summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--Documentation/00-INDEX2
-rw-r--r--Documentation/sgi-visws.txt13
-rw-r--r--Documentation/sound/oss/vwsnd293
-rw-r--r--MAINTAINERS7
-rw-r--r--arch/x86/Kconfig82
-rw-r--r--arch/x86/Kconfig.cpu2
-rw-r--r--arch/x86/include/asm/fixmap.h6
-rw-r--r--arch/x86/include/asm/hw_irq.h1
-rw-r--r--arch/x86/include/asm/mmzone_32.h3
-rw-r--r--arch/x86/include/asm/mpspec.h6
-rw-r--r--arch/x86/include/asm/numaq.h171
-rw-r--r--arch/x86/include/asm/setup.h6
-rw-r--r--arch/x86/include/asm/visws/cobalt.h127
-rw-r--r--arch/x86/include/asm/visws/lithium.h53
-rw-r--r--arch/x86/include/asm/visws/piix4.h107
-rw-r--r--arch/x86/include/asm/visws/sgivw.h5
-rw-r--r--arch/x86/kernel/acpi/boot.c12
-rw-r--r--arch/x86/kernel/apic/Makefile3
-rw-r--r--arch/x86/kernel/apic/apic.c1
-rw-r--r--arch/x86/kernel/apic/es7000_32.c738
-rw-r--r--arch/x86/kernel/apic/numaq_32.c524
-rw-r--r--arch/x86/kernel/apic/summit_32.c550
-rw-r--r--arch/x86/kernel/cpu/intel.c4
-rw-r--r--arch/x86/kernel/setup.c1
-rw-r--r--arch/x86/mm/numa.c4
-rw-r--r--arch/x86/pci/Makefile3
-rw-r--r--arch/x86/pci/common.c5
-rw-r--r--arch/x86/pci/numaq_32.c165
-rw-r--r--arch/x86/pci/visws.c87
-rw-r--r--arch/x86/platform/Makefile1
-rw-r--r--arch/x86/platform/visws/Makefile1
-rw-r--r--arch/x86/platform/visws/visws_quirks.c608
-rw-r--r--arch/x86/xen/Kconfig2
-rw-r--r--drivers/clocksource/Makefile1
-rw-r--r--drivers/clocksource/cyclone.c113
-rw-r--r--drivers/pci/Makefile1
-rw-r--r--drivers/scsi/qla1280.c7
-rw-r--r--drivers/video/Kconfig11
-rw-r--r--drivers/video/Makefile1
-rw-r--r--drivers/video/gbefb.c4
-rw-r--r--drivers/video/logo/Kconfig2
-rw-r--r--drivers/video/logo/logo.c2
-rw-r--r--drivers/video/sgivwfb.c889
-rw-r--r--include/video/sgivw.h681
-rw-r--r--sound/oss/Kconfig9
-rw-r--r--sound/oss/Makefile1
-rw-r--r--sound/oss/vwsnd.c3506
47 files changed, 15 insertions, 8806 deletions
diff --git a/Documentation/00-INDEX b/Documentation/00-INDEX
index 07de7e19b4ce..27e67a98b7be 100644
--- a/Documentation/00-INDEX
+++ b/Documentation/00-INDEX
@@ -413,8 +413,6 @@ serial-console.txt
- how to set up Linux with a serial line console as the default.
sgi-ioc4.txt
- description of the SGI IOC4 PCI (multi function) device.
-sgi-visws.txt
- - short blurb on the SGI Visual Workstations.
sh/
- directory with info on porting Linux to a new architecture.
smsc_ece1099.txt
diff --git a/Documentation/sgi-visws.txt b/Documentation/sgi-visws.txt
deleted file mode 100644
index 7ff0811ca2ba..000000000000
--- a/Documentation/sgi-visws.txt
+++ /dev/null
@@ -1,13 +0,0 @@
-
-The SGI Visual Workstations (models 320 and 540) are based around
-the Cobalt, Lithium, and Arsenic ASICs. The Cobalt ASIC is the
-main system ASIC which interfaces the 1-4 IA32 cpus, the memory
-system, and the I/O system in the Lithium ASIC. The Cobalt ASIC
-also contains the 3D gfx rendering engine which renders to main
-system memory -- part of which is used as the frame buffer which
-is DMA'ed to a video connector using the Arsenic ASIC. A PIIX4
-chip and NS87307 are used to provide legacy device support (IDE,
-serial, floppy, and parallel).
-
-The Visual Workstation chipset largely conforms to the PC architecture
-with some notable exceptions such as interrupt handling.
diff --git a/Documentation/sound/oss/vwsnd b/Documentation/sound/oss/vwsnd
deleted file mode 100644
index 4c6cbdb3c548..000000000000
--- a/Documentation/sound/oss/vwsnd
+++ /dev/null
@@ -1,293 +0,0 @@
-vwsnd - Sound driver for the Silicon Graphics 320 and 540 Visual
-Workstations' onboard audio.
-
-Copyright 1999 Silicon Graphics, Inc. All rights reserved.
-
-
-At the time of this writing, March 1999, there are two models of
-Visual Workstation, the 320 and the 540. This document only describes
-those models. Future Visual Workstation models may have different
-sound capabilities, and this driver will probably not work on those
-boxes.
-
-The Visual Workstation has an Analog Devices AD1843 "SoundComm" audio
-codec chip. The AD1843 is accessed through the Cobalt I/O ASIC, also
-known as Lithium. This driver programs both chips.
-
-==============================================================================
-QUICK CONFIGURATION
-
- # insmod soundcore
- # insmod vwsnd
-
-==============================================================================
-I/O CONNECTIONS
-
-On the Visual Workstation, only three of the AD1843 inputs are hooked
-up. The analog line in jacks are connected to the AD1843's AUX1
-input. The CD audio lines are connected to the AD1843's AUX2 input.
-The microphone jack is connected to the AD1843's MIC input. The mic
-jack is mono, but the signal is delivered to both the left and right
-MIC inputs. You can record in stereo from the mic input, but you will
-get the same signal on both channels (within the limits of A/D
-accuracy). Full scale on the Line input is +/- 2.0 V. Full scale on
-the MIC input is 20 dB less, or +/- 0.2 V.
-
-The AD1843's LOUT1 outputs are connected to the Line Out jacks. The
-AD1843's HPOUT outputs are connected to the speaker/headphone jack.
-LOUT2 is not connected. Line out's maximum level is +/- 2.0 V peak to
-peak. The speaker/headphone out's maximum is +/- 4.0 V peak to peak.
-
-The AD1843's PCM input channel and one of its output channels (DAC1)
-are connected to Lithium. The other output channel (DAC2) is not
-connected.
-
-==============================================================================
-CAPABILITIES
-
-The AD1843 has PCM input and output (Pulse Code Modulation, also known
-as wavetable). PCM input and output can be mono or stereo in any of
-four formats. The formats are 16 bit signed and 8 bit unsigned,
-u-Law, and A-Law format. Any sample rate from 4 KHz to 49 KHz is
-available, in 1 Hz increments.
-
-The AD1843 includes an analog mixer that can mix all three input
-signals (line, mic and CD) into the analog outputs. The mixer has a
-separate gain control and mute switch for each input.
-
-There are two outputs, line out and speaker/headphone out. They
-always produce the same signal, and the speaker always has 3 dB more
-gain than the line out. The speaker/headphone output can be muted,
-but this driver does not export that function.
-
-The hardware can sync audio to the video clock, but this driver does
-not have a way to specify syncing to video.
-
-==============================================================================
-PROGRAMMING
-
-This section explains the API supported by the driver. Also see the
-Open Sound Programming Guide at http://www.opensound.com/pguide/ .
-This section assumes familiarity with that document.
-
-The driver has two interfaces, an I/O interface and a mixer interface.
-There is no MIDI or sequencer capability.
-
-==============================================================================
-PROGRAMMING PCM I/O
-
-The I/O interface is usually accessed as /dev/audio or /dev/dsp.
-Using the standard Open Sound System (OSS) ioctl calls, the sample
-rate, number of channels, and sample format may be set within the
-limitations described above. The driver supports triggering. It also
-supports getting the input and output pointers with one-sample
-accuracy.
-
-The SNDCTL_DSP_GETCAP ioctl returns these capabilities.
-
- DSP_CAP_DUPLEX - driver supports full duplex.
-
- DSP_CAP_TRIGGER - driver supports triggering.
-
- DSP_CAP_REALTIME - values returned by SNDCTL_DSP_GETIPTR
- and SNDCTL_DSP_GETOPTR are accurate to a few samples.
-
-Memory mapping (mmap) is not implemented.
-
-The driver permits subdivided fragment sizes from 64 to 4096 bytes.
-The number of fragments can be anything from 3 fragments to however
-many fragments fit into 124 kilobytes. It is up to the user to
-determine how few/small fragments can be used without introducing
-glitches with a given workload. Linux is not realtime, so we can't
-promise anything. (sigh...)
-
-When this driver is switched into or out of mu-Law or A-Law mode on
-output, it may produce an audible click. This is unavoidable. To
-prevent clicking, use signed 16-bit mode instead, and convert from
-mu-Law or A-Law format in software.
-
-==============================================================================
-PROGRAMMING THE MIXER INTERFACE
-
-The mixer interface is usually accessed as /dev/mixer. It is accessed
-through ioctls. The mixer allows the application to control gain or
-mute several audio signal paths, and also allows selection of the
-recording source.
-
-Each of the constants described here can be read using the
-MIXER_READ(SOUND_MIXER_xxx) ioctl. Those that are not read-only can
-also be written using the MIXER_WRITE(SOUND_MIXER_xxx) ioctl. In most
-cases, <sys/soundcard.h> defines constants SOUND_MIXER_READ_xxx and
-SOUND_MIXER_WRITE_xxx which work just as well.
-
-SOUND_MIXER_CAPS Read-only
-
-This is a mask of optional driver capabilities that are implemented.
-This driver's only capability is SOUND_CAP_EXCL_INPUT, which means
-that only one recording source can be active at a time.
-
-SOUND_MIXER_DEVMASK Read-only
-
-This is a mask of the sound channels. This driver's channels are PCM,
-LINE, MIC, CD, and RECLEV.
-
-SOUND_MIXER_STEREODEVS Read-only
-
-This is a mask of which sound channels are capable of stereo. All
-channels are capable of stereo. (But see caveat on MIC input in I/O
-CONNECTIONS section above).
-
-SOUND_MIXER_OUTMASK Read-only
-
-This is a mask of channels that route inputs through to outputs.
-Those are LINE, MIC, and CD.
-
-SOUND_MIXER_RECMASK Read-only
-
-This is a mask of channels that can be recording sources. Those are
-PCM, LINE, MIC, CD.
-
-SOUND_MIXER_PCM Default: 0x5757 (0 dB)
-
-This is the gain control for PCM output. The left and right channel
-gain are controlled independently. This gain control has 64 levels,
-which range from -82.5 dB to +12.0 dB in 1.5 dB steps. Those 64
-levels are mapped onto 100 levels at the ioctl, see below.
-
-SOUND_MIXER_LINE Default: 0x4a4a (0 dB)
-
-This is the gain control for mixing the Line In source into the
-outputs. The left and right channel gain are controlled
-independently. This gain control has 32 levels, which range from
--34.5 dB to +12.0 dB in 1.5 dB steps. Those 32 levels are mapped onto
-100 levels at the ioctl, see below.
-
-SOUND_MIXER_MIC Default: 0x4a4a (0 dB)
-
-This is the gain control for mixing the MIC source into the outputs.
-The left and right channel gain are controlled independently. This
-gain control has 32 levels, which range from -34.5 dB to +12.0 dB in
-1.5 dB steps. Those 32 levels are mapped onto 100 levels at the
-ioctl, see below.
-
-SOUND_MIXER_CD Default: 0x4a4a (0 dB)
-
-This is the gain control for mixing the CD audio source into the
-outputs. The left and right channel gain are controlled
-independently. This gain control has 32 levels, which range from
--34.5 dB to +12.0 dB in 1.5 dB steps. Those 32 levels are mapped onto
-100 levels at the ioctl, see below.
-
-SOUND_MIXER_RECLEV Default: 0 (0 dB)
-
-This is the gain control for PCM input (RECording LEVel). The left
-and right channel gain are controlled independently. This gain
-control has 16 levels, which range from 0 dB to +22.5 dB in 1.5 dB
-steps. Those 16 levels are mapped onto 100 levels at the ioctl, see
-below.
-
-SOUND_MIXER_RECSRC Default: SOUND_MASK_LINE
-
-This is a mask of currently selected PCM input sources (RECording
-SouRCes). Because the AD1843 can only have a single recording source
-at a time, only one bit at a time can be set in this mask. The
-allowable values are SOUND_MASK_PCM, SOUND_MASK_LINE, SOUND_MASK_MIC,
-or SOUND_MASK_CD. Selecting SOUND_MASK_PCM sets up internal
-resampling which is useful for loopback testing and for hardware
-sample rate conversion. But software sample rate conversion is
-probably faster, so I don't know how useful that is.
-
-SOUND_MIXER_OUTSRC DEFAULT: SOUND_MASK_LINE|SOUND_MASK_MIC|SOUND_MASK_CD
-
-This is a mask of sources that are currently passed through to the
-outputs. Those sources whose bits are not set are muted.
-
-==============================================================================
-GAIN CONTROL
-
-There are five gain controls listed above. Each has 16, 32, or 64
-steps. Each control has 1.5 dB of gain per step. Each control is
-stereo.
-
-The OSS defines the argument to a channel gain ioctl as having two
-components, left and right, each of which ranges from 0 to 100. The
-two components are packed into the same word, with the left side gain
-in the least significant byte, and the right side gain in the second
-least significant byte. In C, we would say this.
-
- #include <assert.h>
-
- ...
-
- assert(leftgain >= 0 && leftgain <= 100);
- assert(rightgain >= 0 && rightgain <= 100);
- arg = leftgain | rightgain << 8;
-
-So each OSS gain control has 101 steps. But the hardware has 16, 32,
-or 64 steps. The hardware steps are spread across the 101 OSS steps
-nearly evenly. The conversion formulas are like this, given N equals
-16, 32, or 64.
-
- int round = N/2 - 1;
- OSS_gain_steps = (hw_gain_steps * 100 + round) / (N - 1);
- hw_gain_steps = (OSS_gain_steps * (N - 1) + round) / 100;
-
-Here is a snippet of C code that will return the left and right gain
-of any channel in dB. Pass it one of the predefined gain_desc_t
-structures to access any of the five channels' gains.
-
- typedef struct gain_desc {
- float min_gain;
- float gain_step;
- int nbits;
- int chan;
- } gain_desc_t;
-
- const gain_desc_t gain_pcm = { -82.5, 1.5, 6, SOUND_MIXER_PCM };
- const gain_desc_t gain_line = { -34.5, 1.5, 5, SOUND_MIXER_LINE };
- const gain_desc_t gain_mic = { -34.5, 1.5, 5, SOUND_MIXER_MIC };
- const gain_desc_t gain_cd = { -34.5, 1.5, 5, SOUND_MIXER_CD };
- const gain_desc_t gain_reclev = { 0.0, 1.5, 4, SOUND_MIXER_RECLEV };
-
- int get_gain_dB(int fd, const gain_desc_t *gp,
- float *left, float *right)
- {
- int word;
- int lg, rg;
- int mask = (1 << gp->nbits) - 1;
-
- if (ioctl(fd, MIXER_READ(gp->chan), &word) != 0)
- return -1; /* fail */
- lg = word & 0xFF;
- rg = word >> 8 & 0xFF;
- lg = (lg * mask + mask / 2) / 100;
- rg = (rg * mask + mask / 2) / 100;
- *left = gp->min_gain + gp->gain_step * lg;
- *right = gp->min_gain + gp->gain_step * rg;
- return 0;
- }
-
-And here is the corresponding routine to set a channel's gain in dB.
-
- int set_gain_dB(int fd, const gain_desc_t *gp, float left, float right)
- {
- float max_gain =
- gp->min_gain + (1 << gp->nbits) * gp->gain_step;
- float round = gp->gain_step / 2;
- int mask = (1 << gp->nbits) - 1;
- int word;
- int lg, rg;
-
- if (left < gp->min_gain || right < gp->min_gain)
- return EINVAL;
- lg = (left - gp->min_gain + round) / gp->gain_step;
- rg = (right - gp->min_gain + round) / gp->gain_step;
- if (lg >= (1 << gp->nbits) || rg >= (1 << gp->nbits))
- return EINVAL;
- lg = (100 * lg + mask / 2) / mask;
- rg = (100 * rg + mask / 2) / mask;
- word = lg | rg << 8;
-
- return ioctl(fd, MIXER_WRITE(gp->chan), &word);
- }
-
diff --git a/MAINTAINERS b/MAINTAINERS
index c1b982cd52db..b99bbbc4c5dd 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -7840,13 +7840,6 @@ F: Documentation/ia64/serial.txt
F: drivers/tty/serial/ioc?_serial.c
F: include/linux/ioc?.h
-SGI VISUAL WORKSTATION 320 AND 540
-M: Andrey Panin <pazke@donpac.ru>
-L: linux-visws-devel@lists.sf.net
-W: http://linux-visws.sf.net
-S: Maintained for 2.6.
-F: Documentation/sgi-visws.txt
-
SGI XP/XPC/XPNET DRIVER
M: Cliff Whickman <cpw@sgi.com>
M: Robin Holt <robinmholt@gmail.com>
diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig
index ac04d9804391..f73071742975 100644
--- a/arch/x86/Kconfig
+++ b/arch/x86/Kconfig
@@ -344,12 +344,9 @@ config X86_EXTENDED_PLATFORM
for the following (non-PC) 32 bit x86 platforms:
Goldfish (Android emulator)
AMD Elan
- NUMAQ (IBM/Sequent)
RDC R-321x SoC
SGI 320/540 (Visual Workstation)
STA2X11-based (e.g. Northville)
- Summit/EXA (IBM x440)
- Unisys ES7000 IA32 series
Moorestown MID devices
If you have one of these systems, or if you want to build a
@@ -487,49 +484,22 @@ config X86_32_NON_STANDARD
depends on X86_32 && SMP
depends on X86_EXTENDED_PLATFORM
---help---
- This option compiles in the NUMAQ, Summit, bigsmp, ES7000,
- STA2X11, default subarchitectures. It is intended for a generic
- binary kernel. If you select them all, kernel will probe it
- one by one and will fallback to default.
+ This option compiles in the bigsmp and STA2X11 default
+ subarchitectures. It is intended for a generic binary
+ kernel. If you select them all, kernel will probe it one by
+ one and will fallback to default.
# Alphabetically sorted list of Non standard 32 bit platforms
-config X86_NUMAQ
- bool "NUMAQ (IBM/Sequent)"
- depends on X86_32_NON_STANDARD
- depends on PCI
- select NUMA
- select X86_MPPARSE
- ---help---
- This option is used for getting Linux to run on a NUMAQ (IBM/Sequent)
- NUMA multiquad box. This changes the way that processors are
- bootstrapped, and uses Clustered Logical APIC addressing mode instead
- of Flat Logical. You will need a new lynxer.elf file to flash your
- firmware with - send email to <Martin.Bligh@us.ibm.com>.
-
config X86_SUPPORTS_MEMORY_FAILURE
def_bool y
# MCE code calls memory_failure():
depends on X86_MCE
# On 32-bit this adds too big of NODES_SHIFT and we run out of page flags:
- depends on !X86_NUMAQ
# On 32-bit SPARSEMEM adds too big of SECTIONS_WIDTH:
depends on X86_64 || !SPARSEMEM
select ARCH_SUPPORTS_MEMORY_FAILURE
-config X86_VISWS
- bool "SGI 320/540 (Visual Workstation)"
- depends on X86_32 && PCI && X86_MPPARSE && PCI_GODIRECT
- depends on X86_32_NON_STANDARD
- ---help---
- The SGI Visual Workstation series is an IA32-based workstation
- based on SGI systems chips with some legacy PC hardware attached.
-
- Say Y here to create a kernel to run on the SGI 320 or 540.
-
- A kernel compiled for the Visual Workstation will run on general
- PCs as well. See <file:Documentation/sgi-visws.txt> for details.
-
config STA2X11
bool "STA2X11 Companion Chip Support"
depends on X86_32_NON_STANDARD && PCI
@@ -546,20 +516,6 @@ config STA2X11
option is selected the kernel will still be able to boot on
standard PC machines.
-config X86_SUMMIT
- bool "Summit/EXA (IBM x440)"
- depends on X86_32_NON_STANDARD
- ---help---
- This option is needed for IBM systems that use the Summit/EXA chipset.
- In particular, it is needed for the x440.
-
-config X86_ES7000
- bool "Unisys ES7000 IA32 series"
- depends on X86_32_NON_STANDARD && X86_BIGSMP
- ---help---
- Support for Unisys ES7000 systems. Say 'Y' here if this kernel is
- supposed to run on an IA32-based Unisys ES7000 system.
-
config X86_32_IRIS
tristate "Eurobraille/Iris poweroff module"
depends on X86_32
@@ -682,14 +638,6 @@ config MEMTEST
memtest=4, mean do 4 test patterns.
If you are unsure how to answer this question, answer N.
-config X86_SUMMIT_NUMA
- def_bool y
- depends on X86_32 && NUMA && X86_32_NON_STANDARD
-
-config X86_CYCLONE_TIMER
- def_bool y
- depends on X86_SUMMIT
-
source "arch/x86/Kconfig.cpu"
config HPET_TIMER
@@ -818,7 +766,7 @@ config NR_CPUS
range 2 8192 if SMP && !MAXSMP && CPUMASK_OFFSTACK && X86_64
default "1" if !SMP
default "8192" if MAXSMP
- default "32" if SMP && (X86_NUMAQ || X86_SUMMIT || X86_BIGSMP || X86_ES7000)
+ default "32" if SMP && X86_BIGSMP
default "8" if SMP
---help---
This allows you to specify the maximum number of CPUs which this
@@ -882,10 +830,6 @@ config X86_IO_APIC
def_bool y
depends on X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_IOAPIC || PCI_MSI
-config X86_VISWS_APIC
- def_bool y
- depends on X86_32 && X86_VISWS
-
config X86_REROUTE_FOR_BROKEN_BOOT_IRQS
bool "Reroute for broken boot IRQs"
depends on X86_IO_APIC
@@ -1103,13 +1047,11 @@ config X86_CPUID
choice
prompt "High Memory Support"
- default HIGHMEM64G if X86_NUMAQ
default HIGHMEM4G
depends on X86_32
config NOHIGHMEM
bool "off"
- depends on !X86_NUMAQ
---help---
Linux can use up to 64 Gigabytes of physical memory on x86 systems.
However, the address space of 32-bit x86 processors is only 4
@@ -1146,7 +1088,6 @@ config NOHIGHMEM
config HIGHMEM4G
bool "4GB"
- depends on !X86_NUMAQ
---help---
Select this if you have a 32-bit processor and between 1 and 4
gigabytes of physical RAM.
@@ -1238,8 +1179,8 @@ config DIRECT_GBPAGES
config NUMA
bool "Numa Memory Allocation and Scheduler Support"
depends on SMP
- depends on X86_64 || (X86_32 && HIGHMEM64G && (X86_NUMAQ || X86_BIGSMP || X86_SUMMIT && ACPI))
- default y if (X86_NUMAQ || X86_SUMMIT || X86_BIGSMP)
+ depends on X86_64 || (X86_32 && HIGHMEM64G && X86_BIGSMP)
+ default y if X86_BIGSMP
---help---
Enable NUMA (Non Uniform Memory Access) support.
@@ -1250,15 +1191,11 @@ config NUMA
For 64-bit this is recommended if the system is Intel Core i7
(or later), AMD Opteron, or EM64T NUMA.
- For 32-bit this is only needed on (rare) 32-bit-only platforms
- that support NUMA topologies, such as NUMAQ / Summit, or if you
- boot a 32-bit kernel on a 64-bit NUMA platform.
+ For 32-bit this is only needed if you boot a 32-bit
+ kernel on a 64-bit NUMA platform.
Otherwise, you should say N.
-comment "NUMA (Summit) requires SMP, 64GB highmem support, ACPI"
- depends on X86_32 && X86_SUMMIT && (!HIGHMEM64G || !ACPI)
-
config AMD_NUMA
def_bool y
prompt "Old style AMD Opteron NUMA detection"
@@ -1300,7 +1237,6 @@ config NODES_SHIFT
range 1 10
default "10" if MAXSMP
default "6" if X86_64
- default "4" if X86_NUMAQ
default "3"
depends on NEED_MULTIPLE_NODES
---help---
diff --git a/arch/x86/Kconfig.cpu b/arch/x86/Kconfig.cpu
index f3aaf231b4e5..6983314c8b37 100644
--- a/arch/x86/Kconfig.cpu
+++ b/arch/x86/Kconfig.cpu
@@ -359,7 +359,7 @@ config X86_P6_NOP
config X86_TSC
def_bool y
- depends on ((MWINCHIP3D || MCRUSOE || MEFFICEON || MCYRIXIII || MK7 || MK6 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || M586MMX || M586TSC || MK8 || MVIAC3_2 || MVIAC7 || MGEODEGX1 || MGEODE_LX || MCORE2 || MATOM) && !X86_NUMAQ) || X86_64
+ depends on (MWINCHIP3D || MCRUSOE || MEFFICEON || MCYRIXIII || MK7 || MK6 || MPENTIUM4 || MPENTIUMM || MPENTIUMIII || MPENTIUMII || M686 || M586MMX || M586TSC || MK8 || MVIAC3_2 || MVIAC7 || MGEODEGX1 || MGEODE_LX || MCORE2 || MATOM) || X86_64
config X86_CMPXCHG64
def_bool y
diff --git a/arch/x86/include/asm/fixmap.h b/arch/x86/include/asm/fixmap.h
index 2377f5618fb7..8dcd35c4c787 100644
--- a/arch/x86/include/asm/fixmap.h
+++ b/arch/x86/include/asm/fixmap.h
@@ -90,12 +90,6 @@ enum fixed_addresses {
FIX_IO_APIC_BASE_0,
FIX_IO_APIC_BASE_END = FIX_IO_APIC_BASE_0 + MAX_IO_APICS - 1,
#endif
-#ifdef CONFIG_X86_VISWS_APIC
- FIX_CO_CPU, /* Cobalt timer */
- FIX_CO_APIC, /* Cobalt APIC Redirection Table */
- FIX_LI_PCIA, /* Lithium PCI Bridge A */
- FIX_LI_PCIB, /* Lithium PCI Bridge B */
-#endif
FIX_RO_IDT, /* Virtual mapping for read-only IDT */
#ifdef CONFIG_X86_32
FIX_KMAP_BEGIN, /* reserved pte's for temporary kernel mappings */
diff --git a/arch/x86/include/asm/hw_irq.h b/arch/x86/include/asm/hw_irq.h
index 67d69b8e2d20..a307b7530e54 100644
--- a/arch/x86/include/asm/hw_irq.h
+++ b/arch/x86/include/asm/hw_irq.h
@@ -98,7 +98,6 @@ extern void trace_call_function_single_interrupt(void);
#define IO_APIC_IRQ(x) (((x) >= NR_IRQS_LEGACY) || ((1<<(x)) & io_apic_irqs))
extern unsigned long io_apic_irqs;
-extern void init_VISWS_APIC_irqs(void);
extern void setup_IO_APIC(void);
extern void disable_IO_APIC(void);
diff --git a/arch/x86/include/asm/mmzone_32.h b/arch/x86/include/asm/mmzone_32.h
index 8a9b3e288cb4..1ec990bd7dc0 100644
--- a/arch/x86/include/asm/mmzone_32.h
+++ b/arch/x86/include/asm/mmzone_32.h
@@ -11,9 +11,6 @@
#ifdef CONFIG_NUMA
extern struct pglist_data *node_data[];
#define NODE_DATA(nid) (node_data[nid])
-
-#include <asm/numaq.h>
-
#endif /* CONFIG_NUMA */
#ifdef CONFIG_DISCONTIGMEM
diff --git a/arch/x86/include/asm/mpspec.h b/arch/x86/include/asm/mpspec.h
index 3e6b4920ef5d..f5a617956735 100644
--- a/arch/x86/include/asm/mpspec.h
+++ b/arch/x86/include/asm/mpspec.h
@@ -25,12 +25,6 @@ extern int pic_mode;
extern unsigned int def_to_bigsmp;
-#ifdef CONFIG_X86_NUMAQ
-extern int mp_bus_id_to_node[MAX_MP_BUSSES];
-extern int mp_bus_id_to_local[MAX_MP_BUSSES];
-extern int quad_local_to_mp_bus_id [NR_CPUS/4][4];
-#endif
-
#else /* CONFIG_X86_64: */
#define MAX_MP_BUSSES 256
diff --git a/arch/x86/include/asm/numaq.h b/arch/x86/include/asm/numaq.h
deleted file mode 100644
index c3b3c322fd87..000000000000
--- a/arch/x86/include/asm/numaq.h
+++ /dev/null
@@ -1,171 +0,0 @@
-/*
- * Written by: Patricia Gaughen, IBM Corporation
- *
- * Copyright (C) 2002, IBM Corp.
- *
- * All rights reserved.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
- * NON INFRINGEMENT. See the GNU General Public License for more
- * details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- *
- * Send feedback to <gone@us.ibm.com>
- */
-
-#ifndef _ASM_X86_NUMAQ_H
-#define _ASM_X86_NUMAQ_H
-
-#ifdef CONFIG_X86_NUMAQ
-
-extern int found_numaq;
-extern int numaq_numa_init(void);
-extern int pci_numaq_init(void);
-
-extern void *xquad_portio;
-
-#define XQUAD_PORTIO_BASE 0xfe400000
-#define XQUAD_PORTIO_QUAD 0x40000 /* 256k per quad. */
-#define XQUAD_PORT_ADDR(port, quad) (xquad_portio + (XQUAD_PORTIO_QUAD*quad) + port)
-
-/*
- * SYS_CFG_DATA_PRIV_ADDR, struct eachquadmem, and struct sys_cfg_data are the
- */
-#define SYS_CFG_DATA_PRIV_ADDR 0x0009d000 /* place for scd in private
- quad space */
-
-/*