summaryrefslogtreecommitdiff
path: root/arch
diff options
context:
space:
mode:
Diffstat (limited to 'arch')
-rw-r--r--arch/x86/Kbuild3
-rw-r--r--arch/x86/Kconfig2
-rw-r--r--arch/x86/include/asm/lguest.h91
-rw-r--r--arch/x86/include/asm/lguest_hcall.h74
-rw-r--r--arch/x86/include/asm/processor.h2
-rw-r--r--arch/x86/include/uapi/asm/bootparam.h2
-rw-r--r--arch/x86/kernel/asm-offsets_32.c20
-rw-r--r--arch/x86/kernel/head_32.S2
-rw-r--r--arch/x86/kernel/platform-quirks.c1
-rw-r--r--arch/x86/kvm/Kconfig1
-rw-r--r--arch/x86/lguest/Kconfig14
-rw-r--r--arch/x86/lguest/Makefile2
-rw-r--r--arch/x86/lguest/boot.c1558
-rw-r--r--arch/x86/lguest/head_32.S192
14 files changed, 2 insertions, 1962 deletions
diff --git a/arch/x86/Kbuild b/arch/x86/Kbuild
index 586b786b3edf..f65a804b86f0 100644
--- a/arch/x86/Kbuild
+++ b/arch/x86/Kbuild
@@ -10,9 +10,6 @@ obj-$(CONFIG_XEN) += xen/
# Hyper-V paravirtualization support
obj-$(CONFIG_HYPERVISOR_GUEST) += hyperv/
-# lguest paravirtualization support
-obj-$(CONFIG_LGUEST_GUEST) += lguest/
-
obj-y += realmode/
obj-y += kernel/
obj-y += mm/
diff --git a/arch/x86/Kconfig b/arch/x86/Kconfig
index 9b302121584d..651021713385 100644
--- a/arch/x86/Kconfig
+++ b/arch/x86/Kconfig
@@ -777,8 +777,6 @@ config KVM_DEBUG_FS
Statistics are displayed in debugfs filesystem. Enabling this option
may incur significant overhead.
-source "arch/x86/lguest/Kconfig"
-
config PARAVIRT_TIME_ACCOUNTING
bool "Paravirtual steal time accounting"
depends on PARAVIRT
diff --git a/arch/x86/include/asm/lguest.h b/arch/x86/include/asm/lguest.h
deleted file mode 100644
index 73d0c9b92087..000000000000
--- a/arch/x86/include/asm/lguest.h
+++ /dev/null
@@ -1,91 +0,0 @@
-#ifndef _ASM_X86_LGUEST_H
-#define _ASM_X86_LGUEST_H
-
-#define GDT_ENTRY_LGUEST_CS 10
-#define GDT_ENTRY_LGUEST_DS 11
-#define LGUEST_CS (GDT_ENTRY_LGUEST_CS * 8)
-#define LGUEST_DS (GDT_ENTRY_LGUEST_DS * 8)
-
-#ifndef __ASSEMBLY__
-#include <asm/desc.h>
-
-#define GUEST_PL 1
-
-/* Page for Switcher text itself, then two pages per cpu */
-#define SWITCHER_TEXT_PAGES (1)
-#define SWITCHER_STACK_PAGES (2 * nr_cpu_ids)
-#define TOTAL_SWITCHER_PAGES (SWITCHER_TEXT_PAGES + SWITCHER_STACK_PAGES)
-
-/* Where we map the Switcher, in both Host and Guest. */
-extern unsigned long switcher_addr;
-
-/* Found in switcher.S */
-extern unsigned long default_idt_entries[];
-
-/* Declarations for definitions in arch/x86/lguest/head_32.S */
-extern char lguest_noirq_iret[];
-extern const char lgstart_cli[], lgend_cli[];
-extern const char lgstart_pushf[], lgend_pushf[];
-
-extern void lguest_iret(void);
-extern void lguest_init(void);
-
-struct lguest_regs {
- /* Manually saved part. */
- unsigned long eax, ebx, ecx, edx;
- unsigned long esi, edi, ebp;
- unsigned long gs;
- unsigned long fs, ds, es;
- unsigned long trapnum, errcode;
- /* Trap pushed part */
- unsigned long eip;
- unsigned long cs;
- unsigned long eflags;
- unsigned long esp;
- unsigned long ss;
-};
-
-/* This is a guest-specific page (mapped ro) into the guest. */
-struct lguest_ro_state {
- /* Host information we need to restore when we switch back. */
- u32 host_cr3;
- struct desc_ptr host_idt_desc;
- struct desc_ptr host_gdt_desc;
- u32 host_sp;
-
- /* Fields which are used when guest is running. */
- struct desc_ptr guest_idt_desc;
- struct desc_ptr guest_gdt_desc;
- struct x86_hw_tss guest_tss;
- struct desc_struct guest_idt[IDT_ENTRIES];
- struct desc_struct guest_gdt[GDT_ENTRIES];
-};
-
-struct lg_cpu_arch {
- /* The GDT entries copied into lguest_ro_state when running. */
- struct desc_struct gdt[GDT_ENTRIES];
-
- /* The IDT entries: some copied into lguest_ro_state when running. */
- struct desc_struct idt[IDT_ENTRIES];
-
- /* The address of the last guest-visible pagefault (ie. cr2). */
- unsigned long last_pagefault;
-};
-
-static inline void lguest_set_ts(void)
-{
- u32 cr0;
-
- cr0 = read_cr0();
- if (!(cr0 & 8))
- write_cr0(cr0 | 8);
-}
-
-/* Full 4G segment descriptors, suitable for CS and DS. */
-#define FULL_EXEC_SEGMENT \
- ((struct desc_struct)GDT_ENTRY_INIT(0xc09b, 0, 0xfffff))
-#define FULL_SEGMENT ((struct desc_struct)GDT_ENTRY_INIT(0xc093, 0, 0xfffff))
-
-#endif /* __ASSEMBLY__ */
-
-#endif /* _ASM_X86_LGUEST_H */
diff --git a/arch/x86/include/asm/lguest_hcall.h b/arch/x86/include/asm/lguest_hcall.h
deleted file mode 100644
index 6c119cfae218..000000000000
--- a/arch/x86/include/asm/lguest_hcall.h
+++ /dev/null
@@ -1,74 +0,0 @@
-/* Architecture specific portion of the lguest hypercalls */
-#ifndef _ASM_X86_LGUEST_HCALL_H
-#define _ASM_X86_LGUEST_HCALL_H
-
-#define LHCALL_FLUSH_ASYNC 0
-#define LHCALL_LGUEST_INIT 1
-#define LHCALL_SHUTDOWN 2
-#define LHCALL_NEW_PGTABLE 4
-#define LHCALL_FLUSH_TLB 5
-#define LHCALL_LOAD_IDT_ENTRY 6
-#define LHCALL_SET_STACK 7
-#define LHCALL_SET_CLOCKEVENT 9
-#define LHCALL_HALT 10
-#define LHCALL_SET_PMD 13
-#define LHCALL_SET_PTE 14
-#define LHCALL_SET_PGD 15
-#define LHCALL_LOAD_TLS 16
-#define LHCALL_LOAD_GDT_ENTRY 18
-#define LHCALL_SEND_INTERRUPTS 19
-
-#define LGUEST_TRAP_ENTRY 0x1F
-
-/* Argument number 3 to LHCALL_LGUEST_SHUTDOWN */
-#define LGUEST_SHUTDOWN_POWEROFF 1
-#define LGUEST_SHUTDOWN_RESTART 2
-
-#ifndef __ASSEMBLY__
-#include <asm/hw_irq.h>
-
-/*G:030
- * But first, how does our Guest contact the Host to ask for privileged
- * operations? There are two ways: the direct way is to make a "hypercall",
- * to make requests of the Host Itself.
- *
- * Our hypercall mechanism uses the highest unused trap code (traps 32 and
- * above are used by real hardware interrupts). Seventeen hypercalls are
- * available: the hypercall number is put in the %eax register, and the
- * arguments (when required) are placed in %ebx, %ecx, %edx and %esi.
- * If a return value makes sense, it's returned in %eax.
- *
- * Grossly invalid calls result in Sudden Death at the hands of the vengeful
- * Host, rather than returning failure. This reflects Winston Churchill's
- * definition of a gentleman: "someone who is only rude intentionally".
- */
-static inline unsigned long
-hcall(unsigned long call,
- unsigned long arg1, unsigned long arg2, unsigned long arg3,
- unsigned long arg4)
-{
- /* "int" is the Intel instruction to trigger a trap. */
- asm volatile("int $" __stringify(LGUEST_TRAP_ENTRY)
- /* The call in %eax (aka "a") might be overwritten */
- : "=a"(call)
- /* The arguments are in %eax, %ebx, %ecx, %edx & %esi */
- : "a"(call), "b"(arg1), "c"(arg2), "d"(arg3), "S"(arg4)
- /* "memory" means this might write somewhere in memory.
- * This isn't true for all calls, but it's safe to tell
- * gcc that it might happen so it doesn't get clever. */
- : "memory");
- return call;
-}
-/*:*/
-
-/* Can't use our min() macro here: needs to be a constant */
-#define LGUEST_IRQS (NR_IRQS < 32 ? NR_IRQS: 32)
-
-#define LHCALL_RING_SIZE 64
-struct hcall_args {
- /* These map directly onto eax/ebx/ecx/edx/esi in struct lguest_regs */
- unsigned long arg0, arg1, arg2, arg3, arg4;
-};
-
-#endif /* !__ASSEMBLY__ */
-#endif /* _ASM_X86_LGUEST_HCALL_H */
diff --git a/arch/x86/include/asm/processor.h b/arch/x86/include/asm/processor.h
index 0b03d655db7c..abc99b9c7ffd 100644
--- a/arch/x86/include/asm/processor.h
+++ b/arch/x86/include/asm/processor.h
@@ -662,7 +662,7 @@ static inline void sync_core(void)
* In case NMI unmasking or performance ever becomes a problem,
* the next best option appears to be MOV-to-CR2 and an
* unconditional jump. That sequence also works on all CPUs,
- * but it will fault at CPL3 (i.e. Xen PV and lguest).
+ * but it will fault at CPL3 (i.e. Xen PV).
*
* CPUID is the conventional way, but it's nasty: it doesn't
* exist on some 486-like CPUs, and it usually exits to a
diff --git a/arch/x86/include/uapi/asm/bootparam.h b/arch/x86/include/uapi/asm/bootparam.h
index ddef37b16af2..66b8f93333d1 100644
--- a/arch/x86/include/uapi/asm/bootparam.h
+++ b/arch/x86/include/uapi/asm/bootparam.h
@@ -201,7 +201,7 @@ struct boot_params {
*
* @X86_SUBARCH_PC: Should be used if the hardware is enumerable using standard
* PC mechanisms (PCI, ACPI) and doesn't need a special boot flow.
- * @X86_SUBARCH_LGUEST: Used for x86 hypervisor demo, lguest
+ * @X86_SUBARCH_LGUEST: Used for x86 hypervisor demo, lguest, deprecated
* @X86_SUBARCH_XEN: Used for Xen guest types which follow the PV boot path,
* which start at asm startup_xen() entry point and later jump to the C
* xen_start_kernel() entry point. Both domU and dom0 type of guests are
diff --git a/arch/x86/kernel/asm-offsets_32.c b/arch/x86/kernel/asm-offsets_32.c
index 880aa093268d..710edab9e644 100644
--- a/arch/x86/kernel/asm-offsets_32.c
+++ b/arch/x86/kernel/asm-offsets_32.c
@@ -4,9 +4,6 @@
#include <asm/ucontext.h>
-#include <linux/lguest.h>
-#include "../../../drivers/lguest/lg.h"
-
#define __SYSCALL_I386(nr, sym, qual) [nr] = 1,
static char syscalls[] = {
#include <asm/syscalls_32.h>
@@ -62,23 +59,6 @@ void foo(void)
OFFSET(stack_canary_offset, stack_canary, canary);
#endif
-#if defined(CONFIG_LGUEST) || defined(CONFIG_LGUEST_GUEST) || defined(CONFIG_LGUEST_MODULE)
- BLANK();
- OFFSET(LGUEST_DATA_irq_enabled, lguest_data, irq_enabled);
- OFFSET(LGUEST_DATA_irq_pending, lguest_data, irq_pending);
-
- BLANK();
- OFFSET(LGUEST_PAGES_host_gdt_desc, lguest_pages, state.host_gdt_desc);
- OFFSET(LGUEST_PAGES_host_idt_desc, lguest_pages, state.host_idt_desc);
- OFFSET(LGUEST_PAGES_host_cr3, lguest_pages, state.host_cr3);
- OFFSET(LGUEST_PAGES_host_sp, lguest_pages, state.host_sp);
- OFFSET(LGUEST_PAGES_guest_gdt_desc, lguest_pages,state.guest_gdt_desc);
- OFFSET(LGUEST_PAGES_guest_idt_desc, lguest_pages,state.guest_idt_desc);
- OFFSET(LGUEST_PAGES_guest_gdt, lguest_pages, state.guest_gdt);
- OFFSET(LGUEST_PAGES_regs_trapnum, lguest_pages, regs.trapnum);
- OFFSET(LGUEST_PAGES_regs_errcode, lguest_pages, regs.errcode);
- OFFSET(LGUEST_PAGES_regs, lguest_pages, regs);
-#endif
BLANK();
DEFINE(__NR_syscall_max, sizeof(syscalls) - 1);
DEFINE(NR_syscalls, sizeof(syscalls));
diff --git a/arch/x86/kernel/head_32.S b/arch/x86/kernel/head_32.S
index 0332664eb158..29da9599fec0 100644
--- a/arch/x86/kernel/head_32.S
+++ b/arch/x86/kernel/head_32.S
@@ -155,7 +155,6 @@ ENTRY(startup_32)
jmp *%eax
.Lbad_subarch:
-WEAK(lguest_entry)
WEAK(xen_entry)
/* Unknown implementation; there's really
nothing we can do at this point. */
@@ -165,7 +164,6 @@ WEAK(xen_entry)
subarch_entries:
.long .Ldefault_entry /* normal x86/PC */
- .long lguest_entry /* lguest hypervisor */
.long xen_entry /* Xen hypervisor */
.long .Ldefault_entry /* Moorestown MID */
num_subarch_entries = (. - subarch_entries) / 4
diff --git a/arch/x86/kernel/platform-quirks.c b/arch/x86/kernel/platform-quirks.c
index 91271122f0df..502a77d0adb0 100644
--- a/arch/x86/kernel/platform-quirks.c
+++ b/arch/x86/kernel/platform-quirks.c
@@ -16,7 +16,6 @@ void __init x86_early_init_platform_quirks(void)
x86_platform.legacy.reserve_bios_regions = 1;
break;
case X86_SUBARCH_XEN:
- case X86_SUBARCH_LGUEST:
x86_platform.legacy.devices.pnpbios = 0;
x86_platform.legacy.rtc = 0;
break;
diff --git a/arch/x86/kvm/Kconfig b/arch/x86/kvm/Kconfig
index 2688c7dc5323..3ea624452f93 100644
--- a/arch/x86/kvm/Kconfig
+++ b/arch/x86/kvm/Kconfig
@@ -89,6 +89,5 @@ config KVM_MMU_AUDIT
# OK, it's a little counter-intuitive to do this, but it puts it neatly under
# the virtualization menu.
source drivers/vhost/Kconfig
-source drivers/lguest/Kconfig
endif # VIRTUALIZATION
diff --git a/arch/x86/lguest/Kconfig b/arch/x86/lguest/Kconfig
deleted file mode 100644
index 08f41caada45..000000000000
--- a/arch/x86/lguest/Kconfig
+++ /dev/null
@@ -1,14 +0,0 @@
-config LGUEST_GUEST
- bool "Lguest guest support"
- depends on X86_32 && PARAVIRT && PCI
- select TTY
- select VIRTUALIZATION
- select VIRTIO
- select VIRTIO_CONSOLE
- help
- Lguest is a tiny in-kernel hypervisor. Selecting this will
- allow your kernel to boot under lguest. This option will increase
- your kernel size by about 10k. If in doubt, say N.
-
- If you say Y here, make sure you say Y (or M) to the virtio block
- and net drivers which lguest needs.
diff --git a/arch/x86/lguest/Makefile b/arch/x86/lguest/Makefile
deleted file mode 100644
index 8f38d577a2fa..000000000000
--- a/arch/x86/lguest/Makefile
+++ /dev/null
@@ -1,2 +0,0 @@
-obj-y := head_32.o boot.o
-CFLAGS_boot.o := $(call cc-option, -fno-stack-protector)
diff --git a/arch/x86/lguest/boot.c b/arch/x86/lguest/boot.c
deleted file mode 100644
index 99472698c931..000000000000
--- a/arch/x86/lguest/boot.c
+++ /dev/null
@@ -1,1558 +0,0 @@
-/*P:010
- * A hypervisor allows multiple Operating Systems to run on a single machine.
- * To quote David Wheeler: "Any problem in computer science can be solved with
- * another layer of indirection."
- *
- * We keep things simple in two ways. First, we start with a normal Linux
- * kernel and insert a module (lg.ko) which allows us to run other Linux
- * kernels the same way we'd run processes. We call the first kernel the Host,
- * and the others the Guests. The program which sets up and configures Guests
- * (such as the example in tools/lguest/lguest.c) is called the Launcher.
- *
- * Secondly, we only run specially modified Guests, not normal kernels: setting
- * CONFIG_LGUEST_GUEST to "y" compiles this file into the kernel so it knows
- * how to be a Guest at boot time. This means that you can use the same kernel
- * you boot normally (ie. as a Host) as a Guest.
- *
- * These Guests know that they cannot do privileged operations, such as disable
- * interrupts, and that they have to ask the Host to do such things explicitly.
- * This file consists of all the replacements for such low-level native
- * hardware operations: these special Guest versions call the Host.
- *
- * So how does the kernel know it's a Guest? We'll see that later, but let's
- * just say that we end up here where we replace the native functions various
- * "paravirt" structures with our Guest versions, then boot like normal.
-:*/
-
-/*
- * Copyright (C) 2006, Rusty Russell <rusty@rustcorp.com.au> IBM Corporation.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
- * NON INFRINGEMENT. See the GNU General Public License for more
- * details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-#include <linux/kernel.h>
-#include <linux/start_kernel.h>
-#include <linux/string.h>
-#include <linux/console.h>
-#include <linux/screen_info.h>
-#include <linux/irq.h>
-#include <linux/interrupt.h>
-#include <linux/clocksource.h>
-#include <linux/clockchips.h>
-#include <linux/lguest.h>
-#include <linux/lguest_launcher.h>
-#include <linux/virtio_console.h>
-#include <linux/pm.h>
-#include <linux/export.h>
-#include <linux/pci.h>
-#include <linux/virtio_pci.h>
-#include <asm/acpi.h>
-#include <asm/apic.h>
-#include <asm/lguest.h>
-#include <asm/paravirt.h>
-#include <asm/param.h>
-#include <asm/page.h>
-#include <asm/pgtable.h>
-#include <asm/desc.h>
-#include <asm/setup.h>
-#include <asm/e820/api.h>
-#include <asm/mce.h>
-#include <asm/io.h>
-#include <asm/fpu/api.h>
-#include <asm/stackprotector.h>
-#include <asm/reboot.h> /* for struct machine_ops */
-#include <asm/kvm_para.h>
-#include <asm/pci_x86.h>
-#include <asm/pci-direct.h>
-
-/*G:010
- * Welcome to the Guest!
- *
- * The Guest in our tale is a simple creature: identical to the Host but
- * behaving in simplified but equivalent ways. In particular, the Guest is the
- * same kernel as the Host (or at least, built from the same source code).
-:*/
-
-struct lguest_data lguest_data = {
- .hcall_status = { [0 ... LHCALL_RING_SIZE-1] = 0xFF },
- .noirq_iret = (u32)lguest_noirq_iret,
- .kernel_address = PAGE_OFFSET,
- .blocked_interrupts = { 1 }, /* Block timer interrupts */
- .syscall_vec = IA32_SYSCALL_VECTOR,
-};
-
-/*G:037
- * async_hcall() is pretty simple: I'm quite proud of it really. We have a
- * ring buffer of stored hypercalls which the Host will run though next time we
- * do a normal hypercall. Each entry in the ring has 5 slots for the hypercall
- * arguments, and a "hcall_status" word which is 0 if the call is ready to go,
- * and 255 once the Host has finished with it.
- *
- * If we come around to a slot which hasn't been finished, then the table is
- * full and we just make the hypercall directly. This has the nice side
- * effect of causing the Host to run all the stored calls in the ring buffer
- * which empties it for next time!
- */
-static void async_hcall(unsigned long call, unsigned long arg1,
- unsigned long arg2, unsigned long arg3,
- unsigned long arg4)
-{
- /* Note: This code assumes we're uniprocessor. */
- static unsigned int next_call;
- unsigned long flags;
-
- /*
- * Disable interrupts if not already disabled: we don't want an
- * interrupt handler making a hypercall while we're already doing
- * one!
- */
- local_irq_save(flags);
- if (lguest_data.hcall_status[next_call] != 0xFF) {
- /* Table full, so do normal hcall which will flush table. */
- hcall(call, arg1, arg2, arg3, arg4);
- } else {
- lguest_data.hcalls[next_call].arg0 = call;
- lguest_data.hcalls[next_call].arg1 = arg1;
- lguest_data.hcalls[next_call].arg2 = arg2;
- lguest_data.hcalls[next_call].arg3 = arg3;
- lguest_data.hcalls[next_call].arg4 = arg4;
- /* Arguments must all be written before we mark it to go */
- wmb();
- lguest_data.hcall_status[next_call] = 0;
- if (++next_call == LHCALL_RING_SIZE)
- next_call = 0;
- }
- local_irq_restore(flags);
-}
-
-/*G:035
- * Notice the lazy_hcall() above, rather than hcall(). This is our first real
- * optimization trick!
- *
- * When lazy_mode is set, it means we're allowed to defer all hypercalls and do
- * them as a batch when lazy_mode is eventually turned off. Because hypercalls
- * are reasonably expensive, batching them up makes sense. For example, a
- * large munmap might update dozens of page table entries: that code calls
- * paravirt_enter_lazy_mmu(), does the dozen updates, then calls
- * lguest_leave_lazy_mode().
- *
- * So, when we're in lazy mode, we call async_hcall() to store the call for
- * future processing:
- */
-static void lazy_hcall1(unsigned long call, unsigned long arg1)
-{
- if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
- hcall(call, arg1, 0, 0, 0);
- else
- async_hcall(call, arg1, 0, 0, 0);
-}
-
-/* You can imagine what lazy_hcall2, 3 and 4 look like. :*/
-static void lazy_hcall2(unsigned long call,
- unsigned long arg1,
- unsigned long arg2)
-{
- if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
- hcall(call, arg1, arg2, 0, 0);
- else
- async_hcall(call, arg1, arg2, 0, 0);
-}
-
-static void lazy_hcall3(unsigned long call,
- unsigned long arg1,
- unsigned long arg2,
- unsigned long arg3)
-{
- if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
- hcall(call, arg1, arg2, arg3, 0);
- else
- async_hcall(call, arg1, arg2, arg3, 0);
-}
-
-#ifdef CONFIG_X86_PAE
-static void lazy_hcall4(unsigned long call,
- unsigned long arg1,
- unsigned long arg2,
- unsigned long arg3,
- unsigned long arg4)
-{
- if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
- hcall(call, arg1, arg2, arg3, arg4);
- else
- async_hcall(call, arg1, arg2, arg3, arg4);
-}
-#endif
-
-/*G:036
- * When lazy mode is turned off, we issue the do-nothing hypercall to
- * flush any stored calls, and call the generic helper to reset the
- * per-cpu lazy mode variable.
- */
-static void lguest_leave_lazy_mmu_mode(void)
-{
- hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0, 0);
- paravirt_leave_lazy_mmu();
-}
-
-/*
- * We also catch the end of context switch; we enter lazy mode for much of
- * that too, so again we need to flush here.
- *
- * (Technically, this is lazy CPU mode, and normally we're in lazy MMU
- * mode, but unlike Xen, lguest doesn't care about the difference).
- */
-static void lguest_end_context_switch(struct task_struct *next)
-{
- hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0, 0);
- paravirt_end_context_switch(next);
-}
-
-/*G:032
- * After that diversion we return to our first native-instruction
- * replacements: four functions for interrupt control.
- *
- * The simplest way of implementing these would be to have "turn interrupts
- * off" and "turn interrupts on" hypercalls. Unfortunately, this is too slow:
- * these are by far the most commonly called functions of those we override.
- *
- * So instead we keep an "irq_enabled" field inside our "struct lguest_data",
- * which the Guest can update with a single instruction. The Host knows to
- * check there before it tries to deliver an interrupt.
- */
-
-/*
- * save_flags() is expected to return the processor state (ie. "flags"). The
- * flags word contains all kind of stuff, but in practice Linux only cares
- * about the interrupt flag. Our "save_flags()" just returns that.
- */
-asmlinkage __visible unsigned long lguest_save_fl(void)
-{
- return lguest_data.irq_enabled;
-}
-
-/* Interrupts go off... */
-asmlinkage __visible void lguest_irq_disable(void)
-{
- lguest_data.irq_enabled = 0;
-}
-
-/*
- * Let's pause a moment. Remember how I said these are called so often?
- * Jeremy Fitzhardinge optimized them so hard early in 2009 that he had to
- * break some rules. In particular, these functions are assumed to save their
- * own registers if they need to: normal C functions assume they can trash the
- * eax register. To use normal C functions, we use
- * PV_CALLEE_SAVE_REGS_THUNK(), which pushes %eax onto the stack, calls the
- * C function, then restores it.
- */
-PV_CALLEE_SAVE_REGS_THUNK(lguest_save_fl);
-PV_CALLEE_SAVE_REGS_THUNK(lguest_irq_disable);
-/*:*/
-
-/* These are in head_32.S */
-extern void lg_irq_enable(void);
-extern void lg_restore_fl(unsigned long flags);
-
-/*M:003
- * We could be more efficient in our checking of outstanding interrupts, rather
- * than using a branch. One way would be to put the "irq_enabled" field in a
- * page by itself, and have the Host write-protect it when an interrupt comes
- * in when irqs are disabled. There will then be a page fault as soon as
- * interrupts are re-enabled.
- *
- * A better method is to implement soft interrupt disable generally for x86:
- * instead of disabling interrupts, we set a flag. If an interrupt does come
- * in, we then disable them for real. This is uncommon, so we could simply use
- * a hypercall for interrupt control and not worry about efficiency.
-:*/
-
-/*G:034
- * The Interrupt Descriptor Table (IDT).
- *
- * The IDT tells the processor what to do when an interrupt comes in. Each
- * entry in the table is a 64-bit descriptor: this holds the privilege level,
- * address of the handler, and... well, who cares? The Guest just asks the
- * Host to make the change anyway, because the Host controls the real IDT.
- */
-static void lguest_write_idt_entry(gate_desc *dt,
- int entrynum, const gate_desc *g)
-{
- /*
- * The gate_desc structure is 8 bytes long: we hand it to the Host in
- * two 32-bit chunks. The whole 32-bit kernel used to hand descriptors
- * around like this; typesafety wasn't a big concern in Linux's early
- * years.
- */
- u32 *desc = (u32 *)g;
- /* Keep the local copy up to date. */
- native_write_idt_entry(dt, entrynum, g);
- /* Tell Host about this new entry. */
- hcall(LHCALL_LOAD_IDT_ENTRY, entrynum, desc[0], desc[1], 0);
-}
-
-/*
- * Changing to a different IDT is very rare: we keep the IDT up-to-date every
- * time it is written, so we can simply loop through all entries and tell the
- * Host about them.
- */
-static void lguest_load_idt(const struct desc_ptr *desc)
-{
- unsigned int i;
- struct desc_struct *idt = (void *)desc->address;
-
- for (i = 0; i < (desc->size+1)/8; i++)
- hcall(LHCALL_LOAD_IDT_ENTRY, i, idt[i].a, idt[i].b, 0);
-}
-
-/*
- * The Global Descriptor Table.
- *
- * The Intel architecture defines another table, called the Global Descriptor
- * Table (GDT). You tell the CPU where it is (and its size) using the "lgdt"
- * instruction, and then several other instructions refer to entries in the
- * table. There are three entries which the Switcher needs, so the Host simply
- * controls the entire thing and the Guest asks it to make changes using the
- * LOAD_GDT hypercall.
- *
- * This is the exactly like the IDT code.
- */
-static void lguest_load_gdt(const struct desc_ptr *desc)
-{
- unsigned int i;
- struct desc_struct *gdt = (void *)desc->address;
-
- for (i = 0; i < (desc->size+1)/8; i++)
- hcall(LHCALL_LOAD_GDT_ENTRY, i, gdt[i].a, gdt[i].b, 0);
-}
-
-/*
- * For a single GDT entry which changes, we simply change our copy and
- * then tell the host about it.
- */
-static void lguest_write_gdt_entry(struct desc_struct *dt, int entrynum,
- const void *desc, int type)
-{
- native_write_gdt_entry(dt, entrynum, desc, type);
- /* Tell Host about this new entry. */
- hcall(LHCALL_LOAD_GDT_ENTRY, entrynum,
- dt[entrynum].a, dt[entrynum].b, 0);
-}
-
-/*
- * There are three "thread local storage" GDT entries which change
- * on every context switch (these three entries are how glibc implements
- * __thread variables). As an optimization, we have a hypercall
- * specifically for this case.
- *
- * Wouldn't it be nicer to have a general LOAD_GDT_ENTRIES hypercall
- * which took a range of entries?
- */
-static void lguest_load_tls(struct thread_struct *t, unsigned int cpu)
-{
- /*
- * There's one problem which normal hardware doesn't have: the Host
- * can't handle us removing entries we're currently using. So we clear
- * the GS register here: if it's needed it'll be reloaded anyway.
- */
- lazy_load_gs(0);
- lazy_hcall2(LHCALL_LOAD_TLS, __pa(&t->tls_array), cpu);
-}
-
-/*G:038
- * That's enough excitement for now, back to ploughing through each of the
- * different pv_ops structures (we're about 1/3 of the way through).
- *
- * This is the Local Descriptor Table, another weird Intel thingy. Linux only
- * uses this for some strange applications like Wine. We don't do anything
- * here, so they'll get an informative and friendly Segmentation Fault.
- */
-static void lguest_set_ldt(const void *addr, unsigned entries)
-{
-}
-
-/*
- * This loads a GDT entry into the "Task Register": that entry points to a
- * structure called the Task State Segment. Some comments scattered though the
- * kernel code indicate that this used for task switching in ages past, along
- * with blood sacrifice and astrology.
- *
- * Now there's nothing interesting in here that we don't get told elsewhere.
- * But the native version uses the "ltr" instruction, which makes the Host
- * complain to the Guest about a Segmentation Fault and it'll oops. So we
- * override the native version with a do-nothing version.
- */
-static void lguest_load_tr_desc(void)
-{
-}
-
-/*
- * The "cpuid" instruction is a way of querying both the CPU identity
- * (manufacturer, model, etc) and its features. It was introduced before the
- * Pentium in 1993 and keeps getting extended by both Intel, AMD and others.
- * As you might imagine, after a decade and a half this treatment, it is now a
- * giant ball of hair. Its entry in the current Intel manual runs to 28 pages.
- *
- * This instruction even it has its own Wikipedia entry. The Wikipedia entry
- * has been translated into 6 languages. I am not making this up!
- *
- * We could get funky here and identify ourselves as "GenuineLguest", but
- * instead we just use the real "cpuid" instruction. Then I pretty much turned
- * off feature bits until the Guest booted. (Don't say that: you'll damage
- * lguest sales!) Shut up, inner voice! (Hey, just pointing out that this is
- * hardly future proof.) No one's listening! They don't like you anyway,
- * parenthetic weirdo!
- *
- * Replacing the cpuid so we can turn features off is great for the kernel, but
- * anyone (including userspace) can just use the raw "cpuid" instruction and
- * the Host won't even notice since it isn't privileged. So we try not to get
- * too worked up about it.
- */
-static void lguest_cpuid(unsigned int *ax, unsigned int *bx,
- unsigned int *cx, unsigned int *dx)
-{
- int function = *ax;
-
- native_cpuid(ax, bx, cx, dx);
- switch (function) {
- /*
- * CPUID 0 gives the highest legal CPUID number (and the ID string).
- * We futureproof our code a little by sticking to known CPUID values.
- */
- case 0:
- if (*ax > 5)
- *ax = 5;
- break;
-
- /*
- * CPUID 1 is a basic feature request.
- *
- * CX: we only allow kernel to see SSE3, CMPXCHG16B and SSSE3
- * DX: SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU and PAE.
- */
- case 1:
- *cx &= 0x00002201;
- *dx &= 0x07808151;
- /*
- * The Host can do a nice optimization if it knows that the
- * kernel mappings (addresses above 0xC0000000 or whatever
- * PAGE_OFFSET is set to) haven't changed. But Linux calls
- * flush_tlb_user() for both user and kernel mappings unless
- * the Page Global Enable (PGE) feature bit is set.
- */
- *dx |= 0x00002000;
- /*
- * We also lie, and say we're family id 5. 6 or greater
- * leads to a rdmsr in early_init_intel which we can't handle.
- * Family ID is returned as bits 8-12 in ax.
- */
- *ax &= 0xFFFFF0FF;
- *ax |= 0x00000500;
- break;
-
- /*
- * This is used to detect if we're running under KVM. We might be,
- * but that's a Host matter, not us. So say we're not.
- */
- case KVM_CPUID_SIGNATURE:
- *bx = *cx = *dx = 0;
- break;
-
- /*
- * 0x80000000 returns the highest Extended Function, so we futureproof
- * like we do above by limiting it to known fields.
- */
- case 0x80000000:
- if (*ax > 0x80000008)
- *ax = 0x80000008;
- break;
-
- /*
- * PAE systems can mark pages as non-executable. Linux calls this the
- * NX bit. Intel calls it XD (eXecute Disable), AMD EVP (Enhanced
- * Virus Protection). We just switch it off here, since we don't
- * support it.
- */
- case 0x80000001:
- *dx &= ~(1 << 20);
- break;
- }
-}
-
-/*
- * Intel has four control registers, imaginatively named cr0, cr2, cr3 and cr4.
- * I assume there's a cr1, but it hasn't bothered us yet, so we'll not bother
- * it. The Host needs to know when the Guest wants to change them, so we have
- * a whole series of functions like read_cr0() and write_cr0().
- *
- * We start with cr0. cr0 allows you to turn on and off all kinds of basic
- * features, but the only cr0 bit that Linux ever used at runtime was the
- * horrifically-named Task Switched (TS) bit at bit 3 (ie. 8)
- *
- * What does the TS bit do? Well, it causes the CPU to trap (interrupt 7) if
- * the floating point unit is used. Which allows us to restore FPU state
- * lazily after a task switch if we wanted to, but wouldn't a name like
- * "FPUTRAP bit" be a little less cryptic?
- *
- * Fortunately, Linux keeps it simple and doesn't use TS, so we can ignore
- * cr0.
- */
-static void lguest_write_cr0(unsigned long val)
-{
-}
-
-static unsigned long lguest_read_cr0(void)
-{
- return 0;
-}
-
-/*
- * cr2 is the virtual address of the last page fault, which the Guest only ever
- * reads. The Host kindly writes this into our "struct lguest_data", so we
- * just read it out of there.
- */
-static unsigned long lguest_read_cr2(void)
-{
- return lguest_data.cr2;
-}
-
-/* See lguest_set_pte() below. */
-static bool cr3_changed = false;
-static unsigned long current_cr3;
-
-/*
- * cr3 is the current toplevel pagetable page: the principle is the same as
- * cr0. Keep a local copy, and tell the Host when it changes.
- */
-static void lguest_write_cr3(unsigned long cr3)
-{
- lazy_hcall1(LHCALL_NEW_PGTABLE, cr3);
- current_cr3 = cr3;
-
- /* These two page tables are simple, linear, and used during boot */
- if (cr3 != __pa_symbol(swapper_pg_dir) &&
- cr3 != __pa_symbol(initial_page_table))
- cr3_changed = true;
-}
-
-static unsigned long lguest_read_cr3(void)
-{
- return current_cr3;
-}
-
-/* cr4 is used to enable and disable PGE, but we don't care. */
-static unsigned long lguest_read_cr4(void)
-{
- return 0;
-}
-
-static void lguest_write_cr4(unsigned long val)
-{
-}
-
-/*
- * Page Table Handling.
- *
- * Now would be a good time to take a rest and grab a coffee or similarly
- * relaxing stimulant. The easy parts are behind us, and the trek gradually
- * winds uphill from here.
- *
- * Quick refresher: memory is divided into "pages" of 4096 bytes each. The CPU
- * maps virtual addresses to physical addresses using "page tables". We could
- * use one huge index of 1 million entries: each addre