summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--Documentation/dev-tools/autofdo.rst168
-rw-r--r--Documentation/dev-tools/coccinelle.rst22
-rw-r--r--Documentation/dev-tools/index.rst2
-rw-r--r--Documentation/dev-tools/propeller.rst162
-rw-r--r--Documentation/kbuild/kbuild.rst8
-rw-r--r--Documentation/kbuild/kconfig-language.rst4
-rw-r--r--Documentation/kbuild/makefiles.rst14
-rw-r--r--Documentation/kbuild/modules.rst29
-rw-r--r--MAINTAINERS14
-rw-r--r--Makefile223
-rw-r--r--arch/Kconfig39
-rw-r--r--arch/arm/Makefile4
-rw-r--r--arch/arm64/Makefile2
-rw-r--r--arch/mips/kernel/head.S1
-rw-r--r--arch/mips/kernel/vmlinux.lds.S1
-rw-r--r--arch/powerpc/Makefile6
-rw-r--r--arch/riscv/Makefile2
-rw-r--r--arch/sparc/kernel/vmlinux.lds.S5
-rw-r--r--arch/x86/Kconfig2
-rw-r--r--arch/x86/kernel/vmlinux.lds.S4
-rw-r--r--drivers/accessibility/speakup/Makefile4
-rw-r--r--drivers/of/Kconfig6
-rw-r--r--drivers/usb/dwc2/Kconfig2
-rw-r--r--drivers/usb/dwc3/Kconfig2
-rw-r--r--drivers/usb/isp1760/Kconfig2
-rw-r--r--drivers/usb/mtu3/Kconfig2
-rw-r--r--drivers/usb/musb/Kconfig2
-rw-r--r--include/asm-generic/vmlinux.lds.h53
-rw-r--r--include/linux/mmdebug.h6
-rw-r--r--include/linux/module.h2
-rw-r--r--include/linux/once.h4
-rw-r--r--include/linux/once_lite.h2
-rw-r--r--include/linux/rcupdate.h2
-rw-r--r--include/net/net_debug.h2
-rw-r--r--mm/internal.h2
-rw-r--r--rust/Makefile4
-rw-r--r--scripts/Kbuild.include2
-rw-r--r--scripts/Makefile.autofdo24
-rw-r--r--scripts/Makefile.build59
-rw-r--r--scripts/Makefile.clean2
-rw-r--r--scripts/Makefile.compiler2
-rw-r--r--scripts/Makefile.host8
-rw-r--r--scripts/Makefile.lib62
-rw-r--r--scripts/Makefile.modfinal31
-rw-r--r--scripts/Makefile.modinst8
-rw-r--r--scripts/Makefile.modpost24
-rw-r--r--scripts/Makefile.propeller39
-rw-r--r--scripts/Makefile.vmlinux51
-rwxr-xr-xscripts/coccicheck6
-rwxr-xr-xscripts/depmod.sh4
-rw-r--r--scripts/genksyms/genksyms.c73
-rw-r--r--scripts/head-object-list.txt1
-rw-r--r--scripts/kconfig/conf.c5
-rw-r--r--scripts/kconfig/lkc_proto.h1
-rw-r--r--scripts/kconfig/nconf.c2
-rw-r--r--scripts/kconfig/nconf.gui.c9
-rw-r--r--scripts/kconfig/parser.y28
-rw-r--r--scripts/kconfig/qconf.cc204
-rw-r--r--scripts/kconfig/qconf.h19
-rwxr-xr-xscripts/kconfig/streamline_config.pl18
-rw-r--r--scripts/kconfig/symbol.c26
-rwxr-xr-xscripts/link-vmlinux.sh16
-rw-r--r--scripts/mod/file2alias.c779
-rw-r--r--scripts/mod/modpost.c31
-rw-r--r--scripts/mod/modpost.h21
-rw-r--r--scripts/nsdeps10
-rwxr-xr-xscripts/package/builddeb22
-rwxr-xr-xscripts/package/install-extmod-build7
-rwxr-xr-xscripts/package/mkdebian2
-rwxr-xr-xscripts/setlocalversion58
-rw-r--r--tools/objtool/check.c2
-rw-r--r--tools/objtool/elf.c15
73 files changed, 1471 insertions, 1010 deletions
diff --git a/.gitignore b/.gitignore
index a61e4778d011..6839cf84acda 100644
--- a/.gitignore
+++ b/.gitignore
@@ -129,6 +129,7 @@ series
# ctags files
tags
+!tags/
TAGS
# cscope files
diff --git a/Documentation/dev-tools/autofdo.rst b/Documentation/dev-tools/autofdo.rst
new file mode 100644
index 000000000000..1f0a451e9ccd
--- /dev/null
+++ b/Documentation/dev-tools/autofdo.rst
@@ -0,0 +1,168 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===================================
+Using AutoFDO with the Linux kernel
+===================================
+
+This enables AutoFDO build support for the kernel when using
+the Clang compiler. AutoFDO (Auto-Feedback-Directed Optimization)
+is a type of profile-guided optimization (PGO) used to enhance the
+performance of binary executables. It gathers information about the
+frequency of execution of various code paths within a binary using
+hardware sampling. This data is then used to guide the compiler's
+optimization decisions, resulting in a more efficient binary. AutoFDO
+is a powerful optimization technique, and data indicates that it can
+significantly improve kernel performance. It's especially beneficial
+for workloads affected by front-end stalls.
+
+For AutoFDO builds, unlike non-FDO builds, the user must supply a
+profile. Acquiring an AutoFDO profile can be done in several ways.
+AutoFDO profiles are created by converting hardware sampling using
+the "perf" tool. It is crucial that the workload used to create these
+perf files is representative; they must exhibit runtime
+characteristics similar to the workloads that are intended to be
+optimized. Failure to do so will result in the compiler optimizing
+for the wrong objective.
+
+The AutoFDO profile often encapsulates the program's behavior. If the
+performance-critical codes are architecture-independent, the profile
+can be applied across platforms to achieve performance gains. For
+instance, using the profile generated on Intel architecture to build
+a kernel for AMD architecture can also yield performance improvements.
+
+There are two methods for acquiring a representative profile:
+(1) Sample real workloads using a production environment.
+(2) Generate the profile using a representative load test.
+When enabling the AutoFDO build configuration without providing an
+AutoFDO profile, the compiler only modifies the dwarf information in
+the kernel without impacting runtime performance. It's advisable to
+use a kernel binary built with the same AutoFDO configuration to
+collect the perf profile. While it's possible to use a kernel built
+with different options, it may result in inferior performance.
+
+One can collect profiles using AutoFDO build for the previous kernel.
+AutoFDO employs relative line numbers to match the profiles, offering
+some tolerance for source changes. This mode is commonly used in a
+production environment for profile collection.
+
+In a profile collection based on a load test, the AutoFDO collection
+process consists of the following steps:
+
+#. Initial build: The kernel is built with AutoFDO options
+ without a profile.
+
+#. Profiling: The above kernel is then run with a representative
+ workload to gather execution frequency data. This data is
+ collected using hardware sampling, via perf. AutoFDO is most
+ effective on platforms supporting advanced PMU features like
+ LBR on Intel machines.
+
+#. AutoFDO profile generation: Perf output file is converted to
+ the AutoFDO profile via offline tools.
+
+The support requires a Clang compiler LLVM 17 or later.
+
+Preparation
+===========
+
+Configure the kernel with::
+
+ CONFIG_AUTOFDO_CLANG=y
+
+Customization
+=============
+
+The default CONFIG_AUTOFDO_CLANG setting covers kernel space objects for
+AutoFDO builds. One can, however, enable or disable AutoFDO build for
+individual files and directories by adding a line similar to the following
+to the respective kernel Makefile:
+
+- For enabling a single file (e.g. foo.o) ::
+
+ AUTOFDO_PROFILE_foo.o := y
+
+- For enabling all files in one directory ::
+
+ AUTOFDO_PROFILE := y
+
+- For disabling one file ::
+
+ AUTOFDO_PROFILE_foo.o := n
+
+- For disabling all files in one directory ::
+
+ AUTOFDO_PROFILE := n
+
+Workflow
+========
+
+Here is an example workflow for AutoFDO kernel:
+
+1) Build the kernel on the host machine with LLVM enabled,
+ for example, ::
+
+ $ make menuconfig LLVM=1
+
+ Turn on AutoFDO build config::
+
+ CONFIG_AUTOFDO_CLANG=y
+
+ With a configuration that with LLVM enabled, use the following command::
+
+ $ scripts/config -e AUTOFDO_CLANG
+
+ After getting the config, build with ::
+
+ $ make LLVM=1
+
+2) Install the kernel on the test machine.
+
+3) Run the load tests. The '-c' option in perf specifies the sample
+ event period. We suggest using a suitable prime number, like 500009,
+ for this purpose.
+
+ - For Intel platforms::
+
+ $ perf record -e BR_INST_RETIRED.NEAR_TAKEN:k -a -N -b -c <count> -o <perf_file> -- <loadtest>
+
+ - For AMD platforms:
+
+ The supported systems are: Zen3 with BRS, or Zen4 with amd_lbr_v2. To check,
+
+ For Zen3::
+
+ $ cat proc/cpuinfo | grep " brs"
+
+ For Zen4::
+
+ $ cat proc/cpuinfo | grep amd_lbr_v2
+
+ The following command generated the perf data file::
+
+ $ perf record --pfm-events RETIRED_TAKEN_BRANCH_INSTRUCTIONS:k -a -N -b -c <count> -o <perf_file> -- <loadtest>
+
+4) (Optional) Download the raw perf file to the host machine.
+
+5) To generate an AutoFDO profile, two offline tools are available:
+ create_llvm_prof and llvm_profgen. The create_llvm_prof tool is part
+ of the AutoFDO project and can be found on GitHub
+ (https://github.com/google/autofdo), version v0.30.1 or later.
+ The llvm_profgen tool is included in the LLVM compiler itself. It's
+ important to note that the version of llvm_profgen doesn't need to match
+ the version of Clang. It needs to be the LLVM 19 release of Clang
+ or later, or just from the LLVM trunk. ::
+
+ $ llvm-profgen --kernel --binary=<vmlinux> --perfdata=<perf_file> -o <profile_file>
+
+ or ::
+
+ $ create_llvm_prof --binary=<vmlinux> --profile=<perf_file> --format=extbinary --out=<profile_file>
+
+ Note that multiple AutoFDO profile files can be merged into one via::
+
+ $ llvm-profdata merge -o <profile_file> <profile_1> <profile_2> ... <profile_n>
+
+6) Rebuild the kernel using the AutoFDO profile file with the same config as step 1,
+ (Note CONFIG_AUTOFDO_CLANG needs to be enabled)::
+
+ $ make LLVM=1 CLANG_AUTOFDO_PROFILE=<profile_file>
diff --git a/Documentation/dev-tools/coccinelle.rst b/Documentation/dev-tools/coccinelle.rst
index 535ce126fb4f..6e70a1e9a3c0 100644
--- a/Documentation/dev-tools/coccinelle.rst
+++ b/Documentation/dev-tools/coccinelle.rst
@@ -250,25 +250,17 @@ variables for .cocciconfig is as follows:
- Your directory from which spatch is called is processed next
- The directory provided with the ``--dir`` option is processed last, if used
-Since coccicheck runs through make, it naturally runs from the kernel
-proper dir; as such the second rule above would be implied for picking up a
-.cocciconfig when using ``make coccicheck``.
-
``make coccicheck`` also supports using M= targets. If you do not supply
any M= target, it is assumed you want to target the entire kernel.
The kernel coccicheck script has::
- if [ "$KBUILD_EXTMOD" = "" ] ; then
- OPTIONS="--dir $srctree $COCCIINCLUDE"
- else
- OPTIONS="--dir $KBUILD_EXTMOD $COCCIINCLUDE"
- fi
-
-KBUILD_EXTMOD is set when an explicit target with M= is used. For both cases
-the spatch ``--dir`` argument is used, as such third rule applies when whether
-M= is used or not, and when M= is used the target directory can have its own
-.cocciconfig file. When M= is not passed as an argument to coccicheck the
-target directory is the same as the directory from where spatch was called.
+ OPTIONS="--dir $srcroot $COCCIINCLUDE"
+
+Here, $srcroot refers to the source directory of the target: it points to the
+external module's source directory when M= used, and otherwise, to the kernel
+source directory. The third rule ensures the spatch reads the .cocciconfig from
+the target directory, allowing external modules to have their own .cocciconfig
+file.
If not using the kernel's coccicheck target, keep the above precedence
order logic of .cocciconfig reading. If using the kernel's coccicheck target,
diff --git a/Documentation/dev-tools/index.rst b/Documentation/dev-tools/index.rst
index 53d4d124f9c5..3c0ac08b2709 100644
--- a/Documentation/dev-tools/index.rst
+++ b/Documentation/dev-tools/index.rst
@@ -34,6 +34,8 @@ Documentation/dev-tools/testing-overview.rst
ktap
checkuapi
gpio-sloppy-logic-analyzer
+ autofdo
+ propeller
.. only:: subproject and html
diff --git a/Documentation/dev-tools/propeller.rst b/Documentation/dev-tools/propeller.rst
new file mode 100644
index 000000000000..92195958e3db
--- /dev/null
+++ b/Documentation/dev-tools/propeller.rst
@@ -0,0 +1,162 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=====================================
+Using Propeller with the Linux kernel
+=====================================
+
+This enables Propeller build support for the kernel when using Clang
+compiler. Propeller is a profile-guided optimization (PGO) method used
+to optimize binary executables. Like AutoFDO, it utilizes hardware
+sampling to gather information about the frequency of execution of
+different code paths within a binary. Unlike AutoFDO, this information
+is then used right before linking phase to optimize (among others)
+block layout within and across functions.
+
+A few important notes about adopting Propeller optimization:
+
+#. Although it can be used as a standalone optimization step, it is
+ strongly recommended to apply Propeller on top of AutoFDO,
+ AutoFDO+ThinLTO or Instrument FDO. The rest of this document
+ assumes this paradigm.
+
+#. Propeller uses another round of profiling on top of
+ AutoFDO/AutoFDO+ThinLTO/iFDO. The whole build process involves
+ "build-afdo - train-afdo - build-propeller - train-propeller -
+ build-optimized".
+
+#. Propeller requires LLVM 19 release or later for Clang/Clang++
+ and the linker(ld.lld).
+
+#. In addition to LLVM toolchain, Propeller requires a profiling
+ conversion tool: https://github.com/google/autofdo with a release
+ after v0.30.1: https://github.com/google/autofdo/releases/tag/v0.30.1.
+
+The Propeller optimization process involves the following steps:
+
+#. Initial building: Build the AutoFDO or AutoFDO+ThinLTO binary as
+ you would normally do, but with a set of compile-time / link-time
+ flags, so that a special metadata section is created within the
+ kernel binary. The special section is only intend to be used by the
+ profiling tool, it is not part of the runtime image, nor does it
+ change kernel run time text sections.
+
+#. Profiling: The above kernel is then run with a representative
+ workload to gather execution frequency data. This data is collected
+ using hardware sampling, via perf. Propeller is most effective on
+ platforms supporting advanced PMU features like LBR on Intel
+ machines. This step is the same as profiling the kernel for AutoFDO
+ (the exact perf parameters can be different).
+
+#. Propeller profile generation: Perf output file is converted to a
+ pair of Propeller profiles via an offline tool.
+
+#. Optimized build: Build the AutoFDO or AutoFDO+ThinLTO optimized
+ binary as you would normally do, but with a compile-time /
+ link-time flag to pick up the Propeller compile time and link time
+ profiles. This build step uses 3 profiles - the AutoFDO profile,
+ the Propeller compile-time profile and the Propeller link-time
+ profile.
+
+#. Deployment: The optimized kernel binary is deployed and used
+ in production environments, providing improved performance
+ and reduced latency.
+
+Preparation
+===========
+
+Configure the kernel with::
+
+ CONFIG_AUTOFDO_CLANG=y
+ CONFIG_PROPELLER_CLANG=y
+
+Customization
+=============
+
+The default CONFIG_PROPELLER_CLANG setting covers kernel space objects
+for Propeller builds. One can, however, enable or disable Propeller build
+for individual files and directories by adding a line similar to the
+following to the respective kernel Makefile:
+
+- For enabling a single file (e.g. foo.o)::
+
+ PROPELLER_PROFILE_foo.o := y
+
+- For enabling all files in one directory::
+
+ PROPELLER_PROFILE := y
+
+- For disabling one file::
+
+ PROPELLER_PROFILE_foo.o := n
+
+- For disabling all files in one directory::
+
+ PROPELLER__PROFILE := n
+
+
+Workflow
+========
+
+Here is an example workflow for building an AutoFDO+Propeller kernel:
+
+1) Assuming an AutoFDO profile is already collected following
+ instructions in the AutoFDO document, build the kernel on the host
+ machine, with AutoFDO and Propeller build configs ::
+
+ CONFIG_AUTOFDO_CLANG=y
+ CONFIG_PROPELLER_CLANG=y
+
+ and ::
+
+ $ make LLVM=1 CLANG_AUTOFDO_PROFILE=<autofdo-profile-name>
+
+2) Install the kernel on the test machine.
+
+3) Run the load tests. The '-c' option in perf specifies the sample
+ event period. We suggest using a suitable prime number, like 500009,
+ for this purpose.
+
+ - For Intel platforms::
+
+ $ perf record -e BR_INST_RETIRED.NEAR_TAKEN:k -a -N -b -c <count> -o <perf_file> -- <loadtest>
+
+ - For AMD platforms::
+
+ $ perf record --pfm-event RETIRED_TAKEN_BRANCH_INSTRUCTIONS:k -a -N -b -c <count> -o <perf_file> -- <loadtest>
+
+ Note you can repeat the above steps to collect multiple <perf_file>s.
+
+4) (Optional) Download the raw perf file(s) to the host machine.
+
+5) Use the create_llvm_prof tool (https://github.com/google/autofdo) to
+ generate Propeller profile. ::
+
+ $ create_llvm_prof --binary=<vmlinux> --profile=<perf_file>
+ --format=propeller --propeller_output_module_name
+ --out=<propeller_profile_prefix>_cc_profile.txt
+ --propeller_symorder=<propeller_profile_prefix>_ld_profile.txt
+
+ "<propeller_profile_prefix>" can be something like "/home/user/dir/any_string".
+
+ This command generates a pair of Propeller profiles:
+ "<propeller_profile_prefix>_cc_profile.txt" and
+ "<propeller_profile_prefix>_ld_profile.txt".
+
+ If there are more than 1 perf_file collected in the previous step,
+ you can create a temp list file "<perf_file_list>" with each line
+ containing one perf file name and run::
+
+ $ create_llvm_prof --binary=<vmlinux> --profile=@<perf_file_list>
+ --format=propeller --propeller_output_module_name
+ --out=<propeller_profile_prefix>_cc_profile.txt
+ --propeller_symorder=<propeller_profile_prefix>_ld_profile.txt
+
+6) Rebuild the kernel using the AutoFDO and Propeller
+ profiles. ::
+
+ CONFIG_AUTOFDO_CLANG=y
+ CONFIG_PROPELLER_CLANG=y
+
+ and ::
+
+ $ make LLVM=1 CLANG_AUTOFDO_PROFILE=<profile_file> CLANG_PROPELLER_PROFILE_PREFIX=<propeller_profile_prefix>
diff --git a/Documentation/kbuild/kbuild.rst b/Documentation/kbuild/kbuild.rst
index 1796b3eba37b..17c9f920f03d 100644
--- a/Documentation/kbuild/kbuild.rst
+++ b/Documentation/kbuild/kbuild.rst
@@ -137,12 +137,18 @@ Specify the output directory when building the kernel.
This variable can also be used to point to the kernel output directory when
building external modules against a pre-built kernel in a separate build
directory. Please note that this does NOT specify the output directory for the
-external modules themselves.
+external modules themselves. (Use KBUILD_EXTMOD_OUTPUT for that purpose.)
The output directory can also be specified using "O=...".
Setting "O=..." takes precedence over KBUILD_OUTPUT.
+KBUILD_EXTMOD_OUTPUT
+--------------------
+Specify the output directory for external modules.
+
+Setting "MO=..." takes precedence over KBUILD_EXTMOD_OUTPUT.
+
KBUILD_EXTRA_WARN
-----------------
Specify the extra build checks. The same value can be assigned by passing
diff --git a/Documentation/kbuild/kconfig-language.rst b/Documentation/kbuild/kconfig-language.rst
index 43037be96a16..2619fdf56e68 100644
--- a/Documentation/kbuild/kconfig-language.rst
+++ b/Documentation/kbuild/kconfig-language.rst
@@ -412,8 +412,8 @@ choices::
<choice block>
"endchoice"
-This defines a choice group and accepts any of the above attributes as
-options.
+This defines a choice group and accepts "prompt", "default", "depends on", and
+"help" attributes as options.
A choice only allows a single config entry to be selected.
diff --git a/Documentation/kbuild/makefiles.rst b/Documentation/kbuild/makefiles.rst
index 7964e0c245ae..d36519f194dc 100644
--- a/Documentation/kbuild/makefiles.rst
+++ b/Documentation/kbuild/makefiles.rst
@@ -449,6 +449,20 @@ $(obj)
to prerequisites are referenced with $(src) (because they are not
generated files).
+$(srcroot)
+ $(srcroot) refers to the root of the source you are building, which can be
+ either the kernel source or the external modules source, depending on whether
+ KBUILD_EXTMOD is set. This can be either a relative or an absolute path, but
+ if KBUILD_ABS_SRCTREE=1 is set, it is always an absolute path.
+
+$(srctree)
+ $(srctree) refers to the root of the kernel source tree. When building the
+ kernel, this is the same as $(srcroot).
+
+$(objtree)
+ $(objtree) refers to the root of the kernel object tree. It is ``.`` when
+ building the kernel, but it is different when building external modules.
+
$(kecho)
echoing information to user in a rule is often a good practice
but when execution ``make -s`` one does not expect to see any output
diff --git a/Documentation/kbuild/modules.rst b/Documentation/kbuild/modules.rst
index cd5a54d91e6d..101de236cd0c 100644
--- a/Documentation/kbuild/modules.rst
+++ b/Documentation/kbuild/modules.rst
@@ -59,6 +59,12 @@ Command Syntax