diff options
Diffstat (limited to 'kernel/printk/printk_ringbuffer.c')
-rw-r--r-- | kernel/printk/printk_ringbuffer.c | 1687 |
1 files changed, 1687 insertions, 0 deletions
diff --git a/kernel/printk/printk_ringbuffer.c b/kernel/printk/printk_ringbuffer.c new file mode 100644 index 000000000000..7355ca99e852 --- /dev/null +++ b/kernel/printk/printk_ringbuffer.c @@ -0,0 +1,1687 @@ +// SPDX-License-Identifier: GPL-2.0 + +#include <linux/kernel.h> +#include <linux/irqflags.h> +#include <linux/string.h> +#include <linux/errno.h> +#include <linux/bug.h> +#include "printk_ringbuffer.h" + +/** + * DOC: printk_ringbuffer overview + * + * Data Structure + * -------------- + * The printk_ringbuffer is made up of 3 internal ringbuffers: + * + * desc_ring + * A ring of descriptors. A descriptor contains all record meta data + * (sequence number, timestamp, loglevel, etc.) as well as internal state + * information about the record and logical positions specifying where in + * the other ringbuffers the text and dictionary strings are located. + * + * text_data_ring + * A ring of data blocks. A data block consists of an unsigned long + * integer (ID) that maps to a desc_ring index followed by the text + * string of the record. + * + * dict_data_ring + * A ring of data blocks. A data block consists of an unsigned long + * integer (ID) that maps to a desc_ring index followed by the dictionary + * string of the record. + * + * The internal state information of a descriptor is the key element to allow + * readers and writers to locklessly synchronize access to the data. + * + * Implementation + * -------------- + * + * Descriptor Ring + * ~~~~~~~~~~~~~~~ + * The descriptor ring is an array of descriptors. A descriptor contains all + * the meta data of a printk record as well as blk_lpos structs pointing to + * associated text and dictionary data blocks (see "Data Rings" below). Each + * descriptor is assigned an ID that maps directly to index values of the + * descriptor array and has a state. The ID and the state are bitwise combined + * into a single descriptor field named @state_var, allowing ID and state to + * be synchronously and atomically updated. + * + * Descriptors have three states: + * + * reserved + * A writer is modifying the record. + * + * committed + * The record and all its data are complete and available for reading. + * + * reusable + * The record exists, but its text and/or dictionary data may no longer + * be available. + * + * Querying the @state_var of a record requires providing the ID of the + * descriptor to query. This can yield a possible fourth (pseudo) state: + * + * miss + * The descriptor being queried has an unexpected ID. + * + * The descriptor ring has a @tail_id that contains the ID of the oldest + * descriptor and @head_id that contains the ID of the newest descriptor. + * + * When a new descriptor should be created (and the ring is full), the tail + * descriptor is invalidated by first transitioning to the reusable state and + * then invalidating all tail data blocks up to and including the data blocks + * associated with the tail descriptor (for text and dictionary rings). Then + * @tail_id is advanced, followed by advancing @head_id. And finally the + * @state_var of the new descriptor is initialized to the new ID and reserved + * state. + * + * The @tail_id can only be advanced if the new @tail_id would be in the + * committed or reusable queried state. This makes it possible that a valid + * sequence number of the tail is always available. + * + * Data Rings + * ~~~~~~~~~~ + * The two data rings (text and dictionary) function identically. They exist + * separately so that their buffer sizes can be individually set and they do + * not affect one another. + * + * Data rings are byte arrays composed of data blocks. Data blocks are + * referenced by blk_lpos structs that point to the logical position of the + * beginning of a data block and the beginning of the next adjacent data + * block. Logical positions are mapped directly to index values of the byte + * array ringbuffer. + * + * Each data block consists of an ID followed by the writer data. The ID is + * the identifier of a descriptor that is associated with the data block. A + * given data block is considered valid if all of the following conditions + * are met: + * + * 1) The descriptor associated with the data block is in the committed + * queried state. + * + * 2) The blk_lpos struct within the descriptor associated with the data + * block references back to the same data block. + * + * 3) The data block is within the head/tail logical position range. + * + * If the writer data of a data block would extend beyond the end of the + * byte array, only the ID of the data block is stored at the logical + * position and the full data block (ID and writer data) is stored at the + * beginning of the byte array. The referencing blk_lpos will point to the + * ID before the wrap and the next data block will be at the logical + * position adjacent the full data block after the wrap. + * + * Data rings have a @tail_lpos that points to the beginning of the oldest + * data block and a @head_lpos that points to the logical position of the + * next (not yet existing) data block. + * + * When a new data block should be created (and the ring is full), tail data + * blocks will first be invalidated by putting their associated descriptors + * into the reusable state and then pushing the @tail_lpos forward beyond + * them. Then the @head_lpos is pushed forward and is associated with a new + * descriptor. If a data block is not valid, the @tail_lpos cannot be + * advanced beyond it. + * + * Usage + * ----- + * Here are some simple examples demonstrating writers and readers. For the + * examples a global ringbuffer (test_rb) is available (which is not the + * actual ringbuffer used by printk):: + * + * DEFINE_PRINTKRB(test_rb, 15, 5, 3); + * + * This ringbuffer allows up to 32768 records (2 ^ 15) and has a size of + * 1 MiB (2 ^ (15 + 5)) for text data and 256 KiB (2 ^ (15 + 3)) for + * dictionary data. + * + * Sample writer code:: + * + * const char *dictstr = "dictionary text"; + * const char *textstr = "message text"; + * struct prb_reserved_entry e; + * struct printk_record r; + * + * // specify how much to allocate + * prb_rec_init_wr(&r, strlen(textstr) + 1, strlen(dictstr) + 1); + * + * if (prb_reserve(&e, &test_rb, &r)) { + * snprintf(r.text_buf, r.text_buf_size, "%s", textstr); + * + * // dictionary allocation may have failed + * if (r.dict_buf) + * snprintf(r.dict_buf, r.dict_buf_size, "%s", dictstr); + * + * r.info->ts_nsec = local_clock(); + * + * prb_commit(&e); + * } + * + * Sample reader code:: + * + * struct printk_info info; + * struct printk_record r; + * char text_buf[32]; + * char dict_buf[32]; + * u64 seq; + * + * prb_rec_init_rd(&r, &info, &text_buf[0], sizeof(text_buf), + * &dict_buf[0], sizeof(dict_buf)); + * + * prb_for_each_record(0, &test_rb, &seq, &r) { + * if (info.seq != seq) + * pr_warn("lost %llu records\n", info.seq - seq); + * + * if (info.text_len > r.text_buf_size) { + * pr_warn("record %llu text truncated\n", info.seq); + * text_buf[r.text_buf_size - 1] = 0; + * } + * + * if (info.dict_len > r.dict_buf_size) { + * pr_warn("record %llu dict truncated\n", info.seq); + * dict_buf[r.dict_buf_size - 1] = 0; + * } + * + * pr_info("%llu: %llu: %s;%s\n", info.seq, info.ts_nsec, + * &text_buf[0], info.dict_len ? &dict_buf[0] : ""); + * } + * + * Note that additional less convenient reader functions are available to + * allow complex record access. + * + * ABA Issues + * ~~~~~~~~~~ + * To help avoid ABA issues, descriptors are referenced by IDs (array index + * values combined with tagged bits counting array wraps) and data blocks are + * referenced by logical positions (array index values combined with tagged + * bits counting array wraps). However, on 32-bit systems the number of + * tagged bits is relatively small such that an ABA incident is (at least + * theoretically) possible. For example, if 4 million maximally sized (1KiB) + * printk messages were to occur in NMI context on a 32-bit system, the + * interrupted context would not be able to recognize that the 32-bit integer + * completely wrapped and thus represents a different data block than the one + * the interrupted context expects. + * + * To help combat this possibility, additional state checking is performed + * (such as using cmpxchg() even though set() would suffice). These extra + * checks are commented as such and will hopefully catch any ABA issue that + * a 32-bit system might experience. + * + * Memory Barriers + * ~~~~~~~~~~~~~~~ + * Multiple memory barriers are used. To simplify proving correctness and + * generating litmus tests, lines of code related to memory barriers + * (loads, stores, and the associated memory barriers) are labeled:: + * + * LMM(function:letter) + * + * Comments reference the labels using only the "function:letter" part. + * + * The memory barrier pairs and their ordering are: + * + * desc_reserve:D / desc_reserve:B + * push descriptor tail (id), then push descriptor head (id) + * + * desc_reserve:D / data_push_tail:B + * push data tail (lpos), then set new descriptor reserved (state) + * + * desc_reserve:D / desc_push_tail:C + * push descriptor tail (id), then set new descriptor reserved (state) + * + * desc_reserve:D / prb_first_seq:C + * push descriptor tail (id), then set new descriptor reserved (state) + * + * desc_reserve:F / desc_read:D + * set new descriptor id and reserved (state), then allow writer changes + * + * data_alloc:A / desc_read:D + * set old descriptor reusable (state), then modify new data block area + * + * data_alloc:A / data_push_tail:B + * push data tail (lpos), then modify new data block area + * + * prb_commit:B / desc_read:B + * store writer changes, then set new descriptor committed (state) + * + * data_push_tail:D / data_push_tail:A + * set descriptor reusable (state), then push data tail (lpos) + * + * desc_push_tail:B / desc_reserve:D + * set descriptor reusable (state), then push descriptor tail (id) + */ + +#define DATA_SIZE(data_ring) _DATA_SIZE((data_ring)->size_bits) +#define DATA_SIZE_MASK(data_ring) (DATA_SIZE(data_ring) - 1) + +#define DESCS_COUNT(desc_ring) _DESCS_COUNT((desc_ring)->count_bits) +#define DESCS_COUNT_MASK(desc_ring) (DESCS_COUNT(desc_ring) - 1) + +/* Determine the data array index from a logical position. */ +#define DATA_INDEX(data_ring, lpos) ((lpos) & DATA_SIZE_MASK(data_ring)) + +/* Determine the desc array index from an ID or sequence number. */ +#define DESC_INDEX(desc_ring, n) ((n) & DESCS_COUNT_MASK(desc_ring)) + +/* Determine how many times the data array has wrapped. */ +#define DATA_WRAPS(data_ring, lpos) ((lpos) >> (data_ring)->size_bits) + +/* Get the logical position at index 0 of the current wrap. */ +#define DATA_THIS_WRAP_START_LPOS(data_ring, lpos) \ +((lpos) & ~DATA_SIZE_MASK(data_ring)) + +/* Get the ID for the same index of the previous wrap as the given ID. */ +#define DESC_ID_PREV_WRAP(desc_ring, id) \ +DESC_ID((id) - DESCS_COUNT(desc_ring)) + +/* + * A data block: mapped directly to the beginning of the data block area + * specified as a logical position within the data ring. + * + * @id: the ID of the associated descriptor + * @data: the writer data + * + * Note that the size of a data block is only known by its associated + * descriptor. + */ +struct prb_data_block { + unsigned long id; + char data[0]; +}; + +/* + * Return the descriptor associated with @n. @n can be either a + * descriptor ID or a sequence number. + */ +static struct prb_desc *to_desc(struct prb_desc_ring *desc_ring, u64 n) +{ + return &desc_ring->descs[DESC_INDEX(desc_ring, n)]; +} + +static struct prb_data_block *to_block(struct prb_data_ring *data_ring, + unsigned long begin_lpos) +{ + return (void *)&data_ring->data[DATA_INDEX(data_ring, begin_lpos)]; +} + +/* + * Increase the data size to account for data block meta data plus any + * padding so that the adjacent data block is aligned on the ID size. + */ +static unsigned int to_blk_size(unsigned int size) +{ + struct prb_data_block *db = NULL; + + size += sizeof(*db); + size = ALIGN(size, sizeof(db->id)); + return size; +} + +/* + * Sanity checker for reserve size. The ringbuffer code assumes that a data + * block does not exceed the maximum possible size that could fit within the + * ringbuffer. This function provides that basic size check so that the + * assumption is safe. + * + * Writers are also not allowed to write 0-sized (data-less) records. Such + * records are used only internally by the ringbuffer. + */ +static bool data_check_size(struct prb_data_ring *data_ring, unsigned int size) +{ + struct prb_data_block *db = NULL; + + /* + * Writers are not allowed to write data-less records. Such records + * are used only internally by the ringbuffer to denote records where + * their data failed to allocate or have been lost. + */ + if (size == 0) + return false; + + /* + * Ensure the alignment padded size could possibly fit in the data + * array. The largest possible data block must still leave room for + * at least the ID of the next block. + */ + size = to_blk_size(size); + if (size > DATA_SIZE(data_ring) - sizeof(db->id)) + return false; + + return true; +} + +/* The possible responses of a descriptor state-query. */ +enum desc_state { + desc_miss, /* ID mismatch */ + desc_reserved, /* reserved, in use by writer */ + desc_committed, /* committed, writer is done */ + desc_reusable, /* free, not yet used by any writer */ +}; + +/* Query the state of a descriptor. */ +static enum desc_state get_desc_state(unsigned long id, + unsigned long state_val) +{ + if (id != DESC_ID(state_val)) + return desc_miss; + + if (state_val & DESC_REUSE_MASK) + return desc_reusable; + + if (state_val & DESC_COMMITTED_MASK) + return desc_committed; + + return desc_reserved; +} + +/* + * Get a copy of a specified descriptor and its queried state. A descriptor + * that is not in the committed or reusable state must be considered garbage + * by the reader. + */ +static enum desc_state desc_read(struct prb_desc_ring *desc_ring, + unsigned long id, struct prb_desc *desc_out) +{ + struct prb_desc *desc = to_desc(desc_ring, id); + atomic_long_t *state_var = &desc->state_var; + enum desc_state d_state; + unsigned long state_val; + + /* Check the descriptor state. */ + state_val = atomic_long_read(state_var); /* LMM(desc_read:A) */ + d_state = get_desc_state(id, state_val); + if (d_state != desc_committed && d_state != desc_reusable) + return d_state; + + /* + * Guarantee the state is loaded before copying the descriptor + * content. This avoids copying obsolete descriptor content that might + * not apply to the descriptor state. This pairs with prb_commit:B. + * + * Memory barrier involvement: + * + * If desc_read:A reads from prb_commit:B, then desc_read:C reads + * from prb_commit:A. + * + * Relies on: + * + * WMB from prb_commit:A to prb_commit:B + * matching + * RMB from desc_read:A to desc_read:C + */ + smp_rmb(); /* LMM(desc_read:B) */ + + /* + * Copy the descriptor data. The data is not valid until the + * state has been re-checked. + */ + memcpy(desc_out, desc, sizeof(*desc_out)); /* LMM(desc_read:C) */ + + /* + * 1. Guarantee the descriptor content is loaded before re-checking + * the state. This avoids reading an obsolete descriptor state + * that may not apply to the copied content. This pairs with + * desc_reserve:F. + * + * Memory barrier involvement: + * + * If desc_read:C reads from desc_reserve:G, then desc_read:E + * reads from desc_reserve:F. + * + * Relies on: + * + * WMB from desc_reserve:F to desc_reserve:G + * matching + * RMB from desc_read:C to desc_read:E + * + * 2. Guarantee the record data is loaded before re-checking the + * state. This avoids reading an obsolete descriptor state that may + * not apply to the copied data. This pairs with data_alloc:A. + * + * Memory barrier involvement: + * + * If copy_data:A reads from data_alloc:B, then desc_read:E + * reads from desc_make_reusable:A. + * + * Relies on: + * + * MB from desc_make_reusable:A to data_alloc:B + * matching + * RMB from desc_read:C to desc_read:E + * + * Note: desc_make_reusable:A and data_alloc:B can be different + * CPUs. However, the data_alloc:B CPU (which performs the + * full memory barrier) must have previously seen + * desc_make_reusable:A. + */ + smp_rmb(); /* LMM(desc_read:D) */ + + /* Re-check the descriptor state. */ + state_val = atomic_long_read(state_var); /* LMM(desc_read:E) */ + return get_desc_state(id, state_val); +} + +/* + * Take a specified descriptor out of the committed state by attempting + * the transition from committed to reusable. Either this context or some + * other context will have been successful. + */ +static void desc_make_reusable(struct prb_desc_ring *desc_ring, + unsigned long id) +{ + unsigned long val_committed = id | DESC_COMMITTED_MASK; + unsigned long val_reusable = val_committed | DESC_REUSE_MASK; + struct prb_desc *desc = to_desc(desc_ring, id); + atomic_long_t *state_var = &desc->state_var; + + atomic_long_cmpxchg_relaxed(state_var, val_committed, + val_reusable); /* LMM(desc_make_reusable:A) */ +} + +/* + * Given a data ring (text or dict), put the associated descriptor of each + * data block from @lpos_begin until @lpos_end into the reusable state. + * + * If there is any problem making the associated descriptor reusable, either + * the descriptor has not yet been committed or another writer context has + * already pushed the tail lpos past the problematic data block. Regardless, + * on error the caller can re-load the tail lpos to determine the situation. + */ +static bool data_make_reusable(struct printk_ringbuffer *rb, + struct prb_data_ring *data_ring, + unsigned long lpos_begin, + unsigned long lpos_end, + unsigned long *lpos_out) +{ + struct prb_desc_ring *desc_ring = &rb->desc_ring; + struct prb_data_blk_lpos *blk_lpos; + struct prb_data_block *blk; + enum desc_state d_state; + struct prb_desc desc; + unsigned long id; + + /* + * Using the provided @data_ring, point @blk_lpos to the correct + * blk_lpos within the local copy of the descriptor. + */ + if (data_ring == &rb->text_data_ring) + blk_lpos = &desc.text_blk_lpos; + else + blk_lpos = &desc.dict_blk_lpos; + + /* Loop until @lpos_begin has advanced to or beyond @lpos_end. */ + while ((lpos_end - lpos_begin) - 1 < DATA_SIZE(data_ring)) { + blk = to_block(data_ring, lpos_begin); + + /* + * Load the block ID from the data block. This is a data race + * against a writer that may have newly reserved this data + * area. If the loaded value matches a valid descriptor ID, + * the blk_lpos of that descriptor will be checked to make + * sure it points back to this data block. If the check fails, + * the data area has been recycled by another writer. + */ + id = blk->id; /* LMM(data_make_reusable:A) */ + + d_state = desc_read(desc_ring, id, &desc); /* LMM(data_make_reusable:B) */ + + switch (d_state) { + case desc_miss: + return false; + case desc_reserved: + return false; + case desc_committed: + /* + * This data block is invalid if the descriptor + * does not point back to it. + */ + if (blk_lpos->begin != lpos_begin) + return false; + desc_make_reusable(desc_ring, id); + break; + case desc_reusable: + /* + * This data block is invalid if the descriptor + * does not point back to it. + */ + if (blk_lpos->begin != lpos_begin) + return false; + break; + } + + /* Advance @lpos_begin to the next data block. */ + lpos_begin = blk_lpos->next; + } + + *lpos_out = lpos_begin; + return true; +} + +/* + * Advance the data ring tail to at least @lpos. This function puts + * descriptors into the reusable state if the tail is pushed beyond + * their associated data block. + */ +static bool data_push_tail(struct printk_ringbuffer *rb, + struct prb_data_ring *data_ring, + unsigned long lpos) +{ + unsigned long tail_lpos_new; + unsigned long tail_lpos; + unsigned long next_lpos; + + /* If @lpos is not valid, there is nothing to do. */ + if (lpos == INVALID_LPOS) + return true; + + /* + * Any descriptor states that have transitioned to reusable due to the + * data tail being pushed to this loaded value will be visible to this + * CPU. This pairs with data_push_tail:D. + * + * Memory barrier involvement: + * + * If data_push_tail:A reads from data_push_tail:D, then this CPU can + * see desc_make_reusable:A. + * + * Relies on: + * + * MB from desc_make_reusable:A to data_push_tail:D + * matches + * READFROM from data_push_tail:D to data_push_tail:A + * thus + * READFROM from desc_make_reusable:A to this CPU + */ + tail_lpos = atomic_long_read(&data_ring->tail_lpos); /* LMM(data_push_tail:A) */ + + /* + * Loop until the tail lpos is at or beyond @lpos. This condition + * may already be satisfied, resulting in no full memory barrier + * from data_push_tail:D being performed. However, since this CPU + * sees the new tail lpos, any descriptor states that transitioned to + * the reusable state must already be visible. + */ + while ((lpos - tail_lpos) - 1 < DATA_SIZE(data_ring)) { + /* + * Make all descriptors reusable that are associated with + * data blocks before @lpos. + */ + if (!data_make_reusable(rb, data_ring, tail_lpos, lpos, + &next_lpos)) { + /* + * 1. Guarantee the block ID loaded in + * data_make_reusable() is performed before + * reloading the tail lpos. The failed + * data_make_reusable() may be due to a newly + * recycled data area causing the tail lpos to + * have been previously pushed. This pairs with + * data_alloc:A. + * + * Memory barrier involvement: + * + * If data_make_reusable:A reads from data_alloc:B, + * then data_push_tail:C reads from + * data_push_tail:D. + * + * Relies on: + * + * MB from data_push_tail:D to data_alloc:B + * matching + * RMB from data_make_reusable:A to + * data_push_tail:C + * + * Note: data_push_tail:D and data_alloc:B can be + * different CPUs. However, the data_alloc:B + * CPU (which performs the full memory + * barrier) must have previously seen + * data_push_tail:D. + * + * 2. Guarantee the descriptor state loaded in + * data_make_reusable() is performed before + * reloading the tail lpos. The failed + * data_make_reusable() may be due to a newly + * recycled descriptor causing the tail lpos to + * have been previously pushed. This pairs with + * desc_reserve:D. + * + * Memory barrier involvement: + * + * If data_make_reusable:B reads from + * desc_reserve:F, then data_push_tail:C reads + * from data_push_tail:D. + * + * Relies on: + * + * MB from data_push_tail:D to desc_reserve:F + * matching + * RMB from data_make_reusable:B to + * data_push_tail:C + * + * Note: data_push_tail:D and desc_reserve:F can + * be different CPUs. However, the + * desc_reserve:F CPU (which performs the + * full memory barrier) must have previously + * seen data_push_tail:D. + */ + smp_rmb(); /* LMM(data_push_tail:B) */ + + tail_lpos_new = atomic_long_read(&data_ring->tail_lpos + ); /* LMM(data_push_tail:C) */ + if (tail_lpos_new == tail_lpos) + return false; + + /* Another CPU pushed the tail. Try again. */ + tail_lpos = tail_lpos_new; + continue; + } + + /* + * Guarantee any descriptor states that have transitioned to + * reusable are stored before pushing the tail lpos. A full + * memory barrier is needed since other CPUs may have made + * the descriptor states reusable. This pairs with + * data_push_tail:A. + */ + if (atomic_long_try_cmpxchg(&data_ring->tail_lpos, &tail_lpos, + next_lpos)) { /* LMM(data_push_tail:D) */ + break; + } + } + + return true; +} + +/* + * Advance the desc ring tail. This function advances the tail by one + * descriptor, thus invalidating the oldest descriptor. Before advancing + * the tail, the tail descriptor is made reusable and all data blocks up to + * and including the descriptor's data block are invalidated (i.e. the data + * ring tail is pushed past the data block of the descriptor being made + * reusable). + */ +static bool desc_push_tail(struct printk_ringbuffer *rb, + unsigned long tail_id) +{ + struct prb_desc_ring *desc_ring = &rb->desc_ring; + enum desc_state d_state; + struct prb_desc desc; + + d_state = desc_read(desc_ring, tail_id, &desc); + + switch (d_state) { + case desc_miss: + /* + * If the ID is exactly 1 wrap behind the expected, it is + * in the process of being reserved by another writer and + * must be considered reserved. + */ + if (DESC_ID(atomic_long_read(&desc.state_var)) == + DESC_ID_PREV_WRAP(desc_ring, tail_id)) { + return false; + } + + /* + * The ID has changed. Another writer must have pushed the + * tail and recycled the descriptor already. Success is + * returned because the caller is only interested in the + * specified tail being pushed, which it was. + */ + return true; + case desc_reserved: + return false; + case desc_committed: + desc_make_reusable(desc_ring, tail_id); + break; + case desc_reusable: + break; + } + + /* + * Data blocks must be invalidated before their associated + * descriptor can be made available for recycling. Invalidating + * them later is not possible because there is no way to trust + * data blocks once their associated descriptor is gone. + */ + + if (!data_push_tail(rb, &rb->text_data_ring, desc.text_blk_lpos.next)) + return false; + if (!data_push_tail(rb, &rb->dict_data_ring, desc.dict_blk_lpos.next)) + return false; + + /* + * Check the next descriptor after @tail_id before pushing the tail + * to it because the tail must always be in a committed or reusable + * state. The implementation of prb_first_seq() relies on this. + * + * A successful read implies that the next descriptor is less than or + * equal to @head_id so there is no risk of pushing the tail past the + * head. + */ + d_state = desc_read(desc_ring, DESC_ID(tail_id + 1), &desc); /* LMM(desc_push_tail:A) */ + + if (d_state == desc_committed || d_state == desc_reusable) { + /* + * Guarantee any descriptor states that have transitioned to + * reusable are stored before pushing the tail ID. This allows + * verifying the recycled descriptor state. A full memory + * barrier is needed since other CPUs may have made the + * descriptor states reusable. This pairs with desc_reserve:D. + */ + atomic_long_cmpxchg(&desc_ring->tail_id, tail_id, + DESC_ID(tail_id + 1)); /* LMM(desc_push_tail:B) */ + } else { + /* + * Guarantee the last state load from desc_read() is before + * reloading @tail_id in order to see a new tail ID in the + * case that the descriptor has been recycled. This pairs + * with desc_reserve:D. + * + * Memory barrier involvement: + * + * If desc_push_tail:A reads from desc_reserve:F, then + * desc_push_tail:D reads from desc_push_tail:B. + * + * Relies on: + * + * MB from desc_push_tail:B to desc_reserve:F + * matching + * RMB from desc_push_tail:A to desc_push_tail:D + * + * Note: desc_push_tail:B and desc_reserve:F can be different + * CPUs. However, the desc_reserve:F CPU (which performs + * the full memory barrier) must have previously seen + * desc_push_tail:B. + */ + smp_rmb(); /* LMM(desc_push_tail:C) */ + + /* + * Re-check the tail ID. The descriptor following @tail_id is + * not in an allowed tail state. But if the tail has since + * been moved by another CPU, then it does not matter. + */ + if (atomic_long_read(&desc_ring->tail_id) == tail_id) /* LMM(desc_push_tail:D) */ + return false; + } + + return true; +} + +/* Reserve a new descriptor, invalidating the oldest if necessary. */ +static bool desc_reserve(struct printk_ringbuffer *rb, unsigned long *id_out) +{ + struct prb_desc_ring *desc_ring = &rb->desc_ring; + unsigned long prev_state_val; + unsigned long id_prev_wrap; + struct prb_desc *desc; + unsigned long head_id; + unsigned long id; + + head_id = atomic_long_read(&desc_ring->head_id); /* LMM(desc_reserve:A) */ + + do { + desc = to_desc(desc_ring, head_id); + + id = DESC_ID(head_id + 1); + id_prev_wrap = DESC_ID_PREV_WRAP(desc_ring, id); + + /* + * Guarantee the head ID is read before reading the tail ID. + * Since the tail ID is updated before the head ID, this + * guarantees that @id_prev_wrap is never ahead of the tail + * ID. This pairs with desc_reserve:D. + * + * Memory barrier involvement: + * + * If desc_reserve:A reads from desc_reserve:D, then + * desc_reserve:C reads from desc_push_tail:B. + * + * Relies on: + * + * MB from desc_push_tail:B to desc_reserve:D + * matching + * RMB from desc_reserve:A to desc_reserve:C + * + * Note: desc_push_tail:B and desc_reserve:D can be different + * CPUs. However, the desc_reserve:D CPU (which performs + * the full memory barrier) must have previously seen + * desc_push_tail:B. + */ + smp_rmb(); /* LMM(desc_reserve:B) */ + + if (id_prev_wrap == atomic_long_read(&desc_ring->tail_id + )) { /* LMM(desc_reserve:C) */ + /* + * Make space for the new descriptor by + * advancing the tail. + */ + if (!desc_push_tail(rb, id_prev_wrap)) + return false; + } + + /* + * 1. Guarantee the tail ID is read before validating the + * recycled descriptor state. A read memory barrier is + * sufficient for this. This pairs with desc_push_tail:B. + * + * Memory barrier involvement: + * + * If desc_reserve:C reads from desc_push_tail:B, then + * desc_reserve:E reads from desc_make_reusable:A. + * + * Relies on: + * + * MB from desc_make_reusable:A to desc_push_tail:B + * matching + * RMB from desc_reserve:C to desc_reserve:E + * + * Note: desc_make_reusable:A and desc_push_tail:B can be + * different CPUs. However, the desc_push_tail:B CPU + * (which performs the full memory barrier) must have + * previously seen desc_make_reusable:A. + * + * 2. Guarantee the tail ID is stored before storing the head + * ID. This pairs with desc_reserve:B. + * + * 3. Guarantee any data ring tail changes are stored before + * recycling the descriptor. Data ring tail changes can + * happen via desc_push_tail()->data_push_tail(). A full + * memory barrier is needed since another CPU may have + * pushed the data ring tails. This pairs with + * data_push_tail:B. + * + * 4. Guarantee a new tail ID is stored before recycling the + * descriptor. A full memory barrier is needed since + * another CPU may have pushed the tail ID. This pairs + * with desc_push_tail:C and this also pairs with + * prb_first_seq:C. + */ + } while (!atomic_long_try_cmpxchg(&desc_ring->head_id, &head_id, + id)); /* LMM(desc_reserve:D) */ + + desc = to_desc(desc_ring, id); + + /* + * If the descriptor has been recycled, verify the old state val. + * See "ABA Issues" about why this verification is performed. + */ + prev_state_val = atomic_long_read(&desc->state_var); /* LMM(desc_reserve:E) */ + if (prev_state_val && + prev_state_val != (id_prev_wrap | DESC_COMMITTED_MASK | DESC_REUSE_MASK)) { + WARN_ON_ONCE(1); + return false; + } + + /* + * Assign the descriptor a new ID and set its state to reserved. + * See "ABA Issues" about why cmpxchg() instead of set() is used. + * + * Guarantee the new descriptor ID and state is stored before making + * any other changes. A write memory barrier is sufficient for this. + * This pairs with desc_read:D. + */ + if (!atomic_long_try_cmpxchg(&desc->state_var, &prev_state_val, + id | 0)) { /* LMM(desc_reserve:F) */ + WARN_ON_ONCE(1); + return false; + } + + /* Now data in @desc can be modified: LMM(desc_reserve:G) */ + + *id_out = id; + return true; +} + +/* Determine the end of a data block. */ +static unsigned long get_next_lpos(struct prb_data_ring *data_ring, + unsigned long lpos, unsigned int size) +{ + unsigned long begin_lpos; + unsigned long next_lpos; + + begin_lpos = lpos; + next_lpos = lpos + size; + + /* First check if the data block does not wrap. */ + if (DATA_WRAPS(data_ring, begin_lpos) == DATA_WRAPS(data_ring, next_lpos)) + return next_lpos; + + /* Wrapping data blocks store their data at the beginning. */ + return (DATA_THIS_WRAP_START_LPOS(data_ring, next_lpos) + size); +} + +/* + * Allocate a new data block, invalidating the oldest data block(s) + * if necessary. This function also associates the data block with + * a specified descriptor. + */ +static char *data_alloc(struct printk_ringbuffer *rb, + struct prb_data_ring *data_ring, unsigned int size, + struct prb_data_blk_lpos *blk_lpos, unsigned long id) +{ + struct prb_data_block *blk; + unsigned long begin_lpos; + unsigned long next_lpos; + + if (size == 0) { + /* Specify a data-less block. */ + blk_lpos->begin = INVALID_LPOS; + blk_lpos->next = INVALID_LPOS; + return NULL; + } + + size = to_blk_size(size); + + begin_lpos = atomic_long_read(&data_ring->head_lpos); + + do { + next_lpos = get_next_lpos(data_ring, begin_lpos, size); + + if (!data_push_tail(rb, data_ring, next_lpos - DATA_SIZE(data_ring))) { + /* Failed to allocate, specify a data-less block. */ + blk_lpos->begin = INVALID_LPOS; + blk_lpos->next = INVALID_LPOS; + return NULL; + } + + /* + * 1. Guarantee any descriptor states that have transitioned + * to reusable are stored before modifying the newly + * allocated data area. A full memory barrier is needed + * since other CPUs may have made the descriptor states + * reusable. See data_push_tail:A about why the reusable + * states are visible. This pairs with desc_read:D. + * + * 2. Guarantee any updated tail lpos is stored before + * modifying the newly allocated data area. Another CPU may + * be in data_make_reusable() and is reading a block ID + * from this area. data_make_reusable() can handle reading + * a garbage block ID value, but then it must be able to + * load a new tail lpos. A full memory barrier is needed + * since other CPUs may have updated the tail lpos. This + * pairs with data_push_tail:B. + */ + } while (!atomic_long_try_cmpxchg(&data_ring->head_lpos, &begin_lpos, + next_lpos)); /* LMM(data_alloc:A) */ + + blk = to_block(data_ring, begin_lpos); + blk->id = id; /* LMM(data_alloc:B) */ + + if (DATA_WRAPS(data_ring, begin_lpos) != DATA_WRAPS(data_ring, next_lpos)) { + /* Wrapping data blocks store their data at the beginning. */ + blk = to_block(data_ring, 0); + + /* + * Store the ID on the wrapped block for consistency. + * The printk_ringbuffer does not actually use it. + */ + blk->id = id; + } + + blk_lpos->begin = begin_lpos; + blk_lpos->next = next_lpos; + + return &blk->data[0]; +} + +/* Return the number of bytes used by a data block. */ +static unsigned int space_used(struct prb_data_ring *data_ring, + struct prb_data_blk_lpos *blk_lpos) +{ + if (DATA_WRAPS(data_ring, blk_lpos->begin) == DATA_WRAPS(data_ring, blk_lpos->next)) { + /* Data block does not wrap. */ + return (DATA_INDEX(data_ring, blk_lpos->next) - + DATA_INDEX(data_ring, blk_lpos->begin)); + } + + /* + * For wrapping data blocks, the trailing (wasted) space is + * also counte |