPUT, which means -that only one recording source can be active at a time. - -SOUND_MIXER_DEVMASK Read-only - -This is a mask of the sound channels. This driver's channels are PCM, -LINE, MIC, CD, and RECLEV. - -SOUND_MIXER_STEREODEVS Read-only - -This is a mask of which sound channels are capable of stereo. All -channels are capable of stereo. (But see caveat on MIC input in I/O -CONNECTIONS section above). - -SOUND_MIXER_OUTMASK Read-only - -This is a mask of channels that route inputs through to outputs. -Those are LINE, MIC, and CD. - -SOUND_MIXER_RECMASK Read-only - -This is a mask of channels that can be recording sources. Those are -PCM, LINE, MIC, CD. - -SOUND_MIXER_PCM Default: 0x5757 (0 dB) - -This is the gain control for PCM output. The left and right channel -gain are controlled independently. This gain control has 64 levels, -which range from -82.5 dB to +12.0 dB in 1.5 dB steps. Those 64 -levels are mapped onto 100 levels at the ioctl, see below. - -SOUND_MIXER_LINE Default: 0x4a4a (0 dB) - -This is the gain control for mixing the Line In source into the -outputs. The left and right channel gain are controlled -independently. This gain control has 32 levels, which range from --34.5 dB to +12.0 dB in 1.5 dB steps. Those 32 levels are mapped onto -100 levels at the ioctl, see below. - -SOUND_MIXER_MIC Default: 0x4a4a (0 dB) - -This is the gain control for mixing the MIC source into the outputs. -The left and right channel gain are controlled independently. This -gain control has 32 levels, which range from -34.5 dB to +12.0 dB in -1.5 dB steps. Those 32 levels are mapped onto 100 levels at the -ioctl, see below. - -SOUND_MIXER_CD Default: 0x4a4a (0 dB) - -This is the gain control for mixing the CD audio source into the -outputs. The left and right channel gain are controlled -independently. This gain control has 32 levels, which range from --34.5 dB to +12.0 dB in 1.5 dB steps. Those 32 levels are mapped onto -100 levels at the ioctl, see below. - -SOUND_MIXER_RECLEV Default: 0 (0 dB) - -This is the gain control for PCM input (RECording LEVel). The left -and right channel gain are controlled independently. This gain -control has 16 levels, which range from 0 dB to +22.5 dB in 1.5 dB -steps. Those 16 levels are mapped onto 100 levels at the ioctl, see -below. - -SOUND_MIXER_RECSRC Default: SOUND_MASK_LINE - -This is a mask of currently selected PCM input sources (RECording -SouRCes). Because the AD1843 can only have a single recording source -at a time, only one bit at a time can be set in this mask. The -allowable values are SOUND_MASK_PCM, SOUND_MASK_LINE, SOUND_MASK_MIC, -or SOUND_MASK_CD. Selecting SOUND_MASK_PCM sets up internal -resampling which is useful for loopback testing and for hardware -sample rate conversion. But software sample rate conversion is -probably faster, so I don't know how useful that is. - -SOUND_MIXER_OUTSRC DEFAULT: SOUND_MASK_LINE|SOUND_MASK_MIC|SOUND_MASK_CD - -This is a mask of sources that are currently passed through to the -outputs. Those sources whose bits are not set are muted. - -============================================================================== -GAIN CONTROL - -There are five gain controls listed above. Each has 16, 32, or 64 -steps. Each control has 1.5 dB of gain per step. Each control is -stereo. - -The OSS defines the argument to a channel gain ioctl as having two -components, left and right, each of which ranges from 0 to 100. The -two components are packed into the same word, with the left side gain -in the least significant byte, and the right side gain in the second -least significant byte. In C, we would say this. - - #include <assert.h> - - ... - - assert(leftgain >= 0 && leftgain <= 100); - assert(rightgain >= 0 && rightgain <= 100); - arg = leftgain | rightgain << 8; - -So each OSS gain control has 101 steps. But the hardware has 16, 32, -or 64 steps. The hardware steps are spread across the 101 OSS steps -nearly evenly. The conversion formulas are like this, given N equals -16, 32, or 64. - - int round = N/2 - 1; - OSS_gain_steps = (hw_gain_steps * 100 + round) / (N - 1); - hw_gain_steps = (OSS_gain_steps * (N - 1) + round) / 100; - -Here is a snippet of C code that will return the left and right gain -of any channel in dB. Pass it one of the predefined gain_desc_t -structures to access any of the five channels' gains. - - typedef struct gain_desc { - float min_gain; - float gain_step; - int nbits; - int chan; - } gain_desc_t; - - const gain_desc_t gain_pcm = { -82.5, 1.5, 6, SOUND_MIXER_PCM }; - const gain_desc_t gain_line = { -34.5, 1.5, 5, SOUND_MIXER_LINE }; - const gain_desc_t gain_mic = { -34.5, 1.5, 5, SOUND_MIXER_MIC }; - const gain_desc_t gain_cd = { -34.5, 1.5, 5, SOUND_MIXER_CD }; - const gain_desc_t gain_reclev = { 0.0, 1.5, 4, SOUND_MIXER_RECLEV }; - - int get_gain_dB(int fd, const gain_desc_t *gp, - float *left, float *right) - { - int word; - int lg, rg; - int mask = (1 << gp->nbits) - 1; - - if (ioctl(fd, MIXER_READ(gp->chan), &word) != 0) - return -1; /* fail */ - lg = word & 0xFF; - rg = word >> 8 & 0xFF; - lg = (lg * mask + mask / 2) / 100; - rg = (rg * mask + mask / 2) / 100; - *left = gp->min_gain + gp->gain_step * lg; - *right = gp->min_gain + gp->gain_step * rg; - return 0; - } - -And here is the corresponding routine to set a channel's gain in dB. - - int set_gain_dB(int fd, const gain_desc_t *gp, float left, float right) - { - float max_gain = - gp->min_gain + (1 << gp->nbits) * gp->gain_step; - float round = gp->gain_step / 2; - int mask = (1 << gp->nbits) - 1; - int word; - int lg, rg; - - if (left < gp->min_gain || right < gp->min_gain) - return EINVAL; - lg = (left - gp->min_gain + round) / gp->gain_step; - rg = (right - gp->min_gain + round) / gp->gain_step; - if (lg >= (1 << gp->nbits) || rg >= (1 << gp->nbits)) - return EINVAL; - lg = (100 * lg + mask / 2) / mask; - rg = (100 * rg + mask / 2) / mask; - word = lg | rg << 8; - - return ioctl(fd, MIXER_WRITE(gp->chan), &word); - } - diff --git a/MAINTAINERS b/MAINTAINERS index c1b982cd52db..b99bbbc4c5dd 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -7840,13 +7840,6 @@ F: Documentation/ia64/serial.txt F: drivers/tty/serial/ioc?_serial.c F: include/linux/ioc?.h -SGI VISUAL WORKSTATION 320 AND 540 -M: Andrey Panin <pazke@donpac.ru> -L: linux-visws-devel@lists.sf.net -W: http://linux-visws.sf.net -S: Maintained for 2.6. -F: Documentation/sgi-visws.txt - SGI XP/XPC/XPNET DRIVER M: Cliff Whickman <cpw@sgi.com> M: Robin Holt <robinmholt@gmail.com> diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig index ac04d9804391..f73071742975 100644 --- a/arch/x86/Kconfig +++ b/arch/x86/Kconfig @@ -344,12 +344,9 @@ config X86_EXTENDED_PLATFORM for the following (non-PC) 32 bit x86 platforms: Goldfish (Android emulator) AMD Elan - NUMAQ (IBM/Sequent) RDC R-321x SoC SGI 320/540 (Visual Workstation) STA2X11-based (e.g. Northville) - Summit/EXA (IBM x440) - Unisys ES7000 IA32 series Moorestown MID devices If you have one of these systems, or if you want to build a @@ -487,49 +484,22 @@ config X86_32_NON_STANDARD depends on X86_32 && SMP depends on X86_EXTENDED_PLATFORM ---help--- - This option compiles in the NUMAQ, Summit, bigsmp, ES7000, - STA2X11, default subarchitectures. It is intended for a generic - binary kernel. If you select them all, kernel will probe it - one by one and will fallback to default. + This option compiles in the bigsmp and STA2X11 default + subarchitectures. It is intended for a generic binary + kernel. If you select them all, kernel will probe it one by + one and will fallback to default. # Alphabetically sorted list of Non standard 32 bit platforms -config X86_NUMAQ - bool "NUMAQ (IBM/Sequent)" - depends on X86_32_NON_STANDARD - depends on PCI - select NUMA - select X86_MPPARSE - ---help--- - This option is used for getting Linux to run on a NUMAQ (IBM/Sequent) - NUMA multiquad box. This changes the way that processors are - bootstrapped, and uses Clustered Logical APIC addressing mode instead - of Flat Logical. You will need a new lynxer.elf file to flash your - firmware with - send email to <Martin.Bligh@us.ibm.com>. - config X86_SUPPORTS_MEMORY_FAILURE def_bool y # MCE code calls memory_failure(): depends on X86_MCE # On 32-bit this adds too big of NODES_SHIFT and we run out of page flags: - depends on !X86_NUMAQ # On 32-bit SPARSEMEM adds too big of SECTIONS_WIDTH: depends on X86_64 || !SPARSEMEM select ARCH_SUPPORTS_MEMORY_FAILURE -config X86_VISWS - bool "SGI 320/540 (Visual Workstation)" - depends on X86_32 && PCI && X86_MPPARSE && PCI_GODIRECT - depends on X86_32_NON_STANDARD - ---help--- - The SGI Visual Workstation series is an IA32-based workstation - based on SGI systems chips with some legacy PC hardware attached. - - Say Y here to create a kernel to run on the SGI 320 or 540. - - A kernel compiled for the Visual Workstation will run on general - PCs as well. See <file:Documentation/sgi-visws.txt> for details. - config STA2X11 bool "STA2X11 Companion Chip Support" depends on X86_32_NON_STANDARD && PCI @@ -546,20 +516,6 @@ config STA2X11 option is selected the kernel will still be able to boot on standard PC machines. -config X86_SUMMIT - bool "Summit/EXA (IBM x440)" - depends on X86_32_NON_STANDARD - ---help--- - This option is needed for IBM systems that use the Summit/EXA chipset. - In particular, it is needed for the x440. - -config X86_ES7000 - bool "Unisys ES7000 IA32 series" - depends on X86_32_NON_STANDARD && X86_BIGSMP - ---help--- - Support for Unisys ES7000 systems. Say 'Y' here if this kernel is - supposed to run on an IA32-based Unisys ES7000 system. - config X86_32_IRIS tristate "Eurobraille/Iris poweroff module" depends on X86_32 @@ -682,14 +638,6 @@ config MEMTEST memtest=4, mean do 4 test patterns. If you are unsure how to answer this question, answer N. -config X86_SUMMIT_NUMA - def_bool y - depends on X86_32 && NUMA && X86_32_NON_STANDARD - -config X86_CYCLONE_TIMER - def_bool y - depends on X86_SUMMIT - source "arch/x86/Kconfig.cpu" config HPET_TIMER @@ -818,7 +766,7 @@ config NR_CPUS range 2 8192 if SMP && !MAXSMP && CPUMASK_OFFSTACK && X86_64 default "1" if !SMP default "8192" if MAXSMP - default "32" if SMP && (X86_NUMAQ || X86_SUMMIT || X86_BIGSMP || X86_ES7000) + default "32" if SMP && X86_BIGSMP default "8" if SMP ---help--- This allows you to specify the maximum number of CPUs which this @@ -882,10 +830,6 @@ config X86_IO_APIC def_bool y depends on X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_IOAPIC || PCI_MSI -config X86_VISWS_APIC - def_bool y - depends on X86_32 && X86_VISWS - config X86_REROUTE_FOR_BROKEN_BOOT_IRQS bool "Reroute for broken boot IRQs" depends on X86_IO_APIC @@ -1103,13 +1047,11 @@ config X86_CPUID choice prompt "High Memory Support" - default HIGHMEM64G if X86_NUMAQ default HIGHMEM4G depends on X86_32 config NOHIGHMEM bool "off" - depends on !X86_NUMAQ ---help--- Linux can use up to 64 Gigabytes of physical memory on x86 systems. However, the address space of 32-bit x86 processors is only 4 @@ -1146,7 +1088,6 @@ config NOHIGHMEM config HIGHMEM4G bool "4GB" - depends on !X86_NUMAQ ---help--- Select this if you have a 32-bit processor and between 1 and 4 gigabytes of physical RAM. @@ -1238,8 +1179,8 @@ config DIRECT_GBPAGES config NUMA bool "Numa Memory Allocation and Scheduler Support" depends on SMP - depends on X86_64 || (X86_32 && HIGHMEM64G && (X86_NUMAQ || X86_BIGSMP || X86_SUMMIT && ACPI)) - default y if (X86_NUMAQ || X86_SUMMIT || X86_BIGSMP) + depends on X86_64 || (X86_32 && HIGHMEM64G && X86_BIGSMP) + default y if X86_BIGSMP ---help--- Enable NUMA (Non Uniform Memory Access) support. @@ -1250,15 +1191,11 @@ config NUMA For 64-bit this is recommended if the system is Intel Core i7 (or later), AMD Opteron, or EM64T NUMA. - For 32-bit this is only needed on (rare) 32-bit-only platforms - that support NUMA topologies, such as NUMAQ / Summit, or if you - boot a 32-bit kernel on a 64-bit NUMA platform. + For 32-bit this is only needed if you boot a 32-bit + kernel on a 64-bit NUMA platform. Otherwise, you should say N. -comment "NUMA (Summit) requires SMP, 64GB highmem support, ACPI" - depends on X86_32 && X86_SUMMIT && (!HIGHMEM64G || !ACPI) - config AMD_NUMA def_bool y prompt "Old style AMD Opteron NUMA detection" @@ -1300,7 +1237,6 @@ config NODES_SHIFT range 1 10 default "10" if MAXSMP default "6" if X86_64 - default "4" if X86_NUMAQ default "3" depends on NEED_MULTIPLE_NODES ---help--- diff --git a/arch/x86/Kconfig.cpu b/arch/x86/Kconfig.cpu index f3aaf231b4e5..6983314c8b37 100644 --- a/arch/x86/Kconfig.cpu +++ b/arch/x86/Kconfig.cpu @@ -359,7 +359,7 @@ config X86_P6_NOP config X86_TSC def_bool y - depends on ((MWINCHIP3D || MCRUSOE || MEFFICEON || MCYRIXIII || MK7 || MK6 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || M586MMX || M586TSC || MK8 || MVIAC3_2 || MVIAC7 || MGEODEGX1 || MGEODE_LX || MCORE2 || MATOM) && !X86_NUMAQ) || X86_64 + depends on (MWINCHIP3D || MCRUSOE || MEFFICEON || MCYRIXIII || MK7 || MK6 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || M586MMX || M586TSC || MK8 || MVIAC3_2 || MVIAC7 || MGEODEGX1 || MGEODE_LX || MCORE2 || MATOM) || X86_64 config X86_CMPXCHG64 def_bool y diff --git a/arch/x86/include/asm/fixmap.h b/arch/x86/include/asm/fixmap.h index 2377f5618fb7..8dcd35c4c787 100644 --- a/arch/x86/include/asm/fixmap.h +++ b/arch/x86/include/asm/fixmap.h @@ -90,12 +90,6 @@ enum fixed_addresses { FIX_IO_APIC_BASE_0, FIX_IO_APIC_BASE_END = FIX_IO_APIC_BASE_0 + MAX_IO_APICS - 1, #endif -#ifdef CONFIG_X86_VISWS_APIC - FIX_CO_CPU, /* Cobalt timer */ - FIX_CO_APIC, /* Cobalt APIC Redirection Table */ - FIX_LI_PCIA, /* Lithium PCI Bridge A */ - FIX_LI_PCIB, /* Lithium PCI Bridge B */ -#endif FIX_RO_IDT, /* Virtual mapping for read-only IDT */ #ifdef CONFIG_X86_32 FIX_KMAP_BEGIN, /* reserved pte's for temporary kernel mappings */ diff --git a/arch/x86/include/asm/hw_irq.h b/arch/x86/include/asm/hw_irq.h index 67d69b8e2d20..a307b7530e54 100644 --- a/arch/x86/include/asm/hw_irq.h +++ b/arch/x86/include/asm/hw_irq.h @@ -98,7 +98,6 @@ extern void trace_call_function_single_interrupt(void); #define IO_APIC_IRQ(x) (((x) >= NR_IRQS_LEGACY) || ((1<<(x)) & io_apic_irqs)) extern unsigned long io_apic_irqs; -extern void init_VISWS_APIC_irqs(void); extern void setup_IO_APIC(void); extern void disable_IO_APIC(void); diff --git a/arch/x86/include/asm/mmzone_32.h b/arch/x86/include/asm/mmzone_32.h index 8a9b3e288cb4..1ec990bd7dc0 100644 --- a/arch/x86/include/asm/mmzone_32.h +++ b/arch/x86/include/asm/mmzone_32.h @@ -11,9 +11,6 @@ #ifdef CONFIG_NUMA extern struct pglist_data *node_data[]; #define NODE_DATA(nid) (node_data[nid]) - -#include <asm/numaq.h> - #endif /* CONFIG_NUMA */ #ifdef CONFIG_DISCONTIGMEM diff --git a/arch/x86/include/asm/mpspec.h b/arch/x86/include/asm/mpspec.h index 3e6b4920ef5d..f5a617956735 100644 --- a/arch/x86/include/asm/mpspec.h +++ b/arch/x86/include/asm/mpspec.h @@ -25,12 +25,6 @@ extern int pic_mode; extern unsigned int def_to_bigsmp; -#ifdef CONFIG_X86_NUMAQ -extern int mp_bus_id_to_node[MAX_MP_BUSSES]; -extern int mp_bus_id_to_local[MAX_MP_BUSSES]; -extern int quad_local_to_mp_bus_id [NR_CPUS/4][4]; -#endif - #else /* CONFIG_X86_64: */ #define MAX_MP_BUSSES 256 diff --git a/arch/x86/include/asm/numaq.h b/arch/x86/include/asm/numaq.h deleted file mode 100644 index c3b3c322fd87..000000000000 --- a/arch/x86/include/asm/numaq.h +++ /dev/null @@ -1,171 +0,0 @@ -/* - * Written by: Patricia Gaughen, IBM Corporation - * - * Copyright (C) 2002, IBM Corp. - * - * All rights reserved. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, but - * WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or - * NON INFRINGEMENT. See the GNU General Public License for more - * details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. - * - * Send feedback to <gone@us.ibm.com> - */ - -#ifndef _ASM_X86_NUMAQ_H -#define _ASM_X86_NUMAQ_H - -#ifdef CONFIG_X86_NUMAQ - -extern int found_numaq; -extern int numaq_numa_init(void); -extern int pci_numaq_init(void); - -extern void *xquad_portio; - -#define XQUAD_PORTIO_BASE 0xfe400000 -#define XQUAD_PORTIO_QUAD 0x40000 /* 256k per quad. */ -#define XQUAD_PORT_ADDR(port, quad) (xquad_portio + (XQUAD_PORTIO_QUAD*quad) + port) - -/* - * SYS_CFG_DATA_PRIV_ADDR, struct eachquadmem, and struct sys_cfg_data are the - */ -#define SYS_CFG_DATA_PRIV_ADDR 0x0009d000 /* place for scd in private - quad space */ - -/* |
