diff options
Diffstat (limited to 'drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c')
-rw-r--r-- | drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c | 2768 |
1 files changed, 2768 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c b/drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c new file mode 100644 index 000000000000..09e64bf33842 --- /dev/null +++ b/drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c @@ -0,0 +1,2768 @@ +/* + * SPDX-License-Identifier: MIT + * + * Copyright © 2008,2010 Intel Corporation + */ + +#include <linux/intel-iommu.h> +#include <linux/reservation.h> +#include <linux/sync_file.h> +#include <linux/uaccess.h> + +#include <drm/drm_syncobj.h> +#include <drm/i915_drm.h> + +#include "gem/i915_gem_ioctls.h" +#include "gt/intel_context.h" +#include "gt/intel_gt_pm.h" + +#include "i915_gem_ioctls.h" +#include "i915_gem_clflush.h" +#include "i915_gem_context.h" +#include "i915_trace.h" +#include "intel_drv.h" +#include "intel_frontbuffer.h" + +enum { + FORCE_CPU_RELOC = 1, + FORCE_GTT_RELOC, + FORCE_GPU_RELOC, +#define DBG_FORCE_RELOC 0 /* choose one of the above! */ +}; + +#define __EXEC_OBJECT_HAS_REF BIT(31) +#define __EXEC_OBJECT_HAS_PIN BIT(30) +#define __EXEC_OBJECT_HAS_FENCE BIT(29) +#define __EXEC_OBJECT_NEEDS_MAP BIT(28) +#define __EXEC_OBJECT_NEEDS_BIAS BIT(27) +#define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */ +#define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) + +#define __EXEC_HAS_RELOC BIT(31) +#define __EXEC_VALIDATED BIT(30) +#define __EXEC_INTERNAL_FLAGS (~0u << 30) +#define UPDATE PIN_OFFSET_FIXED + +#define BATCH_OFFSET_BIAS (256*1024) + +#define __I915_EXEC_ILLEGAL_FLAGS \ + (__I915_EXEC_UNKNOWN_FLAGS | \ + I915_EXEC_CONSTANTS_MASK | \ + I915_EXEC_RESOURCE_STREAMER) + +/* Catch emission of unexpected errors for CI! */ +#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) +#undef EINVAL +#define EINVAL ({ \ + DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ + 22; \ +}) +#endif + +/** + * DOC: User command execution + * + * Userspace submits commands to be executed on the GPU as an instruction + * stream within a GEM object we call a batchbuffer. This instructions may + * refer to other GEM objects containing auxiliary state such as kernels, + * samplers, render targets and even secondary batchbuffers. Userspace does + * not know where in the GPU memory these objects reside and so before the + * batchbuffer is passed to the GPU for execution, those addresses in the + * batchbuffer and auxiliary objects are updated. This is known as relocation, + * or patching. To try and avoid having to relocate each object on the next + * execution, userspace is told the location of those objects in this pass, + * but this remains just a hint as the kernel may choose a new location for + * any object in the future. + * + * At the level of talking to the hardware, submitting a batchbuffer for the + * GPU to execute is to add content to a buffer from which the HW + * command streamer is reading. + * + * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. + * Execlists, this command is not placed on the same buffer as the + * remaining items. + * + * 2. Add a command to invalidate caches to the buffer. + * + * 3. Add a batchbuffer start command to the buffer; the start command is + * essentially a token together with the GPU address of the batchbuffer + * to be executed. + * + * 4. Add a pipeline flush to the buffer. + * + * 5. Add a memory write command to the buffer to record when the GPU + * is done executing the batchbuffer. The memory write writes the + * global sequence number of the request, ``i915_request::global_seqno``; + * the i915 driver uses the current value in the register to determine + * if the GPU has completed the batchbuffer. + * + * 6. Add a user interrupt command to the buffer. This command instructs + * the GPU to issue an interrupt when the command, pipeline flush and + * memory write are completed. + * + * 7. Inform the hardware of the additional commands added to the buffer + * (by updating the tail pointer). + * + * Processing an execbuf ioctl is conceptually split up into a few phases. + * + * 1. Validation - Ensure all the pointers, handles and flags are valid. + * 2. Reservation - Assign GPU address space for every object + * 3. Relocation - Update any addresses to point to the final locations + * 4. Serialisation - Order the request with respect to its dependencies + * 5. Construction - Construct a request to execute the batchbuffer + * 6. Submission (at some point in the future execution) + * + * Reserving resources for the execbuf is the most complicated phase. We + * neither want to have to migrate the object in the address space, nor do + * we want to have to update any relocations pointing to this object. Ideally, + * we want to leave the object where it is and for all the existing relocations + * to match. If the object is given a new address, or if userspace thinks the + * object is elsewhere, we have to parse all the relocation entries and update + * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that + * all the target addresses in all of its objects match the value in the + * relocation entries and that they all match the presumed offsets given by the + * list of execbuffer objects. Using this knowledge, we know that if we haven't + * moved any buffers, all the relocation entries are valid and we can skip + * the update. (If userspace is wrong, the likely outcome is an impromptu GPU + * hang.) The requirement for using I915_EXEC_NO_RELOC are: + * + * The addresses written in the objects must match the corresponding + * reloc.presumed_offset which in turn must match the corresponding + * execobject.offset. + * + * Any render targets written to in the batch must be flagged with + * EXEC_OBJECT_WRITE. + * + * To avoid stalling, execobject.offset should match the current + * address of that object within the active context. + * + * The reservation is done is multiple phases. First we try and keep any + * object already bound in its current location - so as long as meets the + * constraints imposed by the new execbuffer. Any object left unbound after the + * first pass is then fitted into any available idle space. If an object does + * not fit, all objects are removed from the reservation and the process rerun + * after sorting the objects into a priority order (more difficult to fit + * objects are tried first). Failing that, the entire VM is cleared and we try + * to fit the execbuf once last time before concluding that it simply will not + * fit. + * + * A small complication to all of this is that we allow userspace not only to + * specify an alignment and a size for the object in the address space, but + * we also allow userspace to specify the exact offset. This objects are + * simpler to place (the location is known a priori) all we have to do is make + * sure the space is available. + * + * Once all the objects are in place, patching up the buried pointers to point + * to the final locations is a fairly simple job of walking over the relocation + * entry arrays, looking up the right address and rewriting the value into + * the object. Simple! ... The relocation entries are stored in user memory + * and so to access them we have to copy them into a local buffer. That copy + * has to avoid taking any pagefaults as they may lead back to a GEM object + * requiring the struct_mutex (i.e. recursive deadlock). So once again we split + * the relocation into multiple passes. First we try to do everything within an + * atomic context (avoid the pagefaults) which requires that we never wait. If + * we detect that we may wait, or if we need to fault, then we have to fallback + * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm + * bells yet?) Dropping the mutex means that we lose all the state we have + * built up so far for the execbuf and we must reset any global data. However, + * we do leave the objects pinned in their final locations - which is a + * potential issue for concurrent execbufs. Once we have left the mutex, we can + * allocate and copy all the relocation entries into a large array at our + * leisure, reacquire the mutex, reclaim all the objects and other state and + * then proceed to update any incorrect addresses with the objects. + * + * As we process the relocation entries, we maintain a record of whether the + * object is being written to. Using NORELOC, we expect userspace to provide + * this information instead. We also check whether we can skip the relocation + * by comparing the expected value inside the relocation entry with the target's + * final address. If they differ, we have to map the current object and rewrite + * the 4 or 8 byte pointer within. + * + * Serialising an execbuf is quite simple according to the rules of the GEM + * ABI. Execution within each context is ordered by the order of submission. + * Writes to any GEM object are in order of submission and are exclusive. Reads + * from a GEM object are unordered with respect to other reads, but ordered by + * writes. A write submitted after a read cannot occur before the read, and + * similarly any read submitted after a write cannot occur before the write. + * Writes are ordered between engines such that only one write occurs at any + * time (completing any reads beforehand) - using semaphores where available + * and CPU serialisation otherwise. Other GEM access obey the same rules, any + * write (either via mmaps using set-domain, or via pwrite) must flush all GPU + * reads before starting, and any read (either using set-domain or pread) must + * flush all GPU writes before starting. (Note we only employ a barrier before, + * we currently rely on userspace not concurrently starting a new execution + * whilst reading or writing to an object. This may be an advantage or not + * depending on how much you trust userspace not to shoot themselves in the + * foot.) Serialisation may just result in the request being inserted into + * a DAG awaiting its turn, but most simple is to wait on the CPU until + * all dependencies are resolved. + * + * After all of that, is just a matter of closing the request and handing it to + * the hardware (well, leaving it in a queue to be executed). However, we also + * offer the ability for batchbuffers to be run with elevated privileges so + * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) + * Before any batch is given extra privileges we first must check that it + * contains no nefarious instructions, we check that each instruction is from + * our whitelist and all registers are also from an allowed list. We first + * copy the user's batchbuffer to a shadow (so that the user doesn't have + * access to it, either by the CPU or GPU as we scan it) and then parse each + * instruction. If everything is ok, we set a flag telling the hardware to run + * the batchbuffer in trusted mode, otherwise the ioctl is rejected. + */ + +struct i915_execbuffer { + struct drm_i915_private *i915; /** i915 backpointer */ + struct drm_file *file; /** per-file lookup tables and limits */ + struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ + struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ + struct i915_vma **vma; + unsigned int *flags; + + struct intel_engine_cs *engine; /** engine to queue the request to */ + struct intel_context *context; /* logical state for the request */ + struct i915_gem_context *gem_context; /** caller's context */ + struct i915_address_space *vm; /** GTT and vma for the request */ + + struct i915_request *request; /** our request to build */ + struct i915_vma *batch; /** identity of the batch obj/vma */ + + /** actual size of execobj[] as we may extend it for the cmdparser */ + unsigned int buffer_count; + + /** list of vma not yet bound during reservation phase */ + struct list_head unbound; + + /** list of vma that have execobj.relocation_count */ + struct list_head relocs; + + /** + * Track the most recently used object for relocations, as we + * frequently have to perform multiple relocations within the same + * obj/page + */ + struct reloc_cache { + struct drm_mm_node node; /** temporary GTT binding */ + unsigned long vaddr; /** Current kmap address */ + unsigned long page; /** Currently mapped page index */ + unsigned int gen; /** Cached value of INTEL_GEN */ + bool use_64bit_reloc : 1; + bool has_llc : 1; + bool has_fence : 1; + bool needs_unfenced : 1; + + struct i915_request *rq; + u32 *rq_cmd; + unsigned int rq_size; + } reloc_cache; + + u64 invalid_flags; /** Set of execobj.flags that are invalid */ + u32 context_flags; /** Set of execobj.flags to insert from the ctx */ + + u32 batch_start_offset; /** Location within object of batch */ + u32 batch_len; /** Length of batch within object */ + u32 batch_flags; /** Flags composed for emit_bb_start() */ + + /** + * Indicate either the size of the hastable used to resolve + * relocation handles, or if negative that we are using a direct + * index into the execobj[]. + */ + int lut_size; + struct hlist_head *buckets; /** ht for relocation handles */ +}; + +#define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags]) + +/* + * Used to convert any address to canonical form. + * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS, + * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the + * addresses to be in a canonical form: + * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct + * canonical form [63:48] == [47]." + */ +#define GEN8_HIGH_ADDRESS_BIT 47 +static inline u64 gen8_canonical_addr(u64 address) +{ + return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT); +} + +static inline u64 gen8_noncanonical_addr(u64 address) +{ + return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0); +} + +static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) +{ + return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len; +} + +static int eb_create(struct i915_execbuffer *eb) +{ + if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { + unsigned int size = 1 + ilog2(eb->buffer_count); + + /* + * Without a 1:1 association between relocation handles and + * the execobject[] index, we instead create a hashtable. + * We size it dynamically based on available memory, starting + * first with 1:1 assocative hash and scaling back until + * the allocation succeeds. + * + * Later on we use a positive lut_size to indicate we are + * using this hashtable, and a negative value to indicate a + * direct lookup. + */ + do { + gfp_t flags; + + /* While we can still reduce the allocation size, don't + * raise a warning and allow the allocation to fail. + * On the last pass though, we want to try as hard + * as possible to perform the allocation and warn + * if it fails. + */ + flags = GFP_KERNEL; + if (size > 1) + flags |= __GFP_NORETRY | __GFP_NOWARN; + + eb->buckets = kzalloc(sizeof(struct hlist_head) << size, + flags); + if (eb->buckets) + break; + } while (--size); + + if (unlikely(!size)) + return -ENOMEM; + + eb->lut_size = size; + } else { + eb->lut_size = -eb->buffer_count; + } + + return 0; +} + +static bool +eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, + const struct i915_vma *vma, + unsigned int flags) +{ + if (vma->node.size < entry->pad_to_size) + return true; + + if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) + return true; + + if (flags & EXEC_OBJECT_PINNED && + vma->node.start != entry->offset) + return true; + + if (flags & __EXEC_OBJECT_NEEDS_BIAS && + vma->node.start < BATCH_OFFSET_BIAS) + return true; + + if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && + (vma->node.start + vma->node.size - 1) >> 32) + return true; + + if (flags & __EXEC_OBJECT_NEEDS_MAP && + !i915_vma_is_map_and_fenceable(vma)) + return true; + + return false; +} + +static inline bool +eb_pin_vma(struct i915_execbuffer *eb, + const struct drm_i915_gem_exec_object2 *entry, + struct i915_vma *vma) +{ + unsigned int exec_flags = *vma->exec_flags; + u64 pin_flags; + + if (vma->node.size) + pin_flags = vma->node.start; + else + pin_flags = entry->offset & PIN_OFFSET_MASK; + + pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED; + if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT)) + pin_flags |= PIN_GLOBAL; + + if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) + return false; + + if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) { + if (unlikely(i915_vma_pin_fence(vma))) { + i915_vma_unpin(vma); + return false; + } + + if (vma->fence) + exec_flags |= __EXEC_OBJECT_HAS_FENCE; + } + + *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN; + return !eb_vma_misplaced(entry, vma, exec_flags); +} + +static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags) +{ + GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN)); + + if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE)) + __i915_vma_unpin_fence(vma); + + __i915_vma_unpin(vma); +} + +static inline void +eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags) +{ + if (!(*flags & __EXEC_OBJECT_HAS_PIN)) + return; + + __eb_unreserve_vma(vma, *flags); + *flags &= ~__EXEC_OBJECT_RESERVED; +} + +static int +eb_validate_vma(struct i915_execbuffer *eb, + struct drm_i915_gem_exec_object2 *entry, + struct i915_vma *vma) +{ + if (unlikely(entry->flags & eb->invalid_flags)) + return -EINVAL; + + if (unlikely(entry->alignment && !is_power_of_2(entry->alignment))) + return -EINVAL; + + /* + * Offset can be used as input (EXEC_OBJECT_PINNED), reject + * any non-page-aligned or non-canonical addresses. + */ + if (unlikely(entry->flags & EXEC_OBJECT_PINNED && + entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) + return -EINVAL; + + /* pad_to_size was once a reserved field, so sanitize it */ + if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { + if (unlikely(offset_in_page(entry->pad_to_size))) + return -EINVAL; + } else { + entry->pad_to_size = 0; + } + + if (unlikely(vma->exec_flags)) { + DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n", + entry->handle, (int)(entry - eb->exec)); + return -EINVAL; + } + + /* + * From drm_mm perspective address space is continuous, + * so from this point we're always using non-canonical + * form internally. + */ + entry->offset = gen8_noncanonical_addr(entry->offset); + + if (!eb->reloc_cache.has_fence) { + entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; + } else { + if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || + eb->reloc_cache.needs_unfenced) && + i915_gem_object_is_tiled(vma->obj)) + entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; + } + + if (!(entry->flags & EXEC_OBJECT_PINNED)) + entry->flags |= eb->context_flags; + + return 0; +} + +static int +eb_add_vma(struct i915_execbuffer *eb, + unsigned int i, unsigned batch_idx, + struct i915_vma *vma) +{ + struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; + int err; + + GEM_BUG_ON(i915_vma_is_closed(vma)); + + if (!(eb->args->flags & __EXEC_VALIDATED)) { + err = eb_validate_vma(eb, entry, vma); + if (unlikely(err)) + return err; + } + + if (eb->lut_size > 0) { + vma->exec_handle = entry->handle; + hlist_add_head(&vma->exec_node, + &eb->buckets[hash_32(entry->handle, + eb->lut_size)]); + } + + if (entry->relocation_count) + list_add_tail(&vma->reloc_link, &eb->relocs); + + /* + * Stash a pointer from the vma to execobj, so we can query its flags, + * size, alignment etc as provided by the user. Also we stash a pointer + * to the vma inside the execobj so that we can use a direct lookup + * to find the right target VMA when doing relocations. + */ + eb->vma[i] = vma; + eb->flags[i] = entry->flags; + vma->exec_flags = &eb->flags[i]; + + /* + * SNA is doing fancy tricks with compressing batch buffers, which leads + * to negative relocation deltas. Usually that works out ok since the + * relocate address is still positive, except when the batch is placed + * very low in the GTT. Ensure this doesn't happen. + * + * Note that actual hangs have only been observed on gen7, but for + * paranoia do it everywhere. + */ + if (i == batch_idx) { + if (entry->relocation_count && + !(eb->flags[i] & EXEC_OBJECT_PINNED)) + eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS; + if (eb->reloc_cache.has_fence) + eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE; + + eb->batch = vma; + } + + err = 0; + if (eb_pin_vma(eb, entry, vma)) { + if (entry->offset != vma->node.start) { + entry->offset = vma->node.start | UPDATE; + eb->args->flags |= __EXEC_HAS_RELOC; + } + } else { + eb_unreserve_vma(vma, vma->exec_flags); + + list_add_tail(&vma->exec_link, &eb->unbound); + if (drm_mm_node_allocated(&vma->node)) + err = i915_vma_unbind(vma); + if (unlikely(err)) + vma->exec_flags = NULL; + } + return err; +} + +static inline int use_cpu_reloc(const struct reloc_cache *cache, + const struct drm_i915_gem_object *obj) +{ + if (!i915_gem_object_has_struct_page(obj)) + return false; + + if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) + return true; + + if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) + return false; + + return (cache->has_llc || + obj->cache_dirty || + obj->cache_level != I915_CACHE_NONE); +} + +static int eb_reserve_vma(const struct i915_execbuffer *eb, + struct i915_vma *vma) +{ + struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma); + unsigned int exec_flags = *vma->exec_flags; + u64 pin_flags; + int err; + + pin_flags = PIN_USER | PIN_NONBLOCK; + if (exec_flags & EXEC_OBJECT_NEEDS_GTT) + pin_flags |= PIN_GLOBAL; + + /* + * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, + * limit address to the first 4GBs for unflagged objects. + */ + if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) + pin_flags |= PIN_ZONE_4G; + + if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) + pin_flags |= PIN_MAPPABLE; + + if (exec_flags & EXEC_OBJECT_PINNED) { + pin_flags |= entry->offset | PIN_OFFSET_FIXED; + pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */ + } else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) { + pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; + } + + err = i915_vma_pin(vma, + entry->pad_to_size, entry->alignment, + pin_flags); + if (err) + return err; + + if (entry->offset != vma->node.start) { + entry->offset = vma->node.start | UPDATE; + eb->args->flags |= __EXEC_HAS_RELOC; + } + + if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) { + err = i915_vma_pin_fence(vma); + if (unlikely(err)) { + i915_vma_unpin(vma); + return err; + } + + if (vma->fence) + exec_flags |= __EXEC_OBJECT_HAS_FENCE; + } + + *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN; + GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags)); + + return 0; +} + +static int eb_reserve(struct i915_execbuffer *eb) +{ + const unsigned int count = eb->buffer_count; + struct list_head last; + struct i915_vma *vma; + unsigned int i, pass; + int err; + + /* + * Attempt to pin all of the buffers into the GTT. + * This is done in 3 phases: + * + * 1a. Unbind all objects that do not match the GTT constraints for + * the execbuffer (fenceable, mappable, alignment etc). + * 1b. Increment pin count for already bound objects. + * 2. Bind new objects. + * 3. Decrement pin count. + * + * This avoid unnecessary unbinding of later objects in order to make + * room for the earlier objects *unless* we need to defragment. + */ + + pass = 0; + err = 0; + do { + list_for_each_entry(vma, &eb->unbound, exec_link) { + err = eb_reserve_vma(eb, vma); + if (err) + break; + } + if (err != -ENOSPC) + return err; + + /* Resort *all* the objects into priority order */ + INIT_LIST_HEAD(&eb->unbound); + INIT_LIST_HEAD(&last); + for (i = 0; i < count; i++) { + unsigned int flags = eb->flags[i]; + struct i915_vma *vma = eb->vma[i]; + + if (flags & EXEC_OBJECT_PINNED && + flags & __EXEC_OBJECT_HAS_PIN) + continue; + + eb_unreserve_vma(vma, &eb->flags[i]); + + if (flags & EXEC_OBJECT_PINNED) + /* Pinned must have their slot */ + list_add(&vma->exec_link, &eb->unbound); + else if (flags & __EXEC_OBJECT_NEEDS_MAP) + /* Map require the lowest 256MiB (aperture) */ + list_add_tail(&vma->exec_link, &eb->unbound); + else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) + /* Prioritise 4GiB region for restricted bo */ + list_add(&vma->exec_link, &last); + else + list_add_tail(&vma->exec_link, &last); + } + list_splice_tail(&last, &eb->unbound); + + switch (pass++) { + case 0: + break; + + case 1: + /* Too fragmented, unbind everything and retry */ + err = i915_gem_evict_vm(eb->vm); + if (err) + return err; + break; + + default: + return -ENOSPC; + } + } while (1); +} + +static unsigned int eb_batch_index(const struct i915_execbuffer *eb) +{ + if (eb->args->flags & I915_EXEC_BATCH_FIRST) + return 0; + else + return eb->buffer_count - 1; +} + +static int eb_select_context(struct i915_execbuffer *eb) +{ + struct i915_gem_context *ctx; + + ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); + if (unlikely(!ctx)) + return -ENOENT; + + eb->gem_context = ctx; + if (ctx->ppgtt) { + eb->vm = &ctx->ppgtt->vm; + eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; + } else { + eb->vm = &eb->i915->ggtt.vm; + } + + eb->context_flags = 0; + if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags)) + eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS; + + return 0; +} + +static struct i915_request *__eb_wait_for_ring(struct intel_ring *ring) +{ + struct i915_request *rq; + + /* + * Completely unscientific finger-in-the-air estimates for suitable + * maximum user request size (to avoid blocking) and then backoff. + */ + if (intel_ring_update_space(ring) >= PAGE_SIZE) + return NULL; + + /* + * Find a request that after waiting upon, there will be at least half + * the ring available. The hysteresis allows us to compete for the + * shared ring and should mean that we sleep less often prior to + * claiming our resources, but not so long that the ring completely + * drains before we can submit our next request. + */ + list_for_each_entry(rq, &ring->request_list, ring_link) { + if (__intel_ring_space(rq->postfix, + ring->emit, ring->size) > ring->size / 2) + break; + } + if (&rq->ring_link == &ring->request_list) + return NULL; /* weird, we will check again later for real */ + + return i915_request_get(rq); +} + +static int eb_wait_for_ring(const struct i915_execbuffer *eb) +{ + struct i915_request *rq; + int ret = 0; + + /* + * Apply a light amount of backpressure to prevent excessive hogs + * from blocking waiting for space whilst holding struct_mutex and + * keeping all of their resources pinned. + */ + + rq = __eb_wait_for_ring(eb->context->ring); + if (rq) { + mutex_unlock(&eb->i915->drm.struct_mutex); + + if (i915_request_wait(rq, + I915_WAIT_INTERRUPTIBLE, + MAX_SCHEDULE_TIMEOUT) < 0) + ret = -EINTR; + + i915_request_put(rq); + + mutex_lock(&eb->i915->drm.struct_mutex); + } + + return ret; +} + +static int eb_lookup_vmas(struct i915_execbuffer *eb) +{ + struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma; + struct drm_i915_gem_object *obj; + unsigned int i, batch; + int err; + + if (unlikely(i915_gem_context_is_closed(eb->gem_context))) + return -ENOENT; + + if (unlikely(i915_gem_context_is_banned(eb->gem_context))) + return -EIO; + + INIT_LIST_HEAD(&eb->relocs); + INIT_LIST_HEAD(&eb->unbound); + + batch = eb_batch_index(eb); + + for (i = 0; i < eb->buffer_count; i++) { + u32 handle = eb->exec[i].handle; + struct i915_lut_handle *lut; + struct i915_vma *vma; + + vma = radix_tree_lookup(handles_vma, handle); + if (likely(vma)) + goto add_vma; + + obj = i915_gem_object_lookup(eb->file, handle); + if (unlikely(!obj)) { + err = -ENOENT; + goto err_vma; + } + + vma = i915_vma_instance(obj, eb->vm, NULL); + if (IS_ERR(vma)) { + err = PTR_ERR(vma); + goto err_obj; + } + + lut = i915_lut_handle_alloc(); + if (unlikely(!lut)) { + err = -ENOMEM; + goto err_obj; + } + + err = radix_tree_insert(handles_vma, handle, vma); + if (unlikely(err)) { + i915_lut_handle_free(lut); + goto err_obj; + } + + /* transfer ref to ctx */ + if (!vma->open_count++) + i915_vma_reopen(vma); + list_add(&lut->obj_link, &obj->lut_list); + list_add(&lut->ctx_link, &eb->gem_context->handles_list); + lut->ctx = eb->gem_context; + lut->handle = handle; + +add_vma: + err = eb_add_vma(eb, i, batch, vma); + if (unlikely(err)) + goto err_vma; + + GEM_BUG_ON(vma != eb->vma[i]); + GEM_BUG_ON(vma->exec_flags != &eb->flags[i]); + GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && + eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i])); + } + + eb->args->flags |= __EXEC_VALIDATED; + return eb_reserve(eb); + +err_obj: + i915_gem_object_put(obj); +err_vma: + eb->vma[i] = NULL; + return err; +} + +static struct i915_vma * +eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) +{ + if (eb->lut_size < 0) { + if (handle >= -eb->lut_size) + return NULL; + return eb->vma[handle]; + } else { + struct hlist_head *head; + struct i915_vma *vma; + + head = &eb->buckets[hash_32(handle, eb->lut_size)]; + hlist_for_each_entry(vma, head, exec_node) { + if (vma->exec_handle == handle) + return vma; + } + return NULL; + } +} + +static void eb_release_vmas(const struct i915_execbuffer *eb) +{ + const unsigned int count = eb->buffer_count; + unsigned int i; + + for (i = 0; i < count; i++) { + struct i915_vma *vma = eb->vma[i]; + unsigned int flags = eb->flags[i]; + + if (!vma) + break; + + GEM_BUG_ON(vma->exec_flags != &eb->flags[i]); + vma->exec_flags = NULL; + eb->vma[i] = NULL; + + if (flags & __EXEC_OBJECT_HAS_PIN) + __eb_unreserve_vma(vma, flags); + + if (flags & __EXEC_OBJECT_HAS_REF) + i915_vma_put(vma); + } +} + +static void eb_reset_vmas(const struct i915_execbuffer *eb) +{ + eb_release_vmas(eb); + if (eb->lut_size > 0) + memset(eb->buckets, 0, + sizeof(struct hlist_head) << eb->lut_size); +} + +static void eb_destroy(const struct i915_execbuffer *eb) +{ + GEM_BUG_ON(eb->reloc_cache.rq); + + if (eb->lut_size > 0) + kfree(eb->buckets); +} + +static inline u64 +relocation_target(const struct drm_i915_gem_relocation_entry *reloc, + const struct i915_vma *target) +{ + return gen8_canonical_addr((int)reloc->delta + target->node.start); +} + +static void reloc_cache_init(struct reloc_cache *cache, + struct drm_i915_private *i915) +{ + cache->page = -1; + cache->vaddr = 0; + /* Must be a variable in the struct to allow GCC to unroll. */ + cache->gen = INTEL_GEN(i915); + cache->has_llc = HAS_LLC(i915); + cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); + cache->has_fence = cache->gen < 4; + cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; + cache->node.allocated = false; + cache->rq = NULL; + cache->rq_size = 0; +} + +static inline void *unmask_page(unsigned long p) +{ + return (void *)(uintptr_t)(p & PAGE_MASK); +} + +static inline unsigned int unmask_flags(unsigned long p) +{ + return p & ~PAGE_MASK; +} + +#define KMAP 0x4 /* after CLFLUSH_FLAGS */ + +static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) +{ + struct drm_i915_private *i915 = + container_of(cache, struct i915_execbuffer, reloc_cache)->i915; + return &i915->ggtt; +} + +static void reloc_gpu_flush(struct reloc_cache *cache) +{ + GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32)); + cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END; + + __i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size); + i915_gem_object_unpin_map(cache->rq->batch->obj); + + i915_gem_chipset_flush(cache->rq->i915); + + i915_request_add(cache->rq); + cache->rq = NULL; +} + +static void reloc_cache_reset(struct reloc_cache *cache) +{ + void *vaddr; + + if (cache->rq) + reloc_gpu_flush(cache); + + if (!cache->vaddr) + return; + + vaddr = unmask_page(cache->vaddr); + if (cache->vaddr & KMAP) { + if (cache->vaddr & CLFLUSH_AFTER) + mb(); + + kunmap_atomic(vaddr); + i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm); + } else { + wmb(); + io_mapping_unmap_atomic((void __iomem *)vaddr); + if (cache->node.allocated) { + struct i915_ggtt *ggtt = cache_to_ggtt(cache); + + ggtt->vm.clear_range(&ggtt->vm, + cache->node.start, + cache->node.size); + drm_mm_remove_node(&cache->node); + } else { + i915_vma_unpin((struct i915_vma *)cache->node.mm); + } + } + + cache->vaddr = 0; + cache->page = -1; +} + +static void *reloc_kmap(struct drm_i915_gem_object *obj, + struct reloc_cache *cache, + unsigned long page) +{ + void *vaddr; + + if (cache->vaddr) { + kunmap_atomic(unmask_page(cache->vaddr)); + } else { + unsigned int flushes; + int err; + + err = i915_gem_object_prepare_write(obj, &flushes); + if (err) + return ERR_PTR(err); + + BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); + BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); + + cache->vaddr = flushes | KMAP; + cache->node.mm = (void *)obj; + if (flushes) + mb(); + } + + vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page)); + cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; + cache->page = page; + + return vaddr; +} + +static void *reloc_iomap(struct drm_i915_gem_object *obj, + struct reloc_cache *cache, + unsigned long page) +{ + struct i915_ggtt *ggtt = cache_to_ggtt(cache); + unsigned long offset; + void *vaddr; + + if (cache->vaddr) { + io_mapping_unmap_atomic((void |